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In this paper, we study the random matrix model of Gaussian Unitary Ensemble (GUE)
with fixed-rank (aka spiked) external source. We will focus on the critical regime of
the Baik-Ben Arous-Péché (BBP) phase transition and establish the distribution of
the eigenvectors associated with the leading eigenvalues. The distribution is given in
terms of a determinantal point process with extended Airy kernel. Our result can
be regarded as an eigenvector counterpart of the BBP eigenvalue phase transition [6].
The derivation of the distribution makes use of the recently re-discovered eigenvector-
eigenvalue identity, together with the determinantal point process representation of
the GUE minor process with external source.

1 Introduction

In this paper, we consider the Gaussian Unitary Ensemble (GUE) with fixed-rank external source, also
known as the spiked GUE in the literature, denoted by

Gα ≡ G(N)
α := G+

k∑
i=1

αieie
∗
i , (1.1)

where G = (gij)N,N is a standard N -dimensional GUE, i.e., gii ∼ N(0, 1) (1 ≤ i ≤ N); gij ∼ N(0, 1
2)+iN(0, 1

2)
(1 ≤ i < j ≤ N) are independent random variables with standard real/complex normal distributions, and
gji = gij . Here α = (α1, . . . , αk) ∈ Rk is a deterministic vector with fixed dimension k, and {ei} is the
standard basis of RN . The entire discussion in this paper works under the following more general setting

Gα,v = G+

k∑
i=1

αiviv
∗
i (1.2)

with any deterministic orthonormal vectors vi ∈ CN . Nevertheless, due to the unitary invariance of GUE,
it would be sufficient to focus on the model in (1.1).

Throughout the paper, we will be focusing on the critical regime of the well-known Baik-Ben Arous-Péché
(BBP) phase transition [6], and thus make the following assumption on αi’s

Assumption 1. There exist fixed constants a1, . . . , ak ∈ R such that

αi =
√
N +N

1
6ak−i+1, i = 1, . . . , k. (1.3)

We emphasize here that αi’s are unordered. Whenever the ordered parameters are needed in some local
discussion, we will use α(j) to denote the j-th largest αi.

We further denote the ordered eigenvalues of Gα by ∗

σ1 > · · · > σN (1.4)

‡Supported by Hong Kong RGC grant GRF16300618, GRF 16301519, and NSFC 11871425
†Supported by Singapore AcRF grant R-146-000-217-112
∗Throughout this paper, for all the random matrices we consider, the eigenvalues are distinct with probability 1. Hence we

always assume the simplicity of the eigenvalues without further explanation.
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and set
xi = (xi1, . . . , xiN )> (1.5)

to be the unit eigenvector associated with σi
†. In this paper, we are primarily interested in the limiting

distribution of |xij |2’s with bounded i, after appropriate normalization, as the dimension N →∞. Observe
that |xij |2 can be understood as the square of the projection of eigenvector xi onto the direction ej . Due
to the unitary invariance, our results can also be applied to the projection |〈xv

i ,vj〉|2, where we used xv
i to

denote the i-th eigenvector of Gα,v in (1.2). Before we state the main results, we first give a brief review of
the literature on the eigenvalue and eigenvector of random matrices with fixed-rank deformation, in Section
1.1, and then we present the definition of the extended Airy kernel in Section 1.2, with which we will then
state our main results in Section 1.3.

1.1 Random matrix with fixed-rank deformation

Our model in (1.1) is in the category of the random matrices with fixed-rank deformation, which also
includes the spiked sample covariance matrix and the signal-plus-noise model as typical examples. A vast
amount of work has been devoted to understanding the limiting behavior of the extreme eigenvalues and
the associated eigenvectors of the deformed models. Since the seminal work of Baik, Ben Arous and Péché
[6], it is now well-understood that the extreme eigenvalues undergo a so-called BBP phase transition along
with the change of the strength of the deformation. Specifically, there exists a critical threshold such that
the extreme eigenvalue of the deformed matrix will stick to the right end point of the limiting spectral
distribution if the strength of the deformation is less than or equal to the threshold, and will otherwise jump
out of the support of the limiting spectral distribution. In the latter case we often call the extreme eigenvalue
as an outlier. Moreover, the fluctuation of the extreme eigenvalues in different regimes (subcritical, critical
and supercritical) are also identified in [6] for the complex spiked covariance matrix. Particularly, for the
deformed GUE in (1.1), the phase transition takes place on the scale αi =

√
N +O(N1/6). Hence, for the

deformed GUE, more specifically, the regimes αi <
√
N−N1/6+ε, αi =

√
N+O(N1/6) and αi >

√
N+N1/6+ε

will be referred to as subcritical, critical and supercritical, respectively, in the sequel. We also refer to [4],
[7], [13], [14], [23], [30], [40], [45] and the reference therein for the first-order limit of the extreme eigenvalue
of various related models. The fluctuation of the extreme eigenvalues of various models have been considered
in [5], [4], [8], [9], [12], [17], [16], [19], [20], [25], [26], [31], [34], [40], [41], [45], [46], [47], [54], [55].

In parallel to the results of the extreme eigenvalues, there are some corresponding results on eigenvectors
in the literature. Suppose Gα is given in (1.1) while α1, . . . , αk are significantly away from the critical thresh-
old, say, minj |αj −

√
N | ≥ ε

√
N for some positive constant ε, it is known that (i) if α(i) ≤ (1− ε)

√
N , then

xi, the eigenvector associated with the i-th largest eigenvalue σi, is delocalized in the sense ‖xi‖∞ ≤ N−1/2+δ

for any small constant δ > 0 with high probability; (ii) if α(i) ≥ (1 + ε)
√
N , then xi has an order one bias

on the direction of the deformation e(i). Here we used α(i) to denote the i-th largest value of all αj ’s and
e(i) is the canonical basis vector with the corresponding index. In [13], [14], [22], [30], [45], the behavior
of the extreme eigenvectors has been studied on the level of the first order limit. A detailed discussion of
eigenvector behavior in the full subcritical regime and supercritical regime can be found in the recent work
[18], which was done for the spiked sample covariance matrix. Especially, the discussion in [18] indicates
that in case there is an αj close to the critical threshold, i.e, αj = (1 + o(1))

√
N , for any fixed i such

that σi is not an outlier, xi will have a bias of small order towards the direction of ej . On the level of
the fluctuation, the limiting behavior of the extreme eigenvectors has not been fully studied yet. By es-
tablishing a general universality result of the eigenvectors of the sample covariance matrix in the null case,
the authors of [18] are able to establish the law of the eigenvectors of the spiked covariance matrices in
the subcritical regime. In this regime, the eigenvector distribution is similar to (up to appropriate scaling)
that of the bulk and edge regime of Wigner matrices without spikes; see [21], [39], [52], [15] and [44] for
instance. More specifically, in the subcritical regime, the limiting distribution of the square of eigenvector
components (after appropriate scaling) is given by χ2 distribution, which tells the asymptotic Gaussianity
of the eigenvector components themselves (without taking square). Although the result was established for
sample covariance matrix only in [18], it can be extended to deformed Wigner without essential difference.
In the supercritical regime, the fluctuation of the eigenvectors was recently studied in [11], [10], [24] for

†Since the eigenvalues are assumed to be distinct, xi are unique up to an angular factor. We ignore the angular factor since
we consider only the moduli of the components throughout the paper.
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various models with generally distributed matrix entry. For generally distributed deformed Wigner matrix,
the leading eigenvector distribution is non-universal in the supercritical regime; see [24]. However, if one
restricts the discussion to the deformed GUE, then the limiting distribution of the square of eigenvector
components (after appropriate centering and scaling) is given by Gaussian. Although the discussion in [24]
has only covered the regime αi ≥ (1 + ε)

√
N , one can use the approach in [10] to extend the result to the

full supercritical regime αi ≥
√
N +N1/6+ε.

The aforementioned works leave the eigenvector distribution in the critical regime undiscussed. In this
paper, we will establish the eigenvector distribution in the critical regime, i.e., αi =

√
N +O(N1/6). Here

although we are dealing with the deformed GUE only, our methodology and result reveal certain universality
of eigenvector distribution of random matrices with fixed-rank deformation in the critical regime of BBP
transition, within the class of unitary invariant ensemble. Especially, our discussion can apply similarly to
the fixed-rank deformed Laguerre Unitary Ensemble (LUE) that is also known as spiked Wishart ensemble
or spiked sample covariance matrices in statistics and on which the BBP transition is most intensively
studied, and the fixed-rank deformed Jacobi Unitary Ensemble (JUE, aka MANOVA ensemble in statistics)
by using the corresponding correlation kernel formulas in [2]. We expect universal asymptotic results in
these models. We also remark here that the universality has not yet been proved or disproved for generally
distributed Wigner matrices with fixed-rank perturbation in the critical regime of BBP transition, even on
the eigenvalue level.

At last, we remark that for both Hermitian type (complex) random matrices and real symmetric type
random matrices, the BBP transition may happen under fixed rank deformations. The study of eigenvalues
there shows that in the critical regime the two types of random matrices have different universal behaviours
and are usually investigated by different methods (except for [19], [20]), while in the the supercritical and
subcritical regimes, the behaviours of the two types of random matrices have more common features and
are usually investigated together, by some perturbative approaches which can often reduce the problems
to those of the non-perturbed models. The previous research of eigenvectors in BBP transition, which is
only in the supercritical and subcritical regimes, generally works for both types of random matrices and
yields similar results for them. Our approach in the critical regime, however, is non-perturbative and works
only for the Hermitian type random matrices, because it depends on the determinantal property that is not
available for the real symmetric ones. The study of the eigenvectors in the critical regime of BBP transition
for real symmetric type random matrices is more challenging and is out of the scope of the current paper.

1.2 Extended Airy kernel

In order to state our main results, we need to first introduce the extended Airy kernel in this subsection.
Recall the Airy kernel that defines the celebrated Tracy-Widom distribution that is often seen in random
matrix theory and interacting particle systems of the Kardar-Parisi-Zhang (KPZ) universality class, see [3],
[27] and [48], and references therein,

KAiry(x, y) =
1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−xu

e
v3

3
−yv

1

u− v
, (1.6)

where the contours γ and σ are as in Figure 1. They are nonintersecting and infinite contours; γ goes from
e−2πi/3 · ∞ to e2πi/3 · ∞, and σ goes from e−πi/3 · ∞ to eπi/3 · ∞. We then define the extended Airy kernel
depending on real parameters a1, a2, . . . , which is the correlation kernel of a determinantal point process at
discrete time t ∈ Z≥0. For any m1,m2 ∈ Z≥0, we let

Km1,m2

Airy,a (x, y) = − 1(m1 < m2)1(x < y)
1

2πi

∮
e(y−x)w∏m2

j=m1+1(w − aj)
dw + K̃m1,m2

Airy,a (x, y), (1.7)

where

K̃m1,m2

Airy,a (x, y) =
1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−xu

e
v3

3
−yv

∏m1
j=1(u− aj)∏m2
j=1(v − aj)

1

u− v
, (1.8)

such that the contour in (1.7) encloses all the poles am1+1, . . . , am2 and in (1.8) all the poles a1, . . . , am2 of
v are to the left of γ. We note that in the special m1 = m2 = 0 case, the correlation kernel Km1,m2

Airy,a (x, y) is
reduced to KAiry(x, y).
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The Airy kernel KAiry defines a determinantal point process, with infinitely many particles, ordered as

+∞ > ξ1 > ξ2 > · · · , (1.9)

and the n-point correlation function

Rn(x1, . . . , xn) = det(KAiry(xi, xj))
n
i,j=1. (1.10)

Analogously, for each m ≥ 0, the extended Airy kernel Km,m
Airy,a also defines a determinantal point process,

with infinitely many particles, ordered as

+∞ > ξ
(m)
1 > ξ

(m)
2 > · · · , (1.11)

with ξ
(0)
i ≡ ξi in (1.9). Furthermore, if we put all the ξ

(m)
i ’s (m ≥ 0, i ≥ 1) together, they form a

determinantal point process living in space R and time m ∈ Z≥0. The probability meaning of the extended

Airy kernel is that it defines a determinantal point process with infinitely many species of particles, ξ
(m)
i

(particle index i = 1, 2, . . . , species index m = 0, 1, . . . ), such that the marginal distribution of m-species
particles is given by the correlation kernels Km,m

Airy,a, and further the mixed correlation function is given by

Rn(x1,m1;x2,m2; . . . ;xn,mn)

:= lim
∆x→0

1

∆xn
P
(

there exists a particle in [xi, xi + ∆x) at time mi for i = 1, . . . , n
)

= det
(
K
mi,mj
Airy,a (xi, xj)

)n
i,j=1

.

(1.12)

γ σ

Figure 1: Contours γ
and σ.

γ σ

√−xi

−√−xi

Figure 2: Double con-
tour X consisting of γ
and σ that are deformed
through ±

√
−xi.

γstd(a)σstd(b)

b a

Figure 3: γstd(a) and
σstd(b) that are stan-
dardized deformations
of γ and σ.

σ′
u σ′

zγ′
vγ′

w

Figure 4: 4-fold con-
tour XX consisting of
two pairs of γ and σ
in standardized defor-
mation.

Remark 1. It is not easy to check directly that the correlation functions in (1.12) are well-defined, since
the kernel functions are generally non-Hermitian. (The necessary and sufficient condition for a Hermitian
kernel to define a probabilistic determinantal point process is given in [50, Theorem 3].) However, since we
know in Lemma 6 (see also [2]) that the extended Airy kernel is the limit of the correlation kernels of the
GUE minor process with external source, we conclude thereby that the correlation functions in (1.12) are
well-defined. Then it is not hard to see that the rightmost particle exists for each species. Also we have
that the point process consisting of finitely many species of particles is simple (by [38, Remark 4]).

1.3 Main results

Recall the point process in (1.11) with any fixed parameter sequence a = (a1, . . . , ak). Define for any integers
n > j the random variable

Ξ
(k)
j (a;n) := n

1
3

j−1∏
i=1

ξ
(k)
j − ξ

(k−1)
i

ξ
(k)
j − ξ

(k)
i

n∏
i=j+1

ξ
(k)
j − ξ

(k−1)
i−1

ξ
(k)
j − ξ

(k)
i

. (1.13)

Our first result is on the existence of the limit of Ξ
(k)
j (a;n) as n→∞.
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Theorem 1. For any a = (a1, . . . , ak) ∈ Rk with fixed components, and j a fixed positive integer,

Ξ
(k)
j (a;∞) := lim

n→∞
Ξ

(k)
j (a;n) (1.14)

exists almost surely.

Our second result is on the distribution of the first k components of the eigenvectors associated with the
largest eigenvalues. The theorem states for the first component, and see Remark 2 for the 2-nd, . . . , k-th
components.

Theorem 2. Under Assumption 1, for any fixed j, we have

N
1
3 |xj1|2

d−→
(

3π

2

) 1
3

Ξ
(k)
j (a;∞), as N →∞. (1.15)

Remark 2. Since our α1, . . . , αk are unordered, the first component corresponding to the α1e1e
∗
1 deformation

has nothing special compared with the 2-nd, . . . , k-th components, and we state the result for the first
component only for notational simplicity. The result of Theorem 1 can be adapted for xjl with any l =
2, . . . , k as follows: We consider, instead of Gα, the random matrix G̃α which is a conjugate of Gα by
switching the first row/column and the l-th row/column. Then

xjl = x̃j1, (1.16)

where x̃mn means the n-th component of the normalized eigenvector of G̃α associated with σm (the m-th
largest eigenvalue of Gα, which is also the m-th largest eigenvalue of G̃α).

Remark 3. We further remark here that the result in Theorem 2 holds for any fixed j. Particularly, j can
be even larger than k (but fixed). Note that σj is not an outlier or a critical spiked eigenvalue in case
j > k. Hence, the result in Theorem 2 shows that a critical spike can even cause a bias of the eigenvectors
associated with those non-outliers towards the direction of the spikes, since xj1 is typically of order N−1/6

here while it would be of order N−1/2 in case the deformation
∑k

i=1 αieie
∗
i was absent, for instance. Such

a phenomenon was previously observed in [18] when the spike is in the subcritical or supercritical regime,
but sufficiently close to the critical regime. As j � k, this bias eventually peters out, and the decay speed
deserves further study.

A consequence of Theorem 1 and Remark 2 is as follows:

Corollary 3. Under Assumption 1, for a fixed j, the moduli of components |xj,k+1|, |xj,k+2|, . . . , |xjN | have
the same distribution, and we have, with l > k,

N |xj`|2
d−→ 1

2
χ2(2), as N →∞, (1.17)

where χ2(2) is the χ2 random variable with parameter 2, which can be equivalently expressed as Gamma(1, 1)
or Exp(1).

Finally, the integrable property of the distribution of Ξ
(k)
j (a;∞) will be the subject of further study, and

here we only present the first step towards this direction: the non-degeneracy of the distribution.

Theorem 4. Under the assumption of Theorem 1, the limit Ξ
(k)
j (a;∞) is nondegenerate, i.e,

P(Ξ
(k)
j (a;∞) = x) < 1

for any x ∈ R.

In the end of Section 7, we also present some simulation results, which show some features of the
eigenvector distribution numerically.
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1.4 Proof strategy

In order to prove Theorem 1, we turn to study the logarithm of Ξ
(k)
j (a;n) in (1.13), which can be further

written as an integral of 1/(ξ
(k)
j − x) against a random measure µ, with the lower limit of the integral given

by ξ
(k)
n ; see (3.4) and (3.8). Specifically, the measure µ has density φ taking 1 on intervals (ξ

(k)
i , ξ

(k−1)
i−1 ] for

all i and 0 elsewhere. It is also clear that ξ
(k)
n → −∞ almost surely as n → ∞. Hence, in order to show

that the left tail of the integral in (3.8) is negligible, i.e., the integral is convergent, it suffices to study the
property of the measure µ((x,∞)) when x→ −∞. A key technical step in this part is Proposition 10, where
we show that the random measure µ behaves like a halved Lebesgue measure when it acts on the interval

(x,∞) with x→ −∞. Heuristically, since µ has density 1 on intervals (ξ
(k)
i , ξ

(k−1)
i−1 ]’s but 0 on (ξ

(k−1)
i , ξ

(k)
i ]’s,

Proposition 10 can be interpreted as: when i is large, ξ
(k)
i is typically sitting neutrally between ξ

(k−1)
i and

ξ
(k−1)
i−1 and does not favor either side.

Technically, the complementary distribution function, µ((x,+∞)), can be expressed (approximately)

in terms of the difference between two linear statistics: one of the species {ξ(k)
i } with the test function

hx(t) = (−t+ x)1(t > x), and the other of the species {ξ(k−1)
i } with the same test function; see (4.5). The

computation of the linear statistics of determinantal point processes, especially those from random matrix
models, is an extensively studied area, and results are abundant. The tricky part in our case is that up to
the leading term, the asymptotics of the two linear statistics are the same. We take the advantage of our
model that both the mean and variance of the difference of the two linear statistics have an exact formula;
see (4.13) and (4.16). For our purpose, it suffices to take limits of the mean and variance formulas. This is
done in the proof of Proposition 10 via a rather delicate saddle point analysis involving a series of contour
deformations. We also refer to the recent work [32] for a study on the fluctuation of the difference of linear
eigenvalue statistics of a Wigner matrix and its minor, where two strongly correlated linear statistics have a
significant cancellation. The work [32] indicates that exploiting the true size of the fluctuation of difference
between the linear statistics of two interlacing point processes is normally more delicate than that of a single
linear statistic for an individual point process. Although the result in [32] is more on the bulk regime of
random matrices, while here we are discussing two interlacing species of the extended Airy process, our
analysis also indicates the general complexity of the difference between two linear statistics.

For the proof of Theorem 2, we start from the celebrated eigenvector-eigenvalue identity. We refer the
interested readers to the recent survey [29] and reference therein for a detailed discussion and a history of this
identity. Here we cite the identity directly from [29] with slight modification as the following proposition.

Proposition 5. Let A ∈ Cn×n be an Hermitian matrix and let Mj ∈ C(n−1)×(n−1) be its minor obtained by
deleting the j-th column and row from A. Denote by λ1(A) > · · · > λn(A) the ordered eigenvalues of A and
by λ1(Mj) > · · · > λn−1(Mj) the ordered eigenvalues of Mj. Furthermore, let vi = (vi1, . . . , vin)> be the
eigenvector of A, associated with λi(A). Then one has

|vij |2 =

∏n−1
`=1 (λi(A)− λ`(Mj))∏

`∈{1,...,n}\{i}(λi(A)− λ`(A))
. (1.18)

Applying the eigenvector-eigenvalue identity to our random matrix Gα = G
(N)
α and its minor G

(N−1)
α

which is constructed by removing the first column and first row of Gα, we can write

|xj1|2 =

j−1∏
i=1

σj − λi
σj − σi

N∏
i=j+1

σj − λi−1

σj − σi
, (1.19)

where σ1 > σ2 > · · · > σN are eigenvalues of Gα, λ1 > · · · > λN−1 are eigenvalues of G
(N−1)
α , and xj1 is the

first component of the normalized eigenvector of Gα associated with σj . Equivalently, we have

N
1
3 |xj1|2 = N

1
3

j−1∏
i=1

σj − λi
σj − σi

N∏
i=j+1

σj − λi−1

σj − σi
, (1.20)

which resembles formally Ξ
(k)
j (a;N) in (1.13).
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First, for the fixed i terms in (1.20), we apply the result of GUE minor process with external source in [2]
which shows that the two species of point process {σi} and {λi} together form a determinantal point process
(see also [35]). We first show in Lemma 6 that the edge scaling limit of this point process is given by a
determinantal point process with extended Airy kernel defined in (1.12), under Assumption 1. Consequently,
we have

σj − λi
σj − σi

d−→
ξ

(k)
j − ξ

(k−1)
i

ξ
(k)
j − ξ

(k)
i

(1.21)

for any fixed i 6= j. This gives an indication of the connection between N1/3|xj1|2 and the limit Ξ
(k)
j (a;∞).

However, the weak convergence in (1.21) cannot be applied directly to the double limit case when i = i(N)→
∞ as N →∞. Hence, besides Lemma 6, we need to analyze the product of the large i terms in (1.20). To
this end, we mimic the idea of the proof of Theorem 1. Again, we turn to consider the logarithm of the
product in (1.20) (but over the large i terms only), which can be written as an integral of 1/(σj −x) against
a random measure µN with the lower limit of the integral given by σN ; see (5.1) and (5.3). Specifically, the
measure µN has the density φN taking 1 on (σi, λi−1] for all i = 2, . . . , N and 0 elsewhere. Since the domain
of the integral (5.3), i.e., [σN , σL] contains both the edge and bulk regimes of the semicircle law, and the

point process {ξ(k)
i } only approximates the matrix eigenvalues in the edge regime (with an effective extension

to certain order of intermediate regime), we need to further decompose the domain [σN , σL] into two parts:
[σN , σL] = [σN , σN0) ∪ [σN0 , σL], with N0 := b2/(3π)N1/10c. We will then show that under appropriate
scaling, the random measure µN can be well approximated by µ on the domain [σN0 , σL]. Furthermore,
a detailed analysis of the measure µN on [σN , σN0 ] shows that the integral 1/(σj − x) over this domain is
approximately deterministic, and thus does not contribute to the randomness of the limit of N1/3|xj1|2.

Especially, our result Theorem 2 and its proof show that the randomness of N1/3|xj1|2 essentially depends

only on the local edge regime of the eigenvalues of Gα and G
(N−1)
α , and the bulk eigenvalues contribute a

deterministic factor. Similar phenomenon has also shown up in the limiting theorem of some other eigenvalue
statistics in the literature, which inspires our current work. For instance, in the recent work [42], the weak
limit of the statistic

1√
N

N∑
j=2

1

Λ1 − Λj
(1.22)

is identified to be an infinite sum given in terms of the Airy process, where Λ1 > · · · > ΛN are the ordered
eigenvalues of Gaussian Orthogonal Ensemble (GOE). The randomness of (1.22) essentially comes from the
edge part of the sum and the bulk part only contributes collectively in a deterministic manner. We also
refer to [57] for a related discussion.

For the proof of the nondegeneracy of the distribution of Ξ
(k)
j (a;∞), i.e., Theorem 4, we will apply

the weak convergence in Theorem 2 to translate the question to N1/3|xj1|2. An advantage of the latter
is that the eigenvalue distribution admits a log-gas representation which can facilitate our analysis. More
specifically, we will show that a bounded truncation (from both below and above) of log(N1/3|xj1|2) has a
lower bound for variance, uniformly in N . This will finally lead to the conclusion of Theorem 4.

Finally, we remark here that in this paper we do not consider the deformed GOE since the corresponding
results on the minor process used for GUE here is not available for GOE so far. But many discussions in
this paper work for the deformed GOE as well.

1.5 Organization and notation

The rest of the paper is organized as follows. In Section 2, we state some preliminary results which will
be used in the later sections. The main results of the paper, Theorems 1 and 2 are proved respectively in
Sections 3 and 5, based on the key technical estimates in Propositions 10 and 11, whose proofs will be stated
respectively in Sections 4 and 6. In addition, Corollary 3 is an easy consequence of Theorem 2 and Remark
2, and its proof will be stated at the end of Section 5. Section 7 is then devoted to the proof of Theorem 4.
Finally, some proofs of technical lemmas are collected in Appendix A.

Throughout the paper, we will use O(·) and o(·) for the standard big-O and little-o notations. We use
C,C ′, C1, etc. to denote positive constants (independent of N). For any set I, the notation |I| stands for
its cardinality. We use the shorthand notation Ja, bK = [a, b] ∩ Z, for all a, b ∈ R.
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2 Collection of results for spiked GUE and extended Airy process

In this section, we first review the determinantal point process representation of the eigenvalue distribution
of Gα and its minors, and then state some preliminary results to be used in the later sections. Some lemmas
in this section are direct consequences of existing results in the literature, while for others, only the proof
strategy exists in the literature. We give the proofs and/or the references of the lemmas in Appendix A.

2.1 Determinantal point process representation for eigenvalues of Gα

In this subsection, we re-denote the eigenvalues of Gα = G
(N)
α and G

(N−1)
α by

λ
(N)
i := σi, λ

(N−1)
` := λ`, where i ∈ J1, NK, ` ∈ J1, N − 1K (2.1)

and further we denote by λ
(N−j)
1 > · · · > λ

(N−j)
N−j the ordered eigenvalues of the matrix G

(N−j)
α , which is

obtained from Gα by deleting its first j rows and columns.

For each j, the eigenvalues of G
(N−j)
α form a determinantal point process. In addition, the eigenvalues

of all G
(N−j)
α , j = 0, . . . , k together form a determinantal point process, called the GUE minor process with

external source [2]. The correlation kernel of these eigenvalues is given as follows: For j1, j2 ∈ J0 . . . , kK,

Kj1,j2
GUE,α(x, y) = − 1(j1 > j2)1(x < y)

1

2πi

∫
Γ

e(y−x)w∏j1
i=j2+1(w − αj)

dw + K̃j1,j2
GUE,α(x, y), (2.2)

where

K̃j1,j2
GUE,α(x, y) =

1

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2
−xzzN−k

e
w2

2
−ywwN−k

∏k
i=j1+1(z − αi)∏k
i=j2+1(w − αi)

1

z − w
. (2.3)

Here Γ is a circular contour wrapping 0 and α1, . . . , αk positively, and Σ is an infinite contour from −i · ∞
to i · ∞, to the right of Γ; see Figure 10.

The relation between the correlation kernel Kj1,j2
GUE,α(x, y) and the correlation kernel Kk1,k2

Airy,a(x, y) defined
in (1.7) is as follows:

Lemma 6. Let α1, . . . , αk be given in Assumption 1. If we denote, with ji = k − ki ∈ J0, kK (i = 1, 2),

Kj1,j2
N,scaled(x, y) = N−

1
6N

j1−j2
6 eN

1
3 (x−y)Kj1,j2

GUE,α(2
√
N +N−

1
6x, 2

√
N +N−

1
6 y), (2.4)

then

1. For all x, y in a compact subset of R, uniformly

lim
N→∞

Kj1,j2
N,scaled(x, y) = Kk1,k2

Airy,a(x, y). (2.5)

2. Let ε > max(a1, . . . , ak). For any C ∈ R, as operators on L2([C,+∞)), the ones with kernel

eε(x−y)Kj1,j2
N,scaled(x, y) converge, in trace norm, to the one with kernel eε(x−y)Kk1,k2

Airy,a(x, y).

Consequently, the above statements imply the weak convergence of the joint distribution of {N1/6(λ
(N−j)
i −

2
√
N) | 0 ≤ j ≤ k, 1 ≤ i ≤ K} to that of {ξ(k−j)

i | 0 ≤ j ≤ k, 1 ≤ i ≤ K} for any fixed positive integer K,

where ξ
(k−j)
i ’s are particles in the determinantal point process given by (1.12).

We note that although we discussed the joint distribution of λ
(N−j)
i for all j ∈ J0, kK, to prove Theorem

2, we only need the j = 0, 1 cases. Hence we recycle the notations σi and λi for λ
(N)
i and λ

(N−1)
i respectively

in the sequel, for simplicity.
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2.2 Useful estimates

By the well-known Weyl’s inequality, we have that

σ1 > λ1 > σ2 > λ2 > · · · > λN−1 > σN , and more generally λ
(N−j)
1 > λ

(N−j−1)
1 > λ

(N−j)
2 > · · · > λ

(N−j)
N−j
(2.6)

for all j = 0, 1, . . . , N − 1 ‡. In parallel, for the particles in the extended Airy process defined in (1.12), we
also have the following interlacing property.

Lemma 7. Let j = 1, . . . , k. With probability 1, the particles ξ
(j)
i and ξ

(j−1)
i (i = 1, 2, . . . ) whose joint

distribution is given by (1.12) satisfy the interlacing inequality

+∞ > ξ
(j)
1 > ξ

(j−1)
1 > ξ

(j)
2 > ξ

(j−1)
2 > · · · . (2.7)

Next, we list some rigidity result for the particles in the extended Airy process and also the eigenvalues
of Gα.

Lemma 8. Let ξ
(k)
j , j = 1, . . . be the particles defined in (1.12). Then we have the following estimates.

1. For any fixed j, there exists a numerical C > 0, such that for all t > 0

P(ξ
(k)
j > t) < Ce−t/C , P(ξ

(k)
j < −t) < Ce−t/C . (2.8)

2. For all n ≥ 2, there exists a numerical c > 0, such that

P

(∣∣∣∣∣ξ(k)
n +

(
3πn

2

)2/3
∣∣∣∣∣ > n

3
5

)
≤ cn−

6
5 log n. (2.9)

Lemma 9. Suppose N > k is large enough, then:

1. For j ∈ J1, kK, there exists a numerical C > 0, such that

P(σj > 2
√
N + tN−

1
6 ) < Ce−t/C , P(σN < −2

√
N − tN−

1
6 ) < Ce−t/C , for all t > 0, (2.10)

P(σj < 2
√
N − tN−

1
6 ) < Ce−t/C , P(σN > −2

√
N + tN−

1
6 ) < Ce−t/C , for all 2 ≤ t ≤ 2N2/3.

(2.11)

2. For any positive constant C > 0, there exists a numerical c > 0, such that for all 2 ≤ n ≤ CN1/10,

P

(∣∣∣∣∣N 1
6 (σn − 2

√
N) +

(
3πn

2

)2/3
∣∣∣∣∣ > n

3
5

)
≤ cn−

6
5 log n. (2.12)

3. Given any (small) c ∈ (0, 1), for all i ∈ J1, (1 − c)NK, for any (small) constant ε > 0 and (large)
constant D > 0

P
(
|σi −Υi| ≥ N−

1
6

+εi−
1
3

)
≤ N−D. (2.13)

Here Υi is the scaled quantile of semicircle law defined by∫ 2

Υi/
√
N
ρsc(x)dx =

N − i+ 1
2

N
, ρsc(x) =

1

2π

√
(4− x2)+. (2.14)

All the lemmas stated in this section are proved in Appendix A.

‡ Hereafter we ignore the probability 0 event that some λ
(N−j−1)
i is identical to λ

(N−j)
i or λ

(N−j)
i+1 .
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3 Existence of the limit

In this section, we prove Theorem 1. Recall (1.13). For any 1 ≤ j ≤ k < m < n, we set the quantity

Ξ
(k)
j (a;n) = n

1
3

j−1∏
i=1

ξ
(k)
j − ξ

(k−1)
i

ξ
(k)
j − ξ

(k)
i

m∏
i=j+1

ξ
(k)
j − ξ

(k−1)
i−1

ξ
(k)
j − ξ

(k)
i

A(k)
j,m(a;n), where A(k)

j,m(a;n) :=
n∏

i=m+1

ξ
(k)
j − ξ

(k−1)
i−1

ξ
(k)
j − ξ

(k)
i

.

(3.1)

In order to prove Theorem 1, it suffices to show that for any given m > k, logA(k)
j,m(a;n) + 1

3 log n converges
almost surely as n→∞, or equivalently, by Cauchy’s criterion,

lim sup
m→∞

sup
n>m

∣∣∣∣logA(k)
j,m(a;n) +

1

3
log

n

m

∣∣∣∣ = 0, a. s. . (3.2)

In order to study

logA(k)
j,m(a;n) =

n∑
i=m+1

(
log(ξ

(k)
j − ξ

(k−1)
i−1 )− log(ξ

(k)
j − ξ

(k)
i )
)
, (3.3)

we define a random measure µ = µ(k) on R that is absolutely continuous with respect to the Lebesgue
measure, and is given by a random density function φ(x)

φ(x) :=

{
1, ξ

(k)
i < x ≤ ξ(k−1)

i−1 for all i > 1,

0, otherwise.
(3.4)

Since ξ
(k)
1 < +∞ almost surely, we have that

M(x) := µ((x,+∞)) =

∫ ∞
x

φ(t)dt (3.5)

is a well defined random, continuous and piecewise linear function of x ∈ R. We also define the deterministic
function

F (x) := EM(x). (3.6)

It is clear that as x → +∞, M(x) → 0 almost surely, and F (x) → 0. We have the following estimate of
F (x) and M(x), whose proof will be given in the end of this section.

Proposition 10. As the negative parameter x→ −∞, we have

F (x) =
−x
2

+O(1), VarM(x) = EM2(x)− F 2(x) =
2

π

√
−x+O(|x|

1
4 ). (3.7)

Then we write

logA(k)
j,m(a;n) =

∫ ξ
(k−1)
m

ξ
(k)
n

−1

ξ
(k)
j − x

dµ(x) =

∫ ξ
(k−1)
m

ξ
(k)
n

1

ξ
(k)
j − x

dM(x) =

∫ ξ
(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

dM(x), (3.8)

where in the last step we used the fact that dM(x) = 0 on (ξ
(k−1)
m , ξ

(k)
m ] by definition. Hence (3.2) is

equivalent to

lim
m→∞

sup
n2>n1>m

Dn1,n2 = 0, a. s., where Dn1,n2 =

∣∣∣∣∣
∫ ξ

(k)
n1

ξ
(k)
n2

1

ξ
(k)
j − x

dM(x) +
1

3
log

n2

n1

∣∣∣∣∣ . (3.9)

Or else, we can use F (x) to rewrite (3.9) as

lim
m→∞

sup
n2>n1>m

D̃n1,n2 = 0, a. s., where D̃n1,n2 =

∣∣∣∣∣
∫ ξ

(k)
n1

ξ
(k)
n2

1

ξ
(k)
j − x

dM(x)−
∫ −(3πn1/2)2/3

−(3πn2/2)2/3

1

0− x
dF (x)

∣∣∣∣∣ ,
(3.10)
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in light of the first identity in (3.7). It is equivalent to show: for any ε1, ε2 > 0, there exists mε1,ε2 , such that

for all m > mε1,ε2 , P
(

supn2>n1>m D̃n1,n2 > ε1

)
< ε2. Furthermore, we see that it suffices to show, under

the same assumption,

P
(

sup
n>m

D̃m,n > ε1

)
= P

(
sup
n>m

∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

dM(x)−
∫ −(3πm/2)2/3

−(3πn/2)2/3

1

0− x
dF (x)

∣∣∣∣∣ > ε1

)
< ε2. (3.11)

Here we note that by Lemma 8, the constants 0, −(3πm/2)2/3 and −(3πn/2)2/3 approximate the values of

ξ
(k)
j , ξ

(k)
m and ξ

(k)
n respectively.

Therefore, in order to prove Theorem 1, it suffices to show (3.11) in the sequel.

Remark 4. Here we remark that the proof of (3.11) relies only on the following three ingredients: (i) Propo-

sition 10 on the properties of F (x) and M(x), (ii) Lemma 8 on the fluctuation of ξ
(k)
j and ξ

(k)
n , and (iii) the

property that both dF (x) and dM(x) are dominated by the Lebesgue measure. Our proof below could be
potentially simplified. Nevertheless, for coherence, we keep the current presentation, since it can be easily
adapted in the later proof of (5.15).

Proof of (3.11). We carry out the proof in three steps. To facilitate the proof, for j ∈ J1, kK and m > k, we

denote by Ω
(k)
j,m the events that ξ

(k)
m and ξ

(k)
j satisfy the following rigidity properties

Ω
(k)
j,m :=

{
ω
∣∣∣ |ξ(k)

j | ≤ m
3
5 ,
∣∣∣ξ(k)
m + (3πm/2)

2
3

∣∣∣ ≤ m 3
5

}
, (3.12)

and also denote Ω
(k)
j,m,n = Ω

(k)
j,m ∩ Ω

(k)
j,n.

1. We first note that given any ε1 > 0, there exists mε1 such that for all n > m > mε1 ,∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

dF (x)−
∫ −(3πm/2)2/3

−(3πn/2)2/3

1

0− x
dF (x)

∣∣∣∣∣1(Ω
(k)
j,m,n)

≤

∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

dF (x)−
∫ ξ

(k)
m

ξ
(k)
n

1

0− x
dF (x)

∣∣∣∣∣1(Ω
(k)
j,m,n)

+

∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

1

0− x
dF (x)−

∫ −(3πm/2)2/3

−(3πn/2)2/3

1

0− x
dF (x)

∣∣∣∣∣1(Ω
(k)
j,m,n)

<
ε1
3

+
ε1
3

=
2ε1
3
.

(3.13)

2. We next show that given any ε1, ε2 > 0, there exists sufficiently large positive integer m′′ε1,ε2 such that
for all m > m′′ε1,ε2

P

(
sup
n>m

∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

d(M(x)− F (x))1(Ω
(k)
j,m,n)

∣∣∣∣∣ > ε1
3

)
<
ε2
2
. (3.14)

To see it, using integration by parts, we write∫ ξ
(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

d(M(x)− F (x)) =
M(ξ

(k)
m )− F (ξ

(k)
m )

ξ
(k)
j − ξ

(k)
m

− M(ξ
(k)
n )− F (ξ

(k)
n )

ξ
(k)
j − ξ

(k)
n

−
∫ ξ

(k)
m

ξ
(k)
n

M(x)− F (x)

(ξ
(k)
j − x)2

dx.

(3.15)
So to prove (3.14), we only need to show that for a large enough m′′ε1,ε2 , if m > m′′ε1,ε2 ,

P

(∣∣∣∣∣M(ξ
(k)
m )− F (ξ

(k)
m )

ξ
(k)
j − ξ

(k)
m

1(Ω
(k)
j,m)

∣∣∣∣∣ > ε1
9

)
<
ε2
6
, (3.16)

P

(
sup
n>m

∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

M(x)− F (x)

(ξ
(k)
j − x)2

dx1(Ω
(k)
j,m,n)

∣∣∣∣∣ > ε1
9

)
<
ε2
6
. (3.17)
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(a) For (3.16), we note that since (ξ
(k)
j − ξ

(k)
m )/(3πm/2)2/3 = 1 + O(m−1/15) on Ω

(k)
j,m, it suffices to

show

P

(
|M(ξ

(k)
m )− F (ξ

(k)
m )|

(3πm/2)2/3
1(Ω

(k)
j,m) >

ε1
9

)
<
ε2
6
. (3.18)

To prove (3.18), we first set

`i =

⌈
2

3π
i3/2
⌉
. (3.19)

Then for any m ∈ J`i, `i+1K, |M(ξ
(k)
m )− F (ξ

(k)
m )| ≤ Ai +Bi(m) + Ci(m), where

Ai = |M(−i)− F (−i)|, Bi(m) = |M(ξ(k)
m )−M(−i)|, Ci(m) = |F (ξ(k)

m )− F (−i)|. (3.20)

By the estimate in Proposition 10 and Markov’s inequality, we have that if i is big enough, then
for any ε > 0

P (|M(−i)− F (−i)| ≥ εi) < ε−2i−3/2, (3.21)

and we conclude that there exists a sufficiently large positive integer Nε1,ε2 such that

P

(
sup

i>Nε1,ε2

Ai

(3π`i/2)2/3
>
ε1
27

)
<
ε2
6
. (3.22)

Using the properties that |F (x1)− F (x2)| ≤ |x1 − x2| and |M(x1)−M(x2)| ≤ |x1 − x2|, we have

that there exists N ′ε1,ε2 such that if i > N ′ε1,ε2 , then for all m ∈ J`i, `i+1K, we have that on Ω
(k)
j,m,

|?i(m)|
(3πm/2)2/3

≤ |ξ
(k)
m − (−i)|

(3πm/2)2/3
≤
|[−(3π`i+1/2)2/3 − `3/5i+1]− [−(3π`i/2)2/3]|

(3πm/2)2/3
<
ε1
27
, ? = B or C.

(3.23)
Hence we have that if i > max(Nε1,ε2 , N

′
ε1,ε2) and m ∈ J`i, `i+1K, then by (3.23)

|M(ξ
(k)
m )− F (ξ

(k)
m )|

(3πm/2)2/3
1(Ω

(k)
j,m) ≤ Ai

(3π`i/2)2/3
+

2

27
ε1. (3.24)

Then by (3.22), we prove (3.18), which further implies (3.16).

(b) To show (3.17) holds, we note that since on Ω
(k)
j,m,n, |(ξ(k)

j − x)/x| = 1 +O(m−1/15) if x ≥ ξ(k)
m , it

suffices to show that if m is large enough,

P

(
sup
n>m

∫ ξ
(k)
m

ξ
(k)
n

|M(x)− F (x)|
x2

dx1(Ω
(k)
j,m,n) >

ε1
9

)
<
ε2
6
. (3.25)

Also, since ξ
(k)
m goes to −∞ monotonically as m → ∞, ξ

(k)
m < −(3

2πm)2/3 + m3/5 on Ω
(k)
j,m, and

the integrand of (3.25) is non-negative, we find that it suffices to prove that there exists Kε1,ε2 ,
such that for all positive integers k2 > k1 > Kε1,ε2 ,

P
(

sup
k2>k1

∫ −k1
−k2

|M(x)− F (x)|
x2

dx ≥ ε1
9

)
<
ε2
6
. (3.26)

We define the auxiliary functions with integer parameters k1 < k2

Ak1,k2 =

k2∑
i=k1

|M(−i)− F (−i)|
(i− 1)i

, Bk1,k2 =

k2∑
i=k1

|M(−i)− F (−i)|
i(i+ 1)

,

Ck1,k2 = 2

k2−1∑
i=k1+1

F (−i)
(i− 1)i(i+ 1)

− F (−k1)

k1(k1 + 1)
+

F (−k2)

(k2 − 1)k2
.

(3.27)

Since for x ∈ [−i,−(i− 1)], we have, by the monotonicity of F (x) and M(x),

M(−(i− 1))− F (−i) ≤M(x)− F (x) ≤M(−i)− F (−(i− 1)), (3.28)
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and the inequality∫ −k1
−k2

|M(x)− F (x)|
x2

dx ≤
k2∑

i=k1+1

∫ −(i−1)

−i

|M(−i)− F (−(i− 1))|
x2

+
|M(−(i− 1))− F (−i)|

x2
dx

=

k2∑
i=k1+1

|M(−i)− F (−(i− 1))|
(i− 1)i

+

k2−1∑
i=k1

|M(−i)− F (−(i+ 1))|
i(i+ 1)

≤ (Ak1+1,k2 + Ck1,k2) + (Bk1,k2−1 + Ck1,k2)

≤ Ak1,k2 +Bk1,k2 + 2Ck1,k2 .

(3.29)

Hence to prove (3.26), it suffices to show that there exists Kε1,ε2 such that for k1 > Kε1,ε2 ,

P
(

sup
k2>k1

Ak1,k2 >
ε1
27

)
<
ε2
12
, P

(
sup
k2>k1

Bk1,k2 >
ε1
27

)
<
ε2
12
, and sup

k2>k1

2|Ck1,k2 | <
ε1
27
.

(3.30)
By the estimate of F (x) in Proposition 10, we can easily verify the Ck1,k2 part of (3.30) with
large enough k1 > Kε1,ε2 . On the other hand, analogous to (3.21), we have that for large enough
i,

P
(
|M(−i)− F (−i)| ≥ i4/5

)
< i−

11
10 . (3.31)

Also if k1 > 270ε−1
1 + 1, we have

∞∑
i=k1

i−6/5 <

∫ ∞
k1−1

x−6/5dx <
ε1
54
. (3.32)

Hence if k1 > 270ε−1
1 + 1, noting that i(i+ 1)2 > (i− 1)i ≥ i2/2 for all i ≥ k1 ≥ 2, we have

P
(

sup
k2>k1

Bk1,k2 >
ε1
27

)
≤ P

(
sup
k2>k1

Ak1,k2 >
ε1
27

)

≤ P

 ∞∑
i=k1

|M(−i)− F (−i)|
i2

>
ε1
54


≤ P

 ∞⋃
i=k1

{
|M(−i)− F (−i)|

i2
> i−

6
5

}
≤

∞∑
i=k1

P
(
|M(−i)− F (−i)|

i2
> i−

6
5

)

≤
∞∑
i=k1

i−
11
10 <

∫ ∞
k1−1

x−
11
10 dx = 10(k1 − 1)−

1
10 ,

(3.33)

and conclude the proof of the Ak1,k2 and Bk1,k2 parts of (3.30). Now (3.30) is proved, and so are
(3.26) and (3.17).

Thus we finish the proof of (3.14). The constant m′′ε1,ε2 can be deduced from Nε1,ε2 , N ′ε1,ε2 , Kε1,ε2

above.

3. Combining (3.13) and (3.14) we arrives at that for m > max(m′ε1 , m′′ε1,ε2),

P

(
sup
n>m

{∣∣∣∣∣
∫ ξ

(k)
m

ξ
(k)
n

1

ξ
(k)
j − x

dM(x)−
∫ −(3πm/2)2/3

−(3πn/2)2/3

1

0− x
dF (x)

∣∣∣∣∣1(Ω
(k)
j,m,n)

}
> ε1

)
<
ε2
2
. (3.34)
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To complete the proof of (3.2), it suffices to find mε1,ε2 > max(m′ε1 , m′′ε1,ε2) such that for all m > mε1,ε2

P

 ⋃
n≥m

(
Ω

(k)
j,m,n

)c <
ε2
2
. (3.35)

By (2.9) in Lemma 2.9, we have that if m is large enough, then P(|ξ(k)
m + (3πm/2)2/3| > m3/5) <

cm−6/5 logm, and the estimate also holds if m is replaced by n. Also by part 1 of Lemma 8, we have

limm→∞ P
(
|ξ(k)
j | ≤ m3/5

)
= 0. Hence it is straightforward to check that (3.35) holds if m is large

enough, and the desired mε1,ε2 exists.

Finally we complete the proof of (3.11).

4 Analysis of random measure µ: proof of Proposition 10

We show that the estimate of the mean and variance of M(x) can be transformed to the mean and variance
of a linear statistic of the extended Airy process, or more precisely, the difference between the linear statistics
of two species, as mentioned in Section 1.4. We observe that the mean and variance of the linear statistic
have (multi)-contour integral representations. Then we prove the said estimate, first of the mean and then
of the variance, via delicate saddle point analysis of the contour integrals.

Define the finite random subsets of N

Ix := {i ∈ N | ξ(k)
i ∈ (x,+∞)}, Jx := {i ∈ N | ξ(k−1)

i ∈ (x,+∞)}. (4.1)

and the random variable
Nx = |Ix| − |Jx|. (4.2)

By the interlacing property stated in Lemma 7, we see that Nx is a Bernoulli random variable for a given
x. Hence,

ENx = P(Nx = 1). (4.3)

We also consider the random variable

Sx = −
∑
i∈Ix

ξ
(k)
i +

∑
i∈Jx

ξ
(k−1)
i . (4.4)

We observe that if ξ
(k)
1 ≤ x, then Nx = Sx = M(x) = 0. Under the condition that ξ

(k)
1 > x, if Nx = 1, then

Sx = M(x)− ξ(k)
1 , otherwise Sx = M(x)− ξ(k)

1 + x. We conclude that (noting that Nx1(ξ
(k)
1 > x) = Nx)

M(x) = Sx + (ξ
(k)
1 − x(1−Nx))1(ξ

(k)
1 > x) = Sx + xNx + (ξ

(k)
1 − x)1(ξ

(k)
1 > x). (4.5)

By the estimate in Lemma 8, we find that as x→ −∞, E(ξ
(k)
1 − x)1(ξ

(k)
1 > x) = −x+O(1) and Var(ξ

(k)
1 −

x)1(ξ
(k)
1 > x) = O(1). Hence to prove the Proposition 10, we only need the following estimates of the mean

and variance of Sx + xNx:

E(Sx + xNx) =
x

2
+O(1), (4.6)

Var(Sx + xNx) =
2

π

√
−x+ ak +O(|x|−1/2), (4.7)

in light of the linearity of expectation and the trivial inequality

|Var(X + Y )− (Var(X) + Var(Y ))| ≤ 2
√

Var(X) Var(Y ). (4.8)

Below we prove (4.6) and (4.7) separately. For the proofs, we define the function

hx(t) =

{
0, t ≤ x,
−t+ x, t > x.

(4.9)

We emphasize here, all integrals in the sequel, unless the integral domain is specified, are on R.
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Proof of (4.6) We have, by the standard formula for linear statistics of a determinantal point process,
that

E(Sx + xNx)

= E
(∑
i∈Jx

ξ
(k−1)
i

)
− E

(∑
i∈Ix

ξ
(k)
i

)
+ x
(
E |Ix| − E |Jx|

)
=

∫ ∞
x

tKk−1,k−1
Airy,a (t, t)dt−

∫ ∞
x

tKk,k
Airy,a(t, t)dt+ x

(∫ ∞
x

Kk,k
Airy,a(t, t)dt−

∫ ∞
x

Kk−1,k−1
Airy,a (t, t)dt

)
=

∫
hx(t)

(
Kk,k

Airy,a(t, t)−Kk−1,k−1
Airy,a (t, t)

)
dt.

(4.10)

According to (1.7) and (1.8), we have

Kk,k
Airy,a(t, t)−Kk−1,k−1

Airy,a (t, t) =
1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−tu

e
v3

3
−tv

k−1∏
j=1

u− aj
v − aj

 1

v − ak
. (4.11)

Plugging (4.11) into (4.10), we have

E(Sx + xNx) =
−1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3

e
v3

3

k−1∏
j=1

u− aj
v − aj

 1

v − ak

∫ +∞

x
(t− x)e−(u−v)tdt

=
−1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−xu

e
v3

3
−xv

k−1∏
j=1

u− aj
v − aj

 1

(v − ak)(u− v)2
.

(4.12)

By some standard residue calculation, we have that if x < 0, then

E(Sx + xNx)

=
−1

(2πi)2

∫∫
X

dudv
e
u3

3
−xu

e
v3

3
−xv

k−1∏
j=1

u− aj
v − aj

 1

(v − ak)(u− v)2
(4.13a)

+
−1

2πi

∫ √−xi

−
√
−xi

(v2 − x
v − ak

+

k−1∑
j=1

1

(v − aj)(v − ak)

)
dv, (4.13b)

where the contour X means that the two deformed contours σ and γ intersect at the two saddle points
±
√
−xi, see Figure 2, and the integral is understood as the Cauchy principal value, and the contour in

(4.13b) goes by the right of all ai’s. By direct computation, we find the (4.13b) is (x− a2
k)/2 +O(|x|−1/2).

To evaluate (4.13a), we define two types of infinite contours:

γstd(a) = {e
2πi
3 t+ a | t ≥ 0} ∪ {e

πi
3 t+ a | t ≤ 0}, σstd(b) = {e

πi
3 t+ b | t ≥ 0} ∪ {e

2πi
3 t+ b | t ≤ 0}, (4.14)

both oriented upward; see Figure 3. Assuming that −x is large enough, we deform the contour X such that
u is on σstd(−

√
−x/3), and v is on γstd(

√
−x/3). Direct computation shows that <(u3/3− xu) attains its

maximum along σ at ±
√
−xi, and <(v3/3−xv) attains its minimum along γ at the same two points. Hence

±
√
−xi are the saddle points. We divide the double contour X into three disjoint subsets:

(i) X1 = {u, v ∈ X | |u−
√
−xi| < 1, |v −

√
−xi| < 1},

(ii) X2 = {u, v ∈ X | |u+
√
−xi| < 1, |v +

√
−xi| < 1},

(iii) X3 = X \ (X1 ∪X2).

By standard saddle point method, we have that the parts of integral (4.13a) over X1 and X2 are both
O(|x|−1/2), and the part of integral (4.13a) over X3 is o(|x|−1/2). This together with the estimate of (4.13b)
above completes the proof of (4.6).
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Proof of (4.7) We can write, with hx(t) defined in (4.9),

E[(Sx + xNx)2] =

∫
h2
x(t)Kk,k

Airy,a(t, t)dt+

∫
h2
x(t)Kk−1,k−1

Airy,a (t, t)dt

+

∫∫
hx(s)hx(t)

∣∣∣∣∣Kk,k
Airy,a(s, s) Kk,k

Airy,a(s, t)

Kk,k
Airy,a(t, s) Kk,k

Airy,a(t, t)

∣∣∣∣∣ dsdt
+

∫∫
hx(s)hx(t)

∣∣∣∣∣Kk−1,k−1
Airy,a (s, s) Kk−1,k−1

Airy,a (s, t)

Kk−1,k−1
Airy,a (t, s) Kk−1,k−1

Airy,a (t, t)

∣∣∣∣∣dsdt
−
∫∫

hx(s)hx(t)

∣∣∣∣∣Kk,k
Airy,a(s, s) Kk,k−1

Airy,a(s, t)

Kk−1,k
Airy,a(t, s) Kk−1,k−1

Airy,a (t, t)

∣∣∣∣∣ dsdt
−
∫∫

hx(s)hx(t)

∣∣∣∣∣Kk−1,k−1
Airy,a (s, s) Kk−1,k

Airy,a(s, t)

Kk,k−1
Airy,a(t, s) Kk,k

Airy,a(t, t)

∣∣∣∣∣ dsdt. (4.15)

Combining (4.15) with (4.10) and using (1.7) we get

Var
[
Sx + xNx

]
=

∫
h2
x(t)

(
Kk,k

Airy,a(t, t) +Kk−1,k−1
Airy,a (t, t)

)
dt− 2

∫
hx(t)

(∫ ∞
t

hx(s)eak(s−t)Kk,k−1
Airy,a(s, t)ds

)
dt (4.16a)

−
∫∫

hx(s)hx(t)
(
Kk,k

Airy,a(s, t)Kk,k
Airy,a(t, s) +Kk−1,k−1

Airy,a (s, t)Kk−1,k−1
Airy,a (t, s)

−Kk,k−1
Airy,a(s, t)K̃k−1,k

Airy,a(t, s)− K̃k−1,k
Airy,a(s, t)Kk,k−1

Airy,a(t, s)
)

dsdt.

(4.16b)

First, we consider the integrals in (4.16a). A simple change of order of integration yields∫
h2
x(t)

(
Kk,k

Airy,a(t, t) +Kk−1,k−1
Airy,a (t, t)

)
dt

=
1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−xu

e
v3

3
−xv

2

(u− v)4

k−1∏
j=1

u− aj
v − aj

 u+ v − 2ak
v − ak

, (4.17)

∫
hx(t)

(∫ ∞
t

hx(s)eak(s−t)Kk,k−1
Airy,a(s, t)ds

)
dt

=
1

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−xu

e
v3

3
−xv

1

(u− v)4

k−1∏
j=1

u− aj
v − aj

 (3u− v − 2ak)

u− ak
. (4.18)

So (4.16a) becomes

2

(2πi)2

∫
σ

du

∫
γ

dv
e
u3

3
−xu

e
v3

3
−xv

k−1∏
j=1

u− aj
v − aj

 1

(u− v)2(u− ak)(v − ak)
. (4.19)

Similarly to (4.13), when x < 0, this integral can be written as

2

(2πi)2

∫∫
X

dudv
e
u3

3
−xu

e
v3

3
−xv

k−1∏
j=1

u− aj
v − aj

 1

(u− v)2(u− ak)(v − ak)
(4.20a)

+
2

2πi

∫ √−xi

−
√
−xi

v2 − x+
k−1∑
j=1

1

v − aj
− 1

v − ak

 1

(v − ak)2
dv (4.20b)

+

k−1∏
j=1

(ak − aj)e
a3k
3
−akx 2

2πi

∫
γ

1

e
v3

3
−xv

k−1∏
j=1

1

v − aj

 1

(v − ak)3
dv, (4.20c)
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where the contour X in (4.20a) and the contour from −
√
−xi to

√
−xi in (4.20b) are the same as those

in (4.13). We have that the integral in (4.20b) is 4
√
−x/π + 2ak + O(|x|−1), and the integral in (4.20a)

is O(|x|−1). The saddle point analysis is omitted since it is analogous to that for (4.13). The integral in
(4.20c) will be cancelled out later, by a term in (4.25).

On the other hand, the double integral in (4.16b) can be expressed as

1

(2πi)4

∫
σ

du

∫
γ

dv

∫
σ

dz

∫
γ

dw
e
u3

3
−xu

e
v3

3
−xv

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

u− aj
v − aj

z − aj
w − aj

× 1

(u− v)(z − w)(u− w)(z − v)(v − ak)(w − ak)
. (4.21)

In order to estimate the integral above, we will perform several steps of contour deformation.

(I) We first deform the contour γ for w and v to γout
w ∪ γin

w and γout
v ∪ γin

v , respectively, as in Figure 5,
such that all aj (j = 1, . . . , k) are enclosed in γin

w , and then also in γin
v . We also slightly deform the

contour σ for u and z into σu and σz, respectively, as shown in Figure 5.

γin
w

γin
vγout

w

γout
v

σu

σz

Figure 5: Deformation of con-
tour γ for w and v, and con-
tour σ for u and z.

γin
w

γin
vγout

w

γout
v σ′

u

σz

Figure 6: σu is deformed into
σ′u.

γin
w

γin
vγout

w

γout
v σ′

u σ′
z

Figure 7: σz is deformed into
σ′z.

(II) We then further deform the contour σu such that it goes between γout
v and γin

v , and thus also goes
between γout

w and γin
w . We denote by σ′u the deformed σu; see Figure 6. By residue calculation, we

write (4.21) as

1

(2πi)4

∫
σ′u

du

∫
γoutv ∪γinv

dv

∫
σz

dz

∫
γoutw ∪γinw

dw
e
u3

3
−xu

e
v3

3
−xv

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

u− aj
v − aj

z − aj
w − aj

× 1

(u− v)(z − w)(u− w)(z − v)(v − ak)(w − ak)
(4.22a)

+
1

(2πi)2

∫
σz

dz

∫
γinw

dw
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 1

(w − ak)(z − ak)(z − w)2
(4.22b)

+
1

(2πi)2

∫
γinv

dv

∫
σz

dz
e
z3

3
−xz

e
v3

3
−xv

k−1∏
j=1

z − aj
v − aj

 −1

(v − ak)2(z − ak)(z − v)
(4.22c)

+
1

(2πi)2

∫
γoutv

dv

∫
σz

dz
e
z3

3
−xz

e
v3

3
−xv

k−1∏
j=1

z − aj
v − aj

 −1

(v − ak)2(z − ak)(z − v)
(4.22d)

+
1

(2πi)2

∫
γoutw

dv

∫
σz

dz
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −1

(w − ak)2(z − ak)(z − w)
. (4.22e)

Derivation of (4.22b)–(4.22e). First we integrate u over σ′u− σu, and the result is a 3-fold integral in
v, w, z. The integral domain of z is always σz so we leave it alone, and divide the integral domain of
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v, w into 4 subdomains: (i) γout
v ×γout

w , (ii) γout
v ×γin

w , (iii) γin
v ×γout

w and (iv) γin
v ×γin

w . Integrating v, w
on subdomain (i), the result is 0; integrating w on subdomain (ii), the result is (4.22d); integrating v
on subdomain (iii), the result is (4.22e); on subdomain (iv), it is more complicated: the integrand can
be divided into two parts, such that when we integrate one part with respect to v, we get (4.22b), and
when we integrate the other part with respect to w, we get (4.22c).

(III) Next, similarly to the previous step, we further deform the contour σz such that it goes between γout
v

and γin
v , and thus also goes between γout

w and γin
w . Hence σz becomes σ′z; see Figure 7. By residue

calculation, the quantity in (4.22) becomes

1

(2πi)4

∫
σ′u

du

∫
γoutv ∪γinv

dv

∫
σ′z

dz

∫
γoutw ∪γinw

dw
e
u3

3
−xu

e
v3

3
−xv

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

u− aj
v − aj

z − aj
w − aj

× 1

(u− v)(z − w)(u− w)(z − v)(v − ak)(w − ak)
(4.23a)

+
1

(2πi)2

∫
σ′u

du

∫
γinw

dw
e
u3

3
−xu

e
w3

3
−xw

k−1∏
j=1

u− aj
w − aj

 1

(w − ak)(u− ak)(u− w)2
(4.23b)

+
1

(2πi)2

∫
σ′u

du

∫
γinv

dv
e
u3

3
−xu

e
v3

3
−xv

k−1∏
j=1

u− aj
v − aj

 −1

(v − ak)2(u− ak)(u− v)
(4.23c)

+
1

(2πi)2

∫
σ′u

du

∫
γoutv

dv
e
u3

3
−xu

e
v3

3
−xv

k−1∏
j=1

u− aj
v − aj

 −1

(v − ak)2(u− ak)(u− v)
(4.23d)

+
1

(2πi)2

∫
σ′u

du

∫
γoutw

dw
e
u3

3
−xu

e
w3

3
−xw

k−1∏
j=1

u− aj
w − aj

 −1

(w − ak)2(u− ak)(u− w)
(4.23e)

+
1

(2πi)2

∫
σ′z

dz

∫
γinw

dw
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 1

(w − ak)(z − ak)(z − w)2
(4.23f)

+
1

2πi

∫
γinw

dw

w2 − x+
k−1∑
j=1

1

w − aj
− 1

w − ak

 1

(w − ak)2
(4.23g)

+
k−1∏
j=1

(ak − aj)e
a3k
3
−akx 1

2πi

∫
γinw

dw
1

e
w3

3
−xw

k−1∏
j=1

1

w − aj

 1

(w − ak)3
(4.23h)

+
1

(2πi)2

∫
γinv

dv

∫
σ′z

dz
e
z3

3
−xz

e
v3

3
−xv

k−1∏
j=1

z − aj
v − aj

 −1

(v − ak)2(z − ak)(z − v)
(4.23i)

+

k−1∏
j=1

(ak − aj)e
a3k
3
−akx 1

2πi

∫
γinv

dv
1

e
v3

3
−xv

k−1∏
j=1

1

v − aj

 1

(v − ak)3
(4.23j)

+
1

(2πi)2

∫
γoutw

dw

∫
σ′z

dz
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −2

(w − ak)2(z − ak)(z − w)
(4.23k)

+

k−1∏
j=1

(ak − aj)e
a3k
3
−akx 1

2πi

∫
γoutw

dw
1

e
w3

3
−xw

k−1∏
j=1

1

w − aj

 2

(w − ak)3
. (4.23l)

Derivation of (4.23). (i) (4.22a) is transformed to the sum of (4.23a)–(4.23e), by an argument sim-
ilar to that used to transform (4.21) to the sum of (4.22a)–(4.22e).
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(ii) (4.22b) is the sum of (4.23f), (4.23g) and (4.23h). To see it, we express the contours σz = σ′z+γin
v ,

and check that if the integral domain of (4.22b) is changed into (z, w) ∈ γin
v × γin

w , by integrating
z first, we obtain (4.23g) plus (4.23h).

(iii) (4.22c) is the sum of (4.23i) and (4.23j). To see it, we express the contours σz = σ′z + γin
z , where

γin
z encloses γin

v , and then find that the part of (4.22c) where σz is replaced by σ′z becomes (4.23i)
and the part where σz is replaced by γin

z becomes (4.23j).

(iv) (4.22d) and (4.22e) are equal, and their sum is equal to the sum of (4.23k) and (4.23l).

(IV) For further deformation of the contours, we introduce the following shorthand notations

:=
√
−xi +

1√
−x

, :=
√
−xi +

√
3i√
−x

, :=
√
−xi +

−
√

3i√
−x

, :=
√
−xi +

−1√
−x

. (4.24)

For the 4-fold integral (4.23a), we perform the following operations:

(i) deform σ′u such that it passes and ;

(ii) deform σ′z such that it passes and ;

(iii) deform γout
v such that it goes from e−2πi/3 · ∞ to , then goes along the left side of σ′u until it

reaches , and then goes from to e2πi/3 · ∞;

(iv) deform γin
v such that it goes from to along the right side of σ′z, then wraps around all aj ’s,

and finally goes back to ;

(v) and at last add an additional contour for v, on which the contour integral vanishes: the contour

goes from to along the left side of σ′z, then goes from to , and further goes from

to along the right side of σ′u, and finally goes from to .

See Figure 8 for the deformation of contours.

Now we define the infinite contour γ′v as in Figure 8 that goes from e−2πi/3 ·∞ to , then to , then
wraps aj ’s until it reaches , and then goes to , and finally goes to e2πi/3 · ∞. Hence the 4-fold
integral (4.23a) can be simplified by the residue theorem with γout

v ∪ γin
v replaced by γ′v. Then the

formula (4.23) becomes

1

(2πi)4

∫
σ′u

du

∫
σ′z

dz

∫
γoutw ∪γinw

dwP.V.

∫
γ′v

dv
e
u3

3
−xu

e
v3

3
−xv

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

u− aj
v − aj

z − aj
w − aj

× 1

(u− v)(z − w)(u− w)(z − v)(v − ak)(w − ak)
(4.25a)

+
1

(2πi)3

∫
σ′z

dz

∫
γoutw ∪γinw

dw

∫
du

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj


× 1

(z − w)(u− w)(z − u)(u− ak)(w − ak)
(4.25b)

+
1

(2πi)3

∫
σ′u

du

∫
γoutw ∪γinw

dw

∫
dz
e
u3

3
−xu

e
w3

3
−xw

k−1∏
j=1

u− aj
w − aj


× 1

(u− z)(z − w)(u− w)(z − ak)(w − ak)
(4.25c)

19



+
1

(2πi)2

∫
γoutw

dw

∫
σ′z

dz
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −4

(w − ak)2(z − ak)(z − w)
(4.25d)

+
k−1∏
j=1

(ak − aj)e
a3k
3
−akx 1

2πi

∫
γinw ∪γoutw

dw
1

e
w3

3
−xw

k−1∏
j=1

1

w − aj

 2

(w − ak)3
(4.25e)

+
1

(2πi)2

∫
σ′z

dz

∫
γinw

dw
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 2(2w − z − ak)
(w − ak)2(z − ak)(z − w)2

(4.25f)

+2ak.

Derivation of (4.25). (i) (4.23a) is equal to the sum of (4.25a)–(4.25c).

(ii) The sum of (4.23d), (4.23e), and (4.23k) is equal to (4.25d).

(iii) The sum of (4.23h) (4.23j) and (4.23l) is equal to (4.25e).

(iv) The sum of (4.23b), (4.23c), (4.23f), (4.23i) is equal to (4.25f).

(v) (4.23g) is equal to 2ak.

(V) Now we deform the contour γout
w ∪ γin

w for w in the way similar to our deformation of γout
v ∪ γin

v for v
in Step (IV). We perform the following operations:

(i) deform σ′u such that it passes and and meanwhile still passes and ;

(ii) deform σ′z such that it passes and and meanwhile still passes and ;

(iii) deform γout
w such that it goes from e−2πi/3 · ∞ to , then goes along the left side of σ′u to ,

and finally goes from to e2πi/3 · ∞;

(iv) deform γin
w such that it goes from to along the right side of σ′z, then wraps around all aj ’s,

and finally goes back to ;

(v) and at last add an additional contour for w, on which the contour integral vanishes: the contour

goes from to along the left-side of σ′z, then goes from to , then from to along

the right side of σ′u, and finally goes from to .

γin
w

γ′
v

γout
w

σ′
u σ′

z

Figure 8: The deformed contours for v, u and z.

The four dots are , , and .

γ′
w

γ′
v σ′

u σ′
z

Figure 9: The deformed contours for w, u and
z. The four dots on top are , , and ,
and the four dots on bottom are their complex
conjugates.

We have the result in Figure 9. Similar to γ′v in Figure 8, now we define the infinite contour γ′w that

goes from e−2πi/3 · ∞ to , then to , then wraps all aj ’s until it reaches , and then goes to ,
and finally goes to e2πi/3 · ∞. Contour γ′w is parallel to and to the left of γ′v. Hence by the residue
theorem, the 4-fold integral (4.25a) can be simplified with γout

w ∪ γin
w replaced by γ′w, and then formula

(4.25) becomes
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1

(2πi)4

∫
σ′u

du

∫
σ′z

dz P.V.

∫
γ′w

dwP.V.

∫
γ′v

dv
e
u3

3
−xu

e
v3

3
−xv

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

u− aj
v − aj

z − aj
w − aj

× 1

(u− v)(z − w)(u− w)(z − v)(v − ak)(w − ak)
(4.26a)

+
1

(2πi)3

∫
σ′z

dz P.V.

∫
γ′v

dv

∫
du
e
z3

3
−xz

e
v3

3
−xv

k−1∏
j=1

z − aj
v − aj


× 1

(u− v)(z − u)(z − v)(v − ak)(u− ak)
(4.26b)

+
1

(2πi)3

∫
σ′u

duP.V.

∫
γ′v

dv

∫
dz
e
u3

3
−xu

e
v3

3
+xv

k−1∏
j=1

u− aj
v − aj


× 1

(u− v)(u− z)(z − v)(v − ak)(z − ak)
(4.26c)

+
1

(2πi)2

∫
γinw ∪γoutw

dw

∫
σ′z

dz
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −4

(w − ak)2(z − ak)(z − w)
(4.26d)

+
1

(2πi)2

∫
σ′z

dz

∫
γinw

dw
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 2

(w − ak)2(z − w)2
(4.26e)

+(4.25b) + (4.25c) + (4.25e) + 2ak. (4.26f)

Derivation of (4.26). (i) (4.25a) is the sum of (4.26a)–(4.26c), and (ii) the sum of (4.25d) and (4.25f)
is equal to the sum of (4.26d) and (4.26e).

Now we can compute the contour integrals by saddle point method. Recall the contours σstd and γstd

defined in (4.14)). To facilitate the analysis, we fix the shape of the contours as σ′u = σstd(−
√
−x/3 −

1/
√
−x), σ′z = σstd(−

√
−x/3 + 1/

√
−x), γ′v = γstd(

√
−x/3 + 1/

√
−x) and γ′w = γstd(

√
−x/3 − 1/

√
−x),

and call the 4-fold contour consisting of them XX. Also when we consider contour integrals in the form of∫ C
C in (4.26) and (4.25) where C ∈ C+, we fix the shape of the contour to be the part of σstd(a) between

C and C, where a = <(C)−=(C)/
√

3. Below we also consider contour integrals denoted as
∫ C
C,right, whose

contour is the part of γstd(b) between C and C, where b = <(C) +=(C)/
√

3. (For symmetry,
∫ C
C should be

expressed
∫ C
C,left. But since it occurs more often than

∫ C
C,right, we omit the left subscript for simplicity.)

(1) The 4-fold integral (4.26a) can be estimated in the same way as the 2-fold integral (4.13a). To perform
the saddle point analysis, we denote the subsets of XX

(i) XX1 = {u, v, z, w ∈ XX | |u−
√
−xi| < 1, |v −

√
−xi| < 1, |z −

√
−xi| < 1, |w −

√
−xi| < 1},

(ii) XX2 = {u, v, z, w ∈ XX | |u+
√
−xi| < 1, |v +

√
−xi| < 1, |z +

√
−xi| < 1, |w +

√
−xi| < 1},

(iii) XX3 = XX \ (XX1 ∪XX2).

By standard saddle point method, we have that the parts of integral (4.26a) over XX1 and XX2 are both
O(|x|−1), and the part of integral (4.26a) over XX3 is o(|x|−1). Hence we have that (4.26a) is O(|x|−1).

(2) Both of the 3-fold integrals (4.26b) and (4.26c) can be evaluated similarly, and they are O(|x|−1).

(3) The 3-fold integral (4.25b) can be written as the sum of
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1

(2πi)3

∫
σ′z

dz P.V.

∫
γ′′w

dw

∫
du

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj


× 1

(z − w)(u− w)(z − u)(u− ak)(w − ak)
(4.27a)

+
1

(2πi)2

∫
du

∫ √−xi+eπi/6
√
−3/x

−
√
−xi+e−πi/6

√
−3/x

dz
−1

(u− z)2(u− ak)(z − ak)
(4.27b)

+
1

(2πi)2

∫
σ′′z

dz

∫
du
e
z3

3
−xz

e
u3

3
−xu

k−1∏
j=1

z − aj
u− aj

 1

(z − u)2(u− ak)2
(4.27c)

+
1

2πi

∫
du

(u2 − x) +

k−1∑
j=1

1

u− aj

 1

(u− ak)2
, (4.27d)

where the contours γ′′w = γstd(
√
−x/3 + 2/

√
−x) and σ′′z = σstd(−

√
−x/3− 2/

√
−x). We note that σ′′z

is similar to σ′z but keeps the contour for u in (4.27c) on its right, and the contour γ′′w is similar to γ′w
but intersects σ′z at

√
−xi + eπi/6

√
−3/x and −

√
−xi + e−πi/6

√
−3/x. On the other hand, the 3-fold

(4.25c) can be written as the sum of

1

(2πi)3

∫
σ′u

duP.V.

∫
γ′′w

dw

∫
dz
e
u3

3
−xu

e
w3

3
−xw

k−1∏
j=1

u− aj
w − aj


× 1

(u− z)(z − w)(u− w)(z − ak)(w − ak)
(4.28a)

+
1

(2πi)2

∫ √−xi+(1+3
√

3i))/
√
−4x

−
√
−xi+(1−3

√
3i))/

√
−4x

du

∫
dz

−1

(u− z)2(u− ak)(z − ak)
(4.28b)

+
1

(2πi)2

∫
σ′u

du

∫
dz
e
u3

3
−xu

e
z3

3
−xz

k−1∏
j=1

u− aj
z − aj

 1

(u− z)2(z − ak)2
, (4.28c)

where the contour σ′′w = σstd(−
√
−x/3− 2/

√
−x) is the same as σ′′z in (4.27c), and it intersects σ′u at√

−xi + (1 + 3
√

3i))/
√
−4x and −

√
−xi + (1− 3

√
3i))/

√
−4x.

(4) The 2-fold integral (4.26d) can be written as the sum

1

(2πi)2

∫∫
X

dvdz
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −4

(w − ak)2(z − ak)(z − w)
(4.29a)

+
1

2πi

∫ √−xi

−
√
−xi

dz
4

(z − ak)3
, (4.29b)

by the same transform as (4.12) is transformed into (4.13), and the double contour X and the single
contour in (4.29b) are the same as in (4.13). Note that the contour (4.13) is to the right of all ak’s
while the contour in (4.29b) is to the left of all ak’s.

(5) The 2-fold integral (4.26e) can be written as the sum of

1

(2πi)2

∫
σ′′z

dz

∫
dw

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −1

(w − ak)2(z − w)2
(4.30a)

+
1

(2πi)2

∫
σ′′z

dz

∫
,right

dw
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 1

(w − ak)2(z − w)2
(4.30b)
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+
1

(2πi)2

∫
σ′′z

dz

∫
dw

e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 −1

(w − ak)2(z − w)2
(4.30c)

+
1

(2πi)2

∫
σ′′z

dz

∫
,right

dw
e
z3

3
−xz

e
w3

3
−xw

k−1∏
j=1

z − aj
w − aj

 1

(w − ak)2(z − w)2
, (4.30d)

where σ′′z is defined the same as σ′′z in (4.27c). We note that (4.30a) cancels with (4.27c), and (4.30c)
cancels with (4.28c).

(6) The 1-fold integral (4.25e), after taking into account of the negative sign in (4.16b), cancels with
(4.20c).

(7) (4.27d) can be evaluated similarly to (4.20b), and it is 2
√
−x/π − ak +O(|x|−1/2).

(8) (4.27b) and (4.28b) are O(|x|−1/2 log|x|), and all the other integrals from (4.27a) to (4.30d) not men-
tioned above, are O(|x|−1/2), as x → −∞. Since the evaluations are all by standard saddle point
analysis, we omit the details.

Hence we obtain the final proof of (4.7).

5 Eigenvector distribution for GUE with external source

Recall the notations σi in (1.4) and xi in (1.5) for the eigenvalues and eigenvectors of Gα = G
(N)
α . Let

λ1 > λ2 > · · · > λN−1 be the ordered eigenvalues of G
(N−1)
α , which is obtained by removing the first column

and first row of Gα.
In order to prove Theorem 2, we define, analogous to (3.4), (3.5) and (3.6), the random measure µN = µ

(k)
N

with the random density function φN (x), (random) complementary distribution function MN (x) for µN , and
the mean of MN (x) such that

φN (x) =

{
1 σi < x ≤ λi−1 for all i ∈ J1, NK
0 otherwise,

and
MN (x) = µN ((x,+∞)) =

∫ ∞
x

φN (t)dt,

FN (x) = EMN (x).

(5.1)

Then for any L ∈ Jj,NK,

|xj1|2 =

j−1∏
i=1

σj − λi
σj − σi

L∏
i=j+1

σj − λi−1

σj − σi
G(k)
j,L(α;N), where G(k)

j,L(α;N) :=

N∏
i=L+1

σj − λi−1

σj − σi
. (5.2)

Here the superscript k in the notation G(k)
j,L(α;N) reminds us that the external source is of rank k; see

α1, . . . , αk in Assumption 1 that represent the external source. Analogous to (3.3) and (3.8), we write

log G(k)
j,L(α;N) =

∫ λL

σN

1

σj − x
dMN (x) =

∫ σL

σN

1

σj − x
dMN (x). (5.3)

Analogous to Proposition 10, we have the following key technical result, whose proof will be given in Section
6.

Proposition 11. 1. Let ε > 0 be any small (but fixed) constant and N be large enough. For x ∈
((−2 + ε)

√
N, 2
√
N −N−1/10) , we have

FN (x) = EN (x) +O(N−
1
12 (2
√
N − x)

1
2 ), EN (x) =

1

2π

(
−
√

4N − x2 + x arccos
x

2
√
N

)
+
√
N − x

2
,

(5.4)

VarMN (x) = VN (x) +O(N−
7
24 (2
√
N − x)

1
4 ), VN (x) =

1

π

(√
1− x2

4N
+ arccos

x

2
√
N

)
. (5.5)
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2. Let C be a large enough positive constant and N be large enough. For x ∈ [2
√
N − N−1/10, 2

√
N −

CN−1/6], we have, with ξ = N1/6(x− 2
√
N),

FN (x) = N−1/6

(
−ξ
2

+O(1)

)
, (5.6)

VarMN (x) = N−1/3

(
2

π

√
−ξ +O(|ξ|1/4)

)
. (5.7)

To prove Theorem 2, we first note that by Lemma 6, upon the scaling x 7→ N1/6(x−2
√
N), given a fixed

L, σ1, . . . , σL and λ1, . . . , λL converge weakly and jointly to ξ
(k)
1 , . . . , ξ

(k)
L and ξ

(k−1)
1 , . . . , ξ

(k−1)
L ’s respectively,

as N →∞. Hence for any fixed L > j,

j−1∏
i=1

σj − λi
σj − σi

L∏
i=j+1

σj − λi−1

σj − σi
d−→

j−1∏
i=1

ξ
(k)
j − ξ

(k−1)
i

ξ
(k)
j − ξ

(k)
i

L∏
i=j+1

ξ
(k)
j − ξ

(k−1)
i−1

ξ
(k)
j − ξ

(k)
i

= L−
1
3 Ξ

(k)
j (a;L). (5.8)

Using the convergence result in Theorem 1, we only need to show that for any ε1, ε2 > 0, there is a sufficiently
large Lε1,ε2 > 0 such that for any L ≥ Lε1,ε2 ,

lim sup
N→∞

P

(∣∣∣∣∣log G(k)
j,L(α;N)−

[
log

L1/3

N1/3
+ log

(
3π

2

)1/3
]∣∣∣∣∣ > ε1

)
< ε2. (5.9)

Here the deterministic term in (5.9) originates from the elementary identity∫ 2
√
N−N−1/6(3πL/2)2/3

−2
√
N

dEN (x)

2
√
N − x

=
1

2π

∫ 1− 1
2(3πLN−1/2)

2/3

−1

arccos y − π
1− y

dy

=
1

2π

∫ 1

−1

arccos y

1− y
dy − 1

2

∫ 1− 1
2(3πLN−1/2)

2/3

−1

dy

1− y
− 1

2π

∫ 1

1− 1
2

(3πLN−1/2)2/3

arccos y

1− y
dy

= log 2− 1

2

(
log 2− log

(
1

2

(
3πL

2N

)2/3
))

+O(N−
1
3 ) = log

L1/3

N1/3
+ log

(
3π

2

)1/3

+O(N−
1
3 ),

(5.10)

where we use the fact that 1
2π

∫ 1
−1

arccos y
1−y dy = − 2

π

∫ π/2
0 log(sin θ)dθ by integration by parts, and then it is

equal to log 2 by [36, 4.224.3]. Hence it is equivalent to show that for all large enough L,

lim sup
N→∞

P

(∣∣∣∣∣
∫ σL

σN

1

σj − x
dMN (x)−

∫ 2
√
N−N−1/6(3πL/2)2/3

−2
√
N

1

2
√
N − x

dEN (x)

∣∣∣∣∣ > ε1

)
< ε2. (5.11)

In order to prove (5.11), we will mainly rely on Proposition 11. There is an apparent obstacle: By part 1
of Lemma 9, σj and σN are close to 2

√
N and −2

√
N , respectively, but our estimates in Proposition 11 do

not cover the domain [−2
√
N, (−2 + ε)

√
N). In order to handle the integral over [−2

√
N, (−2 + ε)

√
N), we

need the observation that the measure dµN (x) = −dM(x) and also its expectation −dF (x) are dominated
by the Lebesgue measure, according to the definition in (5.1). To be precise, we have that for any ε3 > 0,
there is a small enough ε > 0, such that for all large enough N∣∣∣∣∣
∫ (−2+ε)

√
N

−2
√
N

1

2
√
N − x

dEN (x)

∣∣∣∣∣ < ε3, and

∣∣∣∣∣
∫ (−2+ε)

√
N

σN

1

σj − x
dMN (x)

∣∣∣∣∣ < ε3 with high probability.

(5.12)
Hence, in order to see (5.11), it remains to show that given any ε > 0, ε1, ε2 > 0, for all large enough (but
fixed) L, such that for all large enough N , one has

P

(∣∣∣∣∣
∫ σL

(−2+ε)
√
N

1

σj − x
dMN (x)−

∫ 2
√
N−N−1/6(3πL/2)2/3

(−2+ε)
√
N

1

2
√
N − x

dEN (x)

∣∣∣∣∣ > ε1

)
< ε2. (5.13)
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Next, we observe that by (5.4) and (5.6), for any ε3 > 0, there is a small enough ε > 0, such that for all
large enough N ∣∣∣∣∣

∫ 2
√
N−N−1/6(3πL/2)2/3

(−2+ε)
√
N

1

2
√
N − x

d(EN (x)− FN (x))

∣∣∣∣∣ < ε3. (5.14)

Hence, instead of (5.13), we only need to show, under the same assumption,

P

(∣∣∣∣∣
∫ σL

(−2+ε)
√
N

1

σj − x
dMN (x)−

∫ 2
√
N−N−1/6(3πL/2)2/3

(−2+ε)
√
N

1

2
√
N − x

dFN (x)

∣∣∣∣∣ > ε1

)
< ε2. (5.15)

Theorem 2 will then follow if (5.15) is proved.

Proof of (5.15). First, we set the integer

N0 =

⌊
2

3π
N

1
10

⌋
. (5.16)

We note that by part 2 of Lemma 9, σN0 = 2
√
N − N−1/10 + O(N−8/75) with high probability. To prove

(5.15), it suffices to show the following two inequalities with the same conditions:

P

(∣∣∣∣∣
∫ σL

σN0

1

σj − x
dMN (x)−

∫ 2
√
N−N−1/6(3πL/2)2/3

2
√
N−N−1/10

1

2
√
N − x

dFN (x)

∣∣∣∣∣ > ε1

)
< ε2, (5.17)

P

(∣∣∣∣∣
∫ σN0

(−2+ε)
√
N

1

σj − x
dMN (x)−

∫ 2
√
N−N−1/10

(−2+ε)
√
N

1

2
√
N − x

dFN (x)

∣∣∣∣∣ > ε1

)
< ε2. (5.18)

The proof of (5.17) is similar to that of (3.11) after a change of variable ξ = N1/6(x− 2
√
N). Actually,

we can show the following stronger estimate, which is an analogue of (3.11):

P

(
sup

L<n≤N1/10

∣∣∣∣∣
∫ σL

σn

1

σj − x
dMN (x)−

∫ 2
√
N−N−1/6(3πL/2)2/3

2
√
N−N−1/6(3πn/2)2/3

1

2
√
N − x

dFN (x)

∣∣∣∣∣ > ε1

)
< ε2, (5.19)

where the supremum for n is bounded by L and N1/10, rather than in (3.11) for all n greater than m. Note
that the proof of (3.11) only relies on three ingredients as explained in Remark 4, and all of them have
their counterparts in the proof of (5.19): the counterpart of Proposition 10 is part 2 of Proposition 11; the
counterpart of Lemma 8 is parts 1 and 2 of Lemma 9; the dominance by Lebesgue measure is the same for
µ and µN . The only slight difference is that part 2 of Lemma 9 is only valid for n less than N1/10 since the
Airy process approximation of the GUE minor process with external source can only be extended to such
an intermediate regime.

The proof of (5.18) again follows the idea of the proof of (3.11), with some necessary modifications. We
describe the proof parallel to that of (3.11), and give detailed explanations on the modifications. Analogous
to (3.12), we denote the events

Ω̂
(k)
j,m :=

{
ω
∣∣∣ |N 1

6 (σj − 2
√
N)| ≤ m

3
5 , |σm −Υm| ≤ N−

1
6m

3
5

}
, (5.20)

where Υm is defined in (2.14).

1. Analogous to (3.13), we have the estimate that if N is large enough, then∣∣∣∣∣
∫ σN0

(−2+ε)
√
N

1

σj − x
dFN (x)−

∫ 2
√
N−N−1/10

(−2+ε)
√
N

1

2
√
N − x

dFN (x)

∣∣∣∣∣1(Ω̂
(k)
j,N0

) <
2ε1
3
. (5.21)

2. Next, analogous to (3.14), we show

P

(∣∣∣∣∣
∫ σN0

(−2+ε)
√
N

1

σj − x
d(MN (x)− FN (x))1(Ω̂

(k)
j,N0

)

∣∣∣∣∣ > ε1
3

)
<
ε2
2
. (5.22)
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Using an integration by parts decomposition like (3.15), we find that it suffices to show

P
(∣∣∣∣MN (σN0)− FN (σN0)

σj − σN0

1(Ω̂
(k)
j,N0

)

∣∣∣∣ > ε1
9

)
<
ε2
6
, (5.23)

P

(∣∣∣∣∣MN ((−2 + ε)
√
N)− FN ((−2 + ε)

√
N)

σj − (−2 + ε)
√
N

1(Ω̂
(k)
j,N0

)

∣∣∣∣∣ > ε1
9

)
<
ε2
6
, (5.24)

P

(∣∣∣∣∣
∫ σN0

(−2+ε)
√
N

MN (x)− FN (x)

(σj − x)2
dx1(Ω̂

(k)
j,N0

)

∣∣∣∣∣ > ε1
9

)
<
ε2
6
. (5.25)

We first see that (5.24) only needs that MN ((−2 + ε)
√
N) is close to FN ((−2 + ε)

√
N), and it is a

direct consequence of (5.5) at x = (−2 + ε)
√
N , by using Markov inequality. Estimate (5.23) can be

verified in the same way as for (3.16). On the other hand, to verify (5.25), it suffices to show that

P

(∫ 2
√
N−N−1/10

(−2+ε)
√
N

|MN (x)− FN (x)|
(2
√
N − x)2

dx >
ε1
9

)
<
ε2
6
, (5.26)

by the arguement like that around (3.25) and (3.26). More specifically, to prove (5.26), we introduce

`i = 2
√
N − iN−

1
6 (5.27)

and analogous to (3.27) we set

Âk1,k2 =

k2∑
i=k1

|MN (`i)− FN (`i)|
(i− 1)i

, B̂k1,k2 =

k2∑
i=k1

|MN (`i)− FN (`i)|
i(i+ 1)

,

Ĉk1,k2 = 2

k2−1∑
i=k1+1

FN (`i)

(i− 1)i(i+ 1)
− FN (`k1)

k1(k1 + 1)
+

FN (`k2)

(k2 − 1)k2
.

(5.28)

Then analogous to (3.29) and (3.30), we have (without loss of generality, assuming N1/15 and (4 −
ε)N2/3 are integers)∫ 2

√
N−N−1/10

(−2+ε)
√
N

|MN (x)− FN (x)|
(2
√
N − x)2

dx ≤ N
1
6 (AN1/15,(4−ε)N2/3 +BN1/15,(4−ε)N2/3 + 2CN1/15,(4−ε)N2/3),

(5.29)
and need only to prove

P
(
N

1
6AN1/15,(4−ε)N2/3 >

ε1
27

)
<
ε2
12
, P

(
N

1
6BN1/15,(4−ε)N2/3 >

ε1
27

)
<
ε2
12
, 2N

1
6CN1/15,(4−ε)N2/3 <

ε1
27
,

(5.30)
As N is large enough, it is straightforward to show the last inequality for CN1/15,(4−ε)N2/3 . Also, like
(3.33), we have that for large enough N ,

P
(
AN1/15,(4−ε)N2/3 >

ε1
27
N−

1
6

)
≤ P

(
AN1/15,(4−ε)N2/3 >

ε1
27
N−

1
6

)
≤ P

(4−ε)N2/3∑
i=N1/15

|MN (`i)− FN (`i)|
i2

>
ε1
54
N−

1
6


≤ P

(4−ε)N2/3⋃
i=N1/15

{
|MN (`i)− FN (`i)|

i2
> i−

6
5N−

1
6

}
≤

(4−ε)N2/3∑
i=N1/15

P
(
|MN (`i)− FN (`i)|

i2
> i−

6
5N−

1
6

)

≤
(4−ε)N2/3∑
i=N1/15

i−
11
10 <

ε2
12
.

(5.31)

We thus finish the proof of (5.26), and then (5.25), and finally finish the proof of (5.22).
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3. At last, we need to show that the event Ω̂
(k)
j,N0

satisfies that P(Ω̂
(k)
j,N0

) > 1− ε2/2 if N is large enough.
(This is analogous to (3.35) but is much weaker.) This follows directly from the estimates of σj and
σN0 in parts 1 and 2 of Lemma 9.

Hence, we conclude the proof of Theorem 2.

Next, we prove Corollary 3.

Proof. Let U = (uij) ∈ C(N−k)×(N−k) be a any unitary matrix, then by the unitary invariance of GUE,
the random matrix (Ik ⊕ U)Gα(Ik ⊕ U∗) has the same distribution as Gα. Hence the eigenvector xj =
(xj1, . . . , xjN )> of Gα associated with σj , which is a random unit vector, satisfies that fixing xj1, . . . , xjk,
the conditional distribution of the truncated random vector (xj,k+1, . . . , xjN )> is unitarily invariant.

Furthermore, we have
∑N

i=k+1 |xji|2 = 1 − O(kN−1/3) with high probability by Theorem 2. So the
distribution of xji is approximated by that of a component of a Haar distributed complex unit random
vector in CN−k, as N →∞. Combining the above facts we can conclude the proof of Corollary 3 easily.

6 Analysis of random measure µN : proof of Proposition 11

To prove (5.4) and (5.6), we use the method similar to the proof of (3.7). We consider, analogous to (4.2),
the random variable (with notation abused)

Nx = |Ix| − |Jx| where Ix := {i ∈ N | σi ∈ (x,+∞)}, Jx := {i ∈ N | λi ∈ (x,+∞)}. (6.1)

By the interlacing property, we note that Nx is a Bernoulli random variable. Then

ENx = P(Nx = 1). (6.2)

We also consider, analogous to (4.4) the random variable (with notation abused)

Sx = −
∑
i∈Ix

σi +
∑
i∈Jx

λi. (6.3)

We observe that if σ1 ≤ x, then Nx = Sx = MN (x) = 0. Under the condition that σ1 > x, we have that if
Nx = 1, then Sx = MN (x)− σ1, otherwise Sx = MN (x)− σ1 + x. Similar to (4.5), we conclude that

MN (x) = Sx + xNx + (σ1 − x)1(σ1 > x). (6.4)

For the second term in (6.4) that only involves σ1, by part 1 of Lemma 9, we have the following estimate
that holds for all x ∈ R:

E[(σ1 − x)1(σ1 > x)] = 2
√
N − x+O(N−

1
6 ), Var[(σ1 − x)1(σ1 > x)] = O(N−

1
3 ). (6.5)

Then by the linearity of expectation and (4.8), the mean and variance estimates in Proposition 11 follow
from (6.5) and that for x ∈ ((−2 + ε)

√
N, 2
√
N −N−1/10)

E(Sx + xNx) = EN (x)− (2
√
N − x) +O(N−

1
12 (2
√
N − x)

1
2 ), (6.6)

Var(Sx + xNx) = VN (x) +O(N−
1
3 ), (6.7)

and for x ∈ [2
√
N−N−1/10, 2

√
N−CN−1/6], with x = 2

√
N+N−1/6ξ, then we have the uniform convergence

N
1
6 E(Sx + xNx) =

ξ

2
+O(1), (6.8)

N
1
3 Var(Sx + xNx) =

2

π

√
−ξ +O(|ξ|

1
4 ). (6.9)

Below we prove (6.6), (6.7) and (6.8). The proof of (6.9) is similar to that of (6.7) and we only give a
sketch.

27



Proof of (6.6) To faciliate the saddle point analysis below, we define several types of contours. First, we
recall that α1, . . . , αk are defined by a1, . . . , ak in Assumption 1. We take a constant r ∈ [0,+∞) such that
r is bigger than all a1, . . . , ak. Then we let Γ◦std,N (a) be the positively oriented boundary of the open set

{z ∈ C | |z| <
√
N + a} ∪ {z ∈ C | |z −

√
N | < N1/6r} where a ≥ 0, such that it is almost the circle centred

at 0 with radius
√
N + a and it encloses all α1, . . . , αk. (Actually, if r = 0, then Γ is the circle centred at 0

with radius
√
N + a.) We also define for any b ∈ R the upward vertical contour

Σ
|
std,N (b) = {b+ it | −∞ < t < +∞}. (6.10)

Next, for any θ ∈ (0, π/6), we define the positively oriented contour

Γ>std,N (θ, a) =
{

(
√
N + a)e(π

3
−θ)i + e

2π
3

it | − 2√
3

(
√
N + a) sin

(π
3
− θ
)
≤ t ≤ 0

}
∪
{

(
√
N + a)e( 5π

3
+θ)i + e

π
3

it | 0 ≤ t ≤ 2√
3

(
√
N + a) sin

(π
3
− θ
)}
∪
{

(
√
N + a)eit | π

3
− θ ≤ t ≤ 5π

3
+ θ
}
.

(6.11)

We also define for any b <
√
N the upward infinite polygonal contour

Σ<
std,N (b) =

{
b+ e

π
3

it | 0 ≤ t ≤ 2(
√
N − b) +

√
N
}
∪
{
b+ e

2π
3

it | −
√
N − 2(

√
N − b) ≤ t ≤ 0

}
∪
{3

2

√
N + it | |t| ≥

√
3(

3

2

√
N − b)

}
. (6.12)

See Figures 11 and 12 for their shapes.

0 α1, . . . , αk

Γ

Σ

Figure 10: Contours Γ and Σ.

√
N−

√
N b

Γ◦
std,N(a)

Σ
|
std,N (b)

Figure 11: Shapes of Γ◦std,N (a)

and Σ
|
std,N (b).

√
N−

√
N b

Γ>
std,N (a)

Σ<
std,N (b)

Figure 12: Shapes of Γ>std,N (a)

and Σ<
std,N (b).

We have that

E(Sx + xNx) = E

(∑
i∈Jx

λi

)
− E

(∑
i∈Ix

σi

)
+ xE |Ix| − xE |Jx|

=

∫ ∞
x

tK1,1
GUE,α(t, t)dt−

∫ ∞
x

tK0,0
GUE,α(t, t)dt

+ x

(∫ ∞
x

K0,0
GUE,α(t, t)dt−

∫ ∞
x

K1,1
GUE,α(t, t)dt

)
= −

∫ +∞

x
(t− x)

(
K0,0

GUE,α(t, t)−K1,1
GUE,α(t, t)

)
dt.

(6.13)

In light of (2.3), one has

K0,0
GUE,α(t, t)−K1,1

GUE,α(t, t) =
1

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2
−tzzN−k

e
w2

2
−twwN−k

 k∏
j=2

z − αj
w − αj

 1

w − α1
, (6.14)
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which implies

E(Sx + xNx) =
−1

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2 zN−k

e
w2

2 wN−k

 k∏
j=2

z − αj
w − αj

 1

w − α1

∫ ∞
x

e−(z−w)t(t− x)dt

=
−1

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(w − α1)(z − w)2
.

(6.15)

By some standard residue calculation, we have that

E(Sx + xNx)

=
−1

(2πi)2

∫∫
Φ

dzdw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(w − α1)(z − w)2
(6.16a)

+
−1

2πi

∫ upperintersect

lowerintersect

w − x+ (N − k)/w

w − α1
+

k∑
j=2

1

(w − αj)(w − α1)
dw, (6.16b)

where (i) the contour Φ means that the Σ contour cuts into the Γ contour, and divide its interior into two
parts, such that they intersect at the two saddle points 1

2(x+
√

4N − x2i) and 1
2(x−

√
4N − x2i), which are

the upperintersect and lowerintersect respectly in (6.16b), and all α1, . . . , αk are in the right part, (ii) the
integral in (6.16a) is understood as the Cauchy principal value, and (iii) the contour of integral in (6.16b)
goes by the right of 0 and all α1, . . . , αk. We then have

(6.16b) =
−1

2πi

∫ 1
2

(x+
√

4N−x2i)

1
2

(x−
√

4N−x2i)
1 +

(
α1 − x+

N − k
α1

)
1

w − α1
− N − k

α1

1

w

+

k∑
j=1

1

α1 − αj

(
1

w − α1
− 1

w − αj

)
dw

=
1

π

−√4N − x2

2
−
(
α1 − x+

N − k
α1

)
arccot

x− 2α1√
4N − x2

+
N − k
α1

arccos
x

2
√
N

−
k∑
j=2

1

α1 − αj

(
arccot

x− 2α1√
4N − x2

− arccot
x− 2αj√
4N − x2

)
=

1

π

−√4N − x2

2
− 1

2

(
α1 − x−

N − k
α1

)
arccos

x

2
√
N
− π

2

(
α1 − x+

N − k
α1

)

−
(
α1 − x+

N − k
α1

)(
arccot

x− 2
√
N − 2N1/6ak√
4N − x2

− arccot
x− 2

√
N√

4N − x2

)

−
k∑
j=2

N−1/6

ak − ak+1−j

(
arccot

x− 2
√
N − 2N1/6ak√
4N − x2

− arccot
x− 2

√
N − 2N1/6ak+1−j√

4N − x2

)
=

1

π

[
−
√

4N − x2

2
+
x

2
arccos

x

2
√
N
− π

2
(2
√
N − x)

− (2N1/6ak +O(N−1/6)) arccos
x

2
√
N

]
+O(N−1/5)

= EN (x)− (2
√
N − x) +O(N−

1
12 (2
√
N − x)

1
2 ),

(6.17)

where we note that αi =
√
N +N1/6ak−i+1 and N−1/10 < 2

√
N − x < (4− ε)

√
N , and all the O terms are

uniform in x.
On the other hand, the integral in (6.16a) has the estimate as O((4N −x2)−1/2) = O(N−1/5). To see it,

we deform the contours Γ and Σ into standard shapes depending on the value of x:
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(i) If (−2 + ε)
√
N < x < 1.9

√
N , then let Γ be Γ◦std,N (0), and Σ be Σ

|
std,N (x/2).

(ii) If 1.9
√
N ≤ x < 2

√
N − N−1/10, then let Γ be Γ>std,N (θ, 0) with θ = arccos(x/

√
4N), and Σ be

Σ<
std,N (x/2−

√
N − x2/4/

√
3).

Then we can estimate it by the standard saddle point analysis, similar to the analysis for the integral over
X in (4.13a). We omit the detail.

Hence we obtain (6.6).

Proof of (6.8) Like in the proof of (6.6), we also make use of (6.16) and compute (6.16a) and (6.16b)
separately. However, now we require that upperintersect and lowerintersect, the intersections of Σ with
Γ, are

√
N ± (2

√
N − x)1/2N1/4i. (For x ∈ [2

√
N − N−1/10, 2

√
N − CN−1/6), they are very close to

1
2(x±

√
4N − x2i).) Let ξ = N1/6(x− 2

√
N), such that −N1/15 < ξ < −C. First we consider (6.16b). We

have, with v = N−1/6(w −
√
N),

N
1
6 × (6.16b) =

−1

2πi

∫ √−ξi
−
√
−ξi

v2 − ξ
v − ak

+
k∑
j=2

1

(v − ak+1−j)(v − ak)
−N−

1
3

v3 + k

1−N−
1
3 v

dv

=
−1

2πi

∫ √−ξi
−
√
−ξi

v2 − ξ
v − ak

+
k∑
j=2

1

(v − ak+1−j)(v − ak)
dv +O(N−

1
3 ξ3).

(6.18)

Here we note that N−1/3ξ3 = O(N−2/15). Like the estimate of (4.13b), we have that (6.18) is (ξ − a2
k)/2 +

O(|ξ|−1/2) for −N1/15 < ξ < −C.
Next, we consider (6.16a). We deform Γ into Γ>std,N (0, (2

√
N − x)1/2N1/4/

√
3), and deform Σ into

Σ<
std,N ((

√
N−2

√
N−x)1/2N1/4/

√
3). With the change of variables ξ = N1/6(x−2

√
N), u = N−1/6(z−

√
N)

and v = N−1/6(w −
√
N), we have

N
1
6 × (6.16a) =

−1

(2πi)2

∫∫
XN

dudv
e
u3

3
−ξu+fN (u)

e
v3

3
−ξv+fN (v)

 k∏
j=2

u− ak+1−j
v − ak+1−j

 1

(v − ak)(u− v)2
, (6.19)

where

fN (u) = (N − k) log(1 +N−1/3u)−N2/3u+
1

2
N1/3u2 − 1

3
u3, (6.20)

and the contour XN is transformed from the deformed Φ = Γ×Σ in (6.16a) by the change of variables. We
note that in the region u, v = o(N1/3), the contour XN in (6.19) overlaps with the contour X in (4.13a), if
ξ is identified with x there. By standard saddle point analysis similar to that for (4.13a) that we discussed
in Section 4, we derive that (6.19) is O(|ξ|−1/2) for −N1/15 < ξ < −C.

Combining (6.16) with the estimates of (6.18) and (6.19), we prove the identity (6.8).

Proof of (6.7) We let hx(t) be defined in (4.9), and analogous to (4.10), we have

E[(Sx + xNx)2] =

∫
h2
x(t)K0,0

GUE,α(t, t)dt+

∫
h2
x(t)K1,1

GUE,α(t, t)dt

+

∫∫
hx(s)hx(t)

∣∣∣∣∣K0,0
GUE,α(s, s) K0,0

GUE,α(s, t)

K0,0
GUE,α(t, s) K0,0

GUE,α(t, t)

∣∣∣∣∣ dsdt
+

∫∫
hx(s)hx(t)

∣∣∣∣∣K1,1
GUE,α(s, s) K1,1

GUE,α(s, t)

K1,1
GUE,α(t, s) K1,1

GUE,α(t, t)

∣∣∣∣∣ dsdt
−
∫∫

hx(s)hx(t)

∣∣∣∣∣K0,0
GUE,α(s, s) K0,1

GUE,α(s, t)

K1,0
GUE,α(t, s) K1,1

GUE,α(t, t)

∣∣∣∣∣ dsdt
−
∫∫

hx(s)hx(t)

∣∣∣∣∣K1,1
GUE,α(s, s) K1,0

GUE,α(s, t)

K0,1
GUE,α(t, s) K0,0

GUE,α(t, t)

∣∣∣∣∣ dsdt. (6.21)
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Hence, by (6.21) and (6.13), we have analogous to (4.16)

Var
[
Sx + xNx

]
=

∫
h2
x(t)

(
K0,0

GUE,α(t, t) +K1,1
GUE,α(t, t)

)
dt− 2

∫
hx(t)

(∫ ∞
t

hx(s)eα1(s−t)K0,1
GUE,α(s, t)ds

)
dt (6.22a)

−
∫∫

hx(s)hx(t)
(
K0,0

GUE,α(s, t)K0,0
GUE,α(t, s) +K1,1

GUE,α(s, t)K1,1
GUE,α(t, s)

−K0,1
GUE,α(s, t)K̃1,0

GUE,α(t, s)− K̃1,0
GUE,α(s, t)K0,1

GUE,α(t, s)
)

dsdt.

(6.22b)

First we consider the integral in (6.22a). Like (4.17) and (4.18), we write∫
h2
x(t)

(
K0,0

GUE,α(t, t) +K1,1
GUE,α(t, t)

)
dt

=
1

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 z + w − 2α1

w − α1

2

(z − w)4
, (6.23)

∫
hx(t)

(∫ ∞
t

hx(s)eα1(s−t)K0,1
GUE,α(s, t)ds

)
dt

=
1

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(z − w)4

3z − w − 2α1

z − α1
. (6.24)

So (6.22a) becomes

2

(2πi)2

∫
Σ

dz

∫
Γ

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(z − w)2(z − α1)(w − α1)
. (6.25)

Similarly to (6.16), when x < 0, this integral can be written as

2

(2πi)2

∫∫
Φ

dzdw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(z − w)2(z − α1)(w − α1)
(6.26a)

+
2

2πi

∫ upperintersect

lowerintersect
dw

w +
N − k
w

− x+

k∑
j=2

1

w − αj
− 1

w − α1

 1

(w − α1)2
(6.26b)

+e
α21
2
−akxαN−k1

k∏
j=2

(α1 − αj)
2

2πi

∫
Γ

dw
1

e
w2

2
−xwwN−k

 k∏
j=2

1

w − αj

 1

(w − α1)3
, (6.26c)

where the contour Φ is the same as in (6.16), and the contours Σ and Γ intersect at the two saddle points
1
2(x+

√
4N − x2i) and 1

2(x−
√

4N − x2i), which are the upperintersect and lowerintersect respectively. We
also require that in (6.26a) the contour Σ lies to the left of all α1, . . . , αk, and the contour in (6.26b) lies to
the right of 0 and all α1, . . . , αk. We evaluate (6.26b) analogous to (6.17), and have that

(6.26b) =
2

2πi

∫ 1
2

(x+
√

4N−x2i)

1
2

(x−
√

4N−x2i)
dw

1− N − k
α2

1

−
k∑
j=2

1

(α1 − αj)2

 1

w − α1
+
N − k
α2

1

1

w
+

k∑
j=2

1

(α1 − αj)2

1

w − αj

+

α1 − x+
N − k
α1

+
k∑
j=2

1

α1 − αj

 1

(w − α1)2
− 1

(w − α1)3


=

2

π

(√
1− x2

4N
+ arccos

x

2
√
N

)
+O(N−

1
3 ).

(6.27)
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We also evaluate the integral in (6.26a) by standard saddle point analysis similar to (4.13a), and find that
it is O((4N − x2)−1) = O(N−2/5). The integral in (6.26c) will be cancelled out later.

On the other hand, the double integral in (6.22b) can be expressed as

1

(2πi)4

∫
Σ

du

∫
Γ

dv

∫
Σ

dz

∫
Γ

dw
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

k∏
j=2

u− αj
v − αj

z − αj
w − αj

× 1

(u− v)(z − w)(u− w)(z − v)(v − α1)(w − α1)
. (6.28)

In order to estimate the integral above, we will perform several steps of contour deformation. Since the
arguments are parallel to those for the contour deformations of (4.21) in Section 4, we omit most justifica-
tions. Also similar to the computation of (4.21), below we assume that all contour integrals in the form of∫ C
C have the contour going between 0 and min{α1, . . . , αk}, unless they are specially marked as

∫ C
C,right, in

which case the contour goes to the right of max{α1, . . . , αk}.

(I) We first deform the contours for w and v to Γout
w ∪ Γin

w and Γout
v ∪ Γin

v , respectively, as in Figure 13,
such that all αj (j = 1, . . . , k) are enclosed in Γin

w , and then also in Γin
v , and 0 is enclosed in Γout

w , and
then also in Γout

v . We also slightly deform the contour Σ and denote it by Σu and Σz for the contour
of u and z, respectively.

(II) We then further deform the contour Σu such that it goes between Γout
v and Γin

v , and thus also goes
between Γout

w and Γin
w . We denote by Σ′u the deformed Σu; see Figure 14. By residue calculation, we

write (6.28) as

1

(2πi)4

∫
Σ′u

du

∫
Γout
v ∪Γin

v

dv

∫
Σz

dz

∫
Γout
w ∪Γin

w

dw
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

k∏
j=2

u− αj
v − αj

z − αj
w − αj

× 1

(u− v)(z − w)(u− w)(z − v)(v − α1)(w − α1)
(6.29a)

+
1

(2πi)2

∫
Σz

dz

∫
Γin
w

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(w − α1)(z − α1)(z − w)2
(6.29b)

+
1

(2πi)2

∫
Γin
v

dv

∫
Σz

dz
e
z2

2
−xzzN−k

e
v2

2
−xvvN−k

 k∏
j=2

z − αj
v − αj

 −1

(v − α1)2(z − α1)(z − v)
(6.29c)

+
1

(2πi)2

∫
Γout
v

dv

∫
Σz

dz
e
z2

2
−xzzN−k

e
v2

2
−xvvN−k

 k∏
j=2

z − αj
v − αj

 −1

(v − α1)2(z − α1)(z − v)
(6.29d)

+
1

(2πi)2

∫
Γout
w

dv

∫
Σz

dz
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 −1

(w − α1)2(z − α1)(z − w)
. (6.29e)

(III) Next, similarly to the previous step, we further deform the contour Σz such that it goes between Γout
v

and Γin
v , and thus also goes between Γout

w and Γin
w . Hence Σz becomes Σ′z; see Figure 15. By residue

calculation, the quantity in (6.29) becomes

1

(2πi)4

∫
Σ′u

du

∫
Γout
v ∪Γin

v

dv

∫
Σ′z

dz

∫
Γout
w ∪Γin

w

dw
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

k∏
j=2

u− αj
v − αj

z − αj
w − αj

× 1

(u− v)(z − w)(u− w)(z − v)(v − α1)(w − α1)
(6.30a)
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Γin
w

Γin
v

Γout
v

Γout
w

Σu Σz

0

Figure 13: Separation of con-
tours for w and v.

Γin
w

Γin
v

Γout
v

Γout
w

Σ′
u Σz

0

Figure 14: Σu is deformed into
Σ′u.

Γin
w Γin

v

Γout
v

Γout
w

Σ′
u Σ′

z

0

Figure 15: Σz is deformed into
Σ′z.

+
1

(2πi)2

∫
Σ′u

du

∫
Γin
w

dw
e
u2

2
−xuuN−k

e
w2

2
−xwwN−k

 k∏
j=2

u− αj
w − αj

 1

(w − α1)(u− α1)(u− w)2
(6.30b)

+
1

(2πi)2

∫
Σ′u

du

∫
Γin
v

dv
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

 k∏
j=2

u− αj
v − αj

 −1

(v − α1)2(u− α1)(u− v)
(6.30c)

+
1

(2πi)2

∫
Σ′u

du

∫
Γout
v

dv
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

 k∏
j=2

u− αj
v − αj

 −1

(v − α1)2(u− α1)(u− v)
(6.30d)

+
1

(2πi)2

∫
Σ′u

du

∫
Γout
w

dw
e
u2

2
−xuuN−k

e
w2

2
−xwwN−k

 k∏
j=2

u− αj
w − αj

 −1

(w − α1)2(u− α1)(u− w)
(6.30e)

+
1

(2πi)2

∫
Σ′z

dz

∫
Γin
w

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 1

(w − α1)(z − α1)(z − w)2
(6.30f)

+
1

2πi

∫
Γin
w

dw

w − x+
N − k
w

+
k∑
j=2

1

w − αj
− 1

w − α1

 1

(w − α1)2
(6.30g)

+

k∏
j=2

(α1 − αj)e
α21
2
−α1xαN−k1

1

2πi

∫
Γin
w

dw
1

e
w2

2
−xwwN−k

 k∏
j=2

1

w − αj

 1

(w − α1)3
(6.30h)

+
1

(2πi)2

∫
Γin
v

dv

∫
Σ′z

dz
e
z2

2
−xzzN−k

e
v2

2
−xvvN−k

 k∏
j=2

z − αj
v − αj

 −1

(v − α1)2(z − α1)(z − v)
(6.30i)

+
k∏
j=2

(α1 − αj)e
α21
2
−α1xαN−k1

1

2πi

∫
Γin
v

dv
1

e
v2

2
−xvvN−k

 k∏
j=2

1

v − αj

 1

(v − α1)3
(6.30j)

+
1

(2πi)2

∫
Γout
w

dv

∫
Σ′z

dz
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 −2

(w − α1)2(z − α1)(z − w)
(6.30k)

+
k∏
j=2

(α1 − αj)e
α21
2
−α1xαN−k1

1

2πi

∫
Γout
w

dw
1

e
w2

2
−xwwN−k

 k∏
j=2

1

w − αj

 2

(w − α1)3
. (6.30l)

(IV) For further deformation of the contours, we introduce the shorthand notations , , and , anal-
ogous to , , and defined in (4.24). We delay the concrete assignment of their values to
Remark 5, and only indicate that they are close to 1

2(x+
√

4N − x2i), and their relative positions are
shown in the subsequent figures schematically; especially see Figure 17.

For the 4-fold integral (6.30a), we perform the following operations:

(i) deform Σ′u such that it passes and ;
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(ii) deform Σ′z such that it passes and ;

(iii) deform Γout
v such that it goes from , along the left side of Σ′u until it reaches , then wraps

around 0 (and Γout
w ) and finally goes back to ;

(iv) deform Γin
v such that it goes from to along the right side of Σ′z, then wraps around all αj ’s,

and finally goes back to ;

(v) and at last add an additional contour for v, on which the contour integral vanishes: the contour
goes from to along the left-side of Σ′z, then goes from to , and further goes from to

along the right-side of Σ′u, and finally goes from to .

See Figure 16 for the deformation of contours.

Γin
w

Γout
w

Γ′
v

Σ′
u Σ′

z

0

Figure 16: The deformed contours for v, u and
z. The four intersections are , , and .

Γ′
w

Γ′
v

Σ′
u Σ′

z

0

Figure 17: The deformed contours for w, u and
z. The four intersections on C+ are , ,
and , and the four intersections on C− are their
complex conjugates.

Now we define the contour Γ′v as in Figure 16 that goes from to , then wraps αj ’s until it reaches

, and then goes to , and finally wraps 0 and goes to . Hence the 4-fold integral (6.30a) can be
simplified by the residue theorem with Γout

v ∪ Γin
v replaced by Γ′v. Then the formula (6.30) becomes

1

(2πi)4

∫
Σ′u

du

∫
Σ′z

dz

∫
Γout
w ∪Γin

w

dwP.V.

∫
Γ′v

dv
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

k∏
j=2

u− αj
v − αj

z − αj
w − αj

× 1

(u− v)(z − w)(u− w)(z − v)(v − α1)(w − α1)
(6.31a)

+
1

(2πi)3

∫
Σ′z

dz

∫
Γout
w ∪Γin

w

dw

∫
du

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj


× 1

(z − w)(u− w)(z − u)(u− α1)(w − α1)
(6.31b)

+
1

(2πi)3

∫
Σ′u

du

∫
Γout
w ∪Γin

w

dw

∫
dz

e
u2

2
−xuuN−k

e
w2

2
−xwwN−k

 k∏
j=2

u− αj
w − αj


× 1

(u− z)(z − w)(u− w)(z − α1)(w − α1)
(6.31c)

+
1

(2πi)2

∫
Γout
w

dv

∫
Σ′z

dz
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 −4

(w − α1)2(z − α1)(z − w)
(6.31d)

+

k∏
j=2

(α1 − αj)e
α21
2
−α1xαN−k1

1

2πi

∫
Γin
w∪Γout

w

dw
1

e
w2

2
−xwwN−k

 k∏
j=2

1

w − αj

 2

(w − α1)3
(6.31e)
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+
1

(2πi)2

∫
Σ′z

dz

∫
Γin
w

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 2(2w − z − α1)

(w − α1)2(z − α1)(z − w)2
(6.31f)

+1− N − k
α2

1

.

Here we remark that the 1-fold integral (6.30g) is equal to 1− N−k
α2
1

.

(V) Now we deform the contour Γout
w ∪ Γin

w for w in the way similar to our deformation of Γout
v ∪ Γin

v for v
in Step (IV). We perform the following operations:

(a) deform Σ′u such that it passes and , and meanwhile still passes and ;

(b) deform Σ′z such that it passes and , and meanwhile still passes and ;

(c) deform Γout
w such that it goes from , along the left side of Σ′u until it reaches , then wraps

around 0 and finally goes back to ;

(d) deform Γin
w such that it goes from to along the right-side of Σ′z, then wraps around all αj ,

and finally goes back to ;

(e) and at last add an additional contour for w, on which the contour integral vanishes: the contour
goes from to along the left-side of Σ′z, then goes from to , and further goes from to
along the right-side of Σ′u, and finally goes from to .

We have the result in Figure 17. Similar to Γ′v in Figure 16. Now we define the contour Γ′w that goes
from to , then wraps αj ’s until it reaches , and then goes to , and finally wraps 0 and goes to

. Hence by the residue theorem, the 4-fold integral (6.31a) can be simplified with Γout
w ∪Γin

w replaced
by Γ′w, and then formula (6.31) becomes

1

(2πi)4

∫
Σ′u

du

∫
Σ′z

dz P.V.

∫
Γ′w

dwP.V.

∫
Γ′v

dv
e
u2

2
−xuuN−k

e
v2

2
−xvvN−k

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

k∏
j=2

u− αj
v − αj

z − αj
w − αj

× 1

(u− v)(z − w)(u− w)(z − v)(v − α1)(w − α1)
(6.32a)

+
1

(2πi)3

∫
Σ′z

dz P.V.

∫
Γ′v

dv

∫
du
e
z2

2
−xzzN−k

e
v2

2
−xvvN−k

 k∏
j=2

z − αj
v − αj


× 1

(u− v)(z − u)(z − v)(v − α1)(u− α1)
(6.32b)

+
1

(2πi)3

∫
Σ′u

duP.V.

∫
Γ′v

dv

∫
dz
e
u2

2
−xuuN−k

e
v3

3
+xv

 k∏
j=2

z − αj
v − αj


× 1

(u− v)(z − w)(z − v)(v − α1)(z − α1)
(6.32c)

+
1

(2πi)2

∫
Γin
w∪Γout

w

dw

∫
Σ′z

dz
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 −4

(w − α1)2(z − α1)(z − w)
(6.32d)

+
1

(2πi)2

∫
Σ′z

dz

∫
Γin
w

dw
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 2

(w − α1)2(z − w)2
(6.32e)

+(6.31b) + (6.31c) + (6.31e) + 1− N − k
α2

1

. (6.32f)
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Now we can compute the contour integrals by saddle point method. First we need to fix the shapes of
contours Γ′v, Γ′w, Σ′u and Σ′z.

(i) If (−2 + ε)
√
N < x < 1.9

√
N , then let Γ′w be Γ◦std,N (0), Γ′v be Γ◦std,N (1), Σ′u be Σ

|
std,N (x/2) and Σ′z be

Σ
|
std,N (x/2 + 1).

(ii) If 1.9
√
N ≤ x < 2

√
N − N−1/10, then with θ = arccos(x/

√
4N), let Γ′w be Γ>std,N (θ, 0), Γ′v be

Γ>std,N (θ, (2−x/
√
N)−1/4), Σ′u be Σ<

std,N (x/2−
√
N − x2/4/

√
3) and Σ′z be Σ<

std,N (x/2−
√
N − x2/4/

√
3+

(2− x/
√
N)−1/4).

Remark 5. We note that in either case, the four contours have four intersections around 1
2(x+

√
4N − xi),

and they are the desired , , and .

(1) The 4-fold integral (6.32a) can be estimated in the same way as for (4.26a), and it is O((2
√
N −

x)−1N−1/4).

(2) Both of the 3-fold integrals (6.32b) and (6.32c) can be estimated in the same way as for (4.26b) and
(4.26c). We note that in the evaluation of (4.26b) and (4.26c), we specified the shapes of the contour

from to for u and the contour from to for z. Here we can deform the contours from to
for u and the contour from to for z in a similar way: the contour for u is the part of Σ′u inside

of Γ′v, and the contour for z is the part of Σ′z inside of Γ′w. We conclude that both (6.32b) and (6.32c)
are O((2

√
N − x)−1N−1/4).

(3) The 3-fold integral (6.31b) can be written as the sum of

1

(2πi)3

∫
Σ′z

dz P.V.

∫
Γ′′w

dw

∫
du

e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj


× 1

(z − w)(u− w)(z − u)(u− α1)(w − α1)
(6.33a)

+
1

(2πi)2

∫
du

∫ upperintersect′

lowerintersect′
dz

−1

(u− z)2(u− α1)(z − α1)
(6.33b)

+
1

(2πi)2

∫
Σ′′z

dz

∫
du

e
z2

2
−xzzN−k

e
u2

2
−xuuN−k

 k∏
j=2

z − αj
u− αj

 1

(z − u)2(u− α1)2
(6.33c)

+
1

2πi

∫
du

(u− x+
N − k
u

) +
k∑
j=2

1

u− αj

 1

(u− α1)2
, (6.33d)

where the contours

Γ′′w =

{
Γ◦std,N (2), (−2 + ε)

√
N < x < 1.9

√
N,

Γ>std,N (arccos(x/
√

4N), 2(2− x/
√
N)−1/4), 1.9

√
N ≤ x < 2

√
N −N−1/10,

(6.34)

Σ′′z =

{
Σ
|
std,N (x/2− 1), (−2 + ε)

√
N < x < 1.9

√
N,

Σ<
std,N (x/2−

√
N − x2/4/

√
3− (2− x/

√
N)−1/4), 1.9

√
N ≤ x < 2

√
N −N−1/10,

(6.35)

upperintersect′ and lowerintersect′ are the intersections between Γ′′w and Σ′z. Also we take the contours
from to for u to be the part of Σ′u inside Γ′v, the contour from lowerintersect′ to upperintersect′

for z to be the part of Σ′z inside Γ′′w. On the other hand, the 3-fold (6.31c) can bewritten as the sum
of

1

(2πi)3

∫
Σ′u

duP.V.

∫
Γ′′w

dw

∫
dz

e
u2

2
−xuuN−k

e
w2

2
−xwwN−k

 k∏
j=2

u− αj
w − αj


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× 1

(u− z)(z − w)(u− w)(z − α1)(w − α1)
(6.36a)

+
1

(2πi)2

∫ upperintersect′′

lowerintersect′′
du

∫
dz

−1

(u− z)2(u− α1)(z − α1)
(6.36b)

+
1

(2πi)2

∫
Σ′u

du

∫
dz
e
u2

2
−xuuN−k

e
z2

2
−xzzN−k

 k∏
j=2

u− αj
z − αj

 1

(u− z)2(z − α1)2
. (6.36c)

where the contour Γ′′w is the same as Γ′′w in (6.33a), and it intersects Σ′u at upperintersect′′ and
lowerintersect′′, and the contour from to for z is the part of Σ′z inside Γ′v.

(4) The 2-fold integral (6.32d) can be written as the sum of

1

(2πi)2

∫∫
Φ

dvdz
e
z2

2
−xzzN−k

e
w2

2
−xwwN−k

 k∏
j=2

z − αj
w − αj

 −4

(w − α1)2(z − α1)(z − w)
(6.37a)

+
1

2πi

∫ upperintersect

lowerintersect
dz

4

(z − α1)3
, (6.37b)

by the same transform as (6.15) is transformed into (6.16), and the contour Φ and the integral limits
upperintersect, lowerintersect are as defined in (6.16). Note that in (6.37b) the contour is between 0
and min(α1, . . . , αk) while in (6.16b) the contour is to the right of 0 and all α1, . . . , αk.

(5) The 2-fold integral (6.32e) can be written as the sum of

1

(2πi)2

∫
Σ′′z

dz

∫
dw

e
z3

3
−xz

e
w3

3
−xw

 k∏
j=2

z − αj
w − αj

 −1

(w − α1)2(z − w)2
(6.38a)

+
1

(2πi)2

∫
Σ′′z

dz

∫
,right

dw
e
z3

3
−xz

e
w3

3
−xw

 k∏
j=2

z − αj
w − αj

 1

(w − α1)2(z − w)2
(6.38b)

+
1

(2πi)2

∫
Σ′′z

dz

∫
dw

e
z3

3
−xz

e
w3

3
−xw

 k∏
j=2

z − αj
w − αj

 −1

(w − α1)2(z − w)2
(6.38c)

+
1

(2πi)2

∫
Σ′′z

dz

∫
,right

dw
e
z3

3
−xz

e
w3

3
−xw

 k∏
j=2

z − αj
w − αj

 1

(w − α1)2(z − w)2
, (6.38d)

where Σ′′z is the same as Σ′′z in (6.33c), the contour for w in (6.38a) is the part of Σ′u inside of Γ′v, the
contour for w in (6.38b) is the part of Γ′v to the right of Σ′u, the contour for w in (6.38c) is the part
of Σ′z inside of Γ′v, and the contour for w in (6.38d) is the part of Γ′v to the right of Σ′z. We note that
(6.38a) cancels with (6.33c), and (6.38c) cancels with (6.36c).

(6) The 1-fold integral (6.31e) cancels with (6.26c).

(7) (6.33d) can be evaluated similar to (6.26b), and it is 1
π (
√

1− x2/(4N) + arccos(x/
√

4N) +O(N−1/3).

(8) (6.33b) and (6.36b) are O(N−2/5 logN), and all other integrals from (6.33a) to (6.38d) not mentioned
above, are O(N−2/5).

Hence we obtain the final proof of (6.7).
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Sketch of proof of (6.9) Like the proof of (6.7), we try to estimate (6.25) and (6.28).
For (6.25), we again use the decomposition (6.26), but the precise shapes of the contours are not to

be the same as in the proof of (6.6), and the integral limits upperintersect, lowerintersect are not to be
1
2(x+

√
4N − x2i) and 1

2(x−
√

4N − x2i). Instead, we deform the contour Φ = Γ×Σ as in the proof of (6.8),

that is, Γ into Γ>std,N (0, (2
√
N − x)1/2N1/4/

√
3), and deform Σ into Σ<

std,N ((
√
N − 2

√
N − x)1/2N1/4/

√
3),

and then let the integral limits upperintersect, lowerintersect be
√
N ± (2

√
N − x)1/2N1/4i. Then we have

that in the regime that x = N−1/6ξ+ 2
√
N and −N1/15 < ξ < −C, (6.26a) is O(N−1/3(−ξ)−1), and (6.26b)

is N−1/3( 4
π

√
−ξ + 2ak) +O(N−1/3(−ξ)−1).

For (6.28), we take the transforms as in Steps (I) – (V), with only one methodological difference: The
intersection points , , and now should be around

√
N + (2

√
N − x)1/2N1/4i, in consistence with

our choice of Φ and upperintersect, lowerintersect. However, practically we can still use the deformation
of the contours in the regime 1.9

√
N ≤ x < 2

√
N − N−1/10, because in the regime where we are working,

1
2(x+

√
4N − x2i) and

√
N+(2

√
N−x)1/2N1/4i are very close to each other. Hence we can still use the saddle

point method that is used in the proof of (6.7), especially that for the regime 1.9
√
N ≤ x < 2

√
N −N−1/10.

At last, we derive (6.9) by the method delineated above, with much detail omitted.

7 Nondegeneracy of the limiting distribution

In this section, we prove that the random variable Ξ
(k)
j (a;∞) defined in (1.14) is nondegenerate, i.e., The-

orem 4, which tells that the distribution is not supported on a single point. It is equivalent to show that

log Ξ
(k)
j (a;∞) is nondegenerate. It is not a trivial task, since log Ξ

(k)
j (a;∞) is a non-linear functional on the

externded Airy process. Our proof relies on that log Ξ
(k)
j (a;∞) is the limit of log(N1/3|xj1|2) by Theorem

2 (up to a constant), which is a non-linear functional on the GUE minor process with external source. The
advantage of the latter is that the eigenvalue distribution of a GUE-type matrix has a log-gas representa-
tion that does not pass to their limiting processes, e.g. an Airy-type process. We make use of the log-gas
representation, and prove Lemma 12, which leads to the proof of Theorem 4 in a straightforward way.

Since in the statement and proof of Lemma 12 we will condition on λ1, . . . , λN−1, σ1, . . . , σj−1, σj+1, . . . , σN
and play with the randomness of σj only, we will denote by ω = (λ1, . . . , λN−1, σ1, . . . , σj−1, σj+1, . . . , σN ) a
generic realization of the collection of the given eigenvalues, for notational simplicity.

Lemma 12. There exist M, ε, ε′, ε′′ > 0, such that if N is large enough, there exists an event A of ω, with
P(A) > ε, and the conditional variance satisfies

P
(
M−1 < N

1
3 |xj1|2 < M | ω

)
> ε′, and Var

(
log(N

1
3 |xj1|2) | ω and M−1 < N

1
3 |xj1|2 < M

)
> ε′′,

(7.1)
for any fixed ω ∈ A.

Proof of Theorem 4 by Lemma 12. Lemma 12 shows that for all large enough N , the followings hold:

(i) P(M−1 < N1/3|xj1|2 < M) > P(A ∩ {M−1 < N1/3|xj1|2 < M}) > εε′, and

(ii) the conditional variance

Var
(

log(N
1
3 |xj1|2) |M−1 < N

1
3 |xj1|2 < M

)
≥ P(A ∩ {M−1 < N1/3|xj1|2 < M})

P(M−1 < N1/3|xj1|2 < M)
Var

(
log(N

1
3 |xj1|2) | A ∩ {M−1 < N

1
3 |xj1|2 < M}

)
> εε′ε′′.

(7.2)

Using Theorem 2, we have P(M−1 < (3π/2)1/3Ξ
(k)
j (a;∞) < M) > εε′ and Var(log((3π/2)1/3Ξ

(k)
j (a;∞)) |

M−1 < (3π/2)1/3Ξ
(k)
j (a;∞) < M) > εε′ε′′. Then we can conclude the proof of Theorem 4 easily.

The remaining part of this section is devoted to the proof of Lemma 12. To make notations simple, in
this section we denote λ̃i = N1/6(λi−2

√
N) and σ̃i = N1/6(σi−2

√
N). We recall that σ̃i’s and λ̃i’s converge

jointly in distribution to ξ
(k)
i ’s and ξ

(k−1)
i ’s, by Lemma 6. We further denote Fj = log(N1/3|xj1|2). We will

also need the following estimate:
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Lemma 13. Let L > 0 be any constant independent of N . If N is large enough, there is a constant CL
such that for all x ∈ [−L,L]

E

(
N∑
i=1

1

(σ̃i − x)2 + 1

)
< CL. (7.3)

Proof. The left-hand side of (7.3) can be expressed as

E

(
N∑
i=1

1

(σ̃i − x)2 + 1

)
= N−

1
3

∫ ∞
−∞

ρN (t)
1

(t− (2
√
N +N−1/6x))2 +N−1/3

dt, (7.4)

where ρN (t) is the empirical density function of σ1, . . . , σN . By the property of determinantal processes
(cf. (1.12)), ρN (t) = K0,0

GUE,α(t, t) = K̃0,0
GUE,α(t, t), where K0,0

GUE,α is defined in (2.2) and represented by

a double integral formula in (2.3). The estimation of ρN (t) with t ∈ ((−2 + ε)
√
N, 2
√
N − N−1/10) and

t ∈ [2
√
N −N−1/10, 2

√
N −CN−1/6] can be done by the same saddle point analysis method as we evaluate

E(Sx+xNx) in (6.6) and (6.8) respectively, since E(Sx+xNx) is expressed by a very similar double integral
formula in (6.15). For t > 2

√
N − CN−1/6, where C > 0, ρN (t) can be estimated by using (A.20) in

Appendix A and then apply the standard saddle point method to HN,0 and JN,0. For t ≤ (−2 + ε)
√
N ,

similar methods can be applied and we omit the detail. The estimate we need is that for large enough N :

(i) (The semicircle law) For t ∈ (−2
√
N +N−1/10, 2

√
N −N−1/10), ρN (t) = 1

2π

√
4N − t2(1 + o(1)).

(ii) For t ∈ [2
√
N − N−1/10, 2

√
N − CN−1/6) and t ∈ (−2

√
N + CN−1/6,−2

√
N + N−1/10], ρN (t) =

O(N1/4(2
√
N − t)1/2) and ρN (t) = O(N1/4(2

√
N + t)1/2) respectively.

(iii) For t ≥ 2
√
N − CN−1/6 and t ≤ −2

√
N + CN−1/6, ρN (t) = O(N1/6e−cN

1/6(t−2
√
N)) and ρN (t) =

O(N1/6ecN
1/6(2

√
N+t)), for some c > 0, respectively.

The estimate of ρN (t) above and the expression (7.4) imply the desired boundedness.

Proof of Lemma 12. We discuss first the j = 1 case in detail, and then extend the discussion to the j > 1
case.

The j = 1 case We note that ξ
(k−1)
1 > ξ

(k)
2 almost surely and they are both continuous random variables.

Hence there exist some c1 ∈ R and ε2 > 0 such P(ξ
(k)
1 ∈ (c1, c1 + ε2) and ξ

(k−1)
2 < c1 − ε2) > ε1 for some

ε1 > 0. Hence the event A1 defined by

A1 = {λ̃1 ∈ (c1, c1 + ε2) and σ̃2 < c1 − ε2} (7.5)

satisfies that P(A1) > ε1 for large enough N .
Let p(ω) be the marginal density of ω, whose formula is not relevant. If ω is fixed, the conditional density

of σ1 given ω is, by [2, Theorem 1]

pω(σ) =
1

Cω
exp(−fω,α1(σ))1(σ > λ1), where fω,α1(σ) =

σ2

2
− α1σ −

N∑
i=2

log(σ − σi), (7.6)

for some constant Cω, or equivalently, the conditional density for σ̃1 is

p̃ω(σ̃) =
p(σ)

N1/6
=

1

C̃ω,ak
exp(−f̃ω,ak(σ̃))1(σ̃ > λ̃1), where f̃ω,ak(σ̃) = N

1
3 σ̃−akσ̃+N−

1
3
σ̃2

2
−

N∑
i=2

log(σ̃−σ̃i),

(7.7)
and C̃ω,ak = N−N/6 exp(2N2/3ak)Cω. Hence

f̃ ′ω,ak(σ̃) = N
1
3 − ak +N−

1
3 σ̃ −

N∑
i=2

1

σ̃ − σ̃i
, f̃ ′′ω,ak(σ̃) = N−

1
3 +

N∑
i=2

1

(σ̃ − σ̃i)2
, and

∫ ∞
λ̃1

p̃ω(σ̃)dσ̃ = 1.

(7.8)
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We note that since the random variable ξ
(k)
1 < +∞ and as N →∞, we have that there exists M1 > c1 + ε2

such that P(ξ
(k)
1 > M1) < ε1

6 , and then for large enough N ,

P(σ̃1 > M1) =

∫
p(ω)dω

∫ ∞
M1

p̃ω(σ̃)dσ̃ <
ε1
6
. (7.9)

Then the event A2 defined by

A2 =

{
ω ∈ A1 |

∫ M1

λ̃1

p̃ω(σ̃)dσ̃ >
2

3

}
(7.10)

satisfies P(A2) > ε1/2 for large enough N . Otherwise we will have∫
p(ω)dω

∫ ∞
M1

p̃ω(σ̃)dσ̃ ≥
∫
A1\A2

p(ω)dω

∫ ∞
M1

p̃ω(σ̃)dσ̃ >
1

3
P(A1 \A2) =

ε1
6
, (7.11)

contradictory to (7.9).

Next, since ξ
(k)
1 > ξ

(k−1)
1 almost surely and ξ

(k)
1 , ξ

(k−1)
1 are both continuous random variables, there exist

ε3 > 0 such that P(ξ
(k)
1 > ξ

(k−1)
1 + ε3) > 1− ε1/12, and then for large enough N ,

P(σ̃1 ≤ λ̃1 + ε3) =

∫
p(ω)dω

∫ λ̃1+ε3

λ̃1

p̃ω(σ̃)dσ̃ <
ε1
12
. (7.12)

Then the event A3 defined by

A3 =

{
ω ∈ A2 |

∫ λ̃1+ε3

λ̃1

p̃ω(σ̃)dσ̃ <
1

3

}
(7.13)

satisfies P(A3) > ε1/4 for large enough N . Otherwise, we will have∫
p(ω)dω

∫ λ̃1+ε3

λ̃1

p̃ω(σ̃)dσ̃ ≥
∫
A2\A3

p(ω)dω

∫ λ̃1+ε3

λ̃1

p̃ω(σ̃)dσ̃ >
1

3
P(A2 \A3) =

ε1
12
, (7.14)

contradictory to (7.12). We note that if ω ∈ A3, then

P(σ̃1 > M1 | ω) =

∫ ∞
M1

p̃ω(σ̃)dσ̃ <
1

3
, P(σ̃1 ∈ (λ̃1, λ̃1 + ε3) | ω) =

∫ λ̃1+ε3

λ̃1

p̃ω(σ̃)dσ̃ <
1

3
,

and P(σ̃1 ∈ [λ̃1 + ε3,M1] | ω) =

∫ M1

λ̃1+ε3

p̃ω(σ̃)dσ̃ >
1

3
.

(7.15)

Recall L > 0 in Lemma 13. Now we choose L sufficiently large such that [−L,L] ⊇ (c1 − ε2,M1), and
define

A4 =

{
ω ∈ A3 |

∫ ∞
λ̃1

p̃ω(σ̃1)

N∑
i=1

1

(σ̃i − c1)2 + 1
dσ̃1 <

CL
ε1/8

}
. (7.16)

We have that P(A4) > ε1/8 for all large enough N . Otherwise,

E

(
N∑
i=1

1

(σ̃i − c1)2 + 1

)
=

∫
p(ω)dω

∫ ∞
λ̃1

p̃ω(σ̃1)

N∑
i=1

1

(σ̃i − c1)2 + 1
dσ̃1

≥
∫
A3\A4

p(ω)dω

∫ ∞
λ̃1

p̃ω(σ̃1)
N∑
i=1

1

(σ̃i − c1)2 + 1
dσ̃1

≥ P(A3 \A4)
CL
ε1/8

≥ CL,

(7.17)

contradictory to (7.3).
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Now consider the function F1 = log(N1/3|x11|2) defined by (1.20). For a fixed ω ∈ A4, F1 depends
on σ1, or equivalently σ̃1. Below we express it as F1(σ̃1;ω) as a function of σ̃1. F1(σ̃1;ω) is an increasing
function as σ̃1 ∈ (λ̃1,+∞). In Theorem 2 we have shown that the random variable F1 converges weakly to

the random variable (3π/2)1/3Ξ
(k)
j (a;∞), so there exists M2 > 1 such that for large enough N ,

P(F1 < − logM2 or F1 > logM2) <
ε1
16
. (7.18)

Then the event A5 defined by

A5 =
{
ω ∈ A4 | [− logM2, logM2] ∩ [F1(λ̃1 + ε3;ω), F1(M1;ω)] 6= ∅

}
(7.19)

satisfies P(A5) > ε1/16 for large enough N . Otherwise, we will have

P(F1 < − logM2 or F1 > logM2) >

∫
A4\A5

p(ω)dωP(σ̃1 ∈ [λ̃1 + ε3,M1] | ω) ≥ ε1
16

1

3
=
ε1
48
. (7.20)

We have, by (5.2) and (5.3),

F1(σ̃;ω) =

∫
⋃N
i=2(σ̃i,λ̃i−1]

−1

σ̃ − x
dx+

1

3
logN. (7.21)

Hence with ω ∈ A4, we have

F1(M1;ω)− F1(λ̃1 + ε3;ω) <

∫
(−∞,λ̃1]

(
1

λ̃1 + ε3 − x
− 1

M1 − x

)
dx = log

M1 − λ̃1

ε3
< log

M1 − c1

ε3
, (7.22)

and for σ̃ between λ̃1 + ε3 and M1,

d

dσ̃
F1(σ̃;ω) >

∫
[c1−ε2,c1]

1

(σ̃ − x)2
dx =

1

M1 − c1
− 1

M1 − c1 + ε2
, (7.23)

where we recalled the domain in (7.5).
By (7.22), with M3 = M2 · ((M1 − c1)/ε3), we have that

[F1(λ̃1 + ε3;ω), F1(M1;ω)] ⊆ [− logM3, logM3], if ω ∈ A5. (7.24)

Hence we have for all ω ∈ A5,

P(− logM3 < F1(σ̃1;ω) < logM3 | ω) ≥ P(F1(λ̃1 + ε3;ω) < F1(σ̃1;ω) < F1(M1;ω) | ω)

= P(σ̃1 ∈ [λ̃1 + ε3,M1] | ω) >
1

3
.

(7.25)

We note that by (7.8), f̃ ′′ω,ak is positive and decreasing on (λ̃1,+∞). For ω ∈ A5, we have that if σ̃ > λ̃1,
then for large enough N ,

0 < f̃ ′′ω,ak(σ̃) < N−
1
3 +

N∑
i=2

1

(σ̃i − c1)2

< N−
1
3 +

1 + ε22
ε22

N∑
i=2

1

(σ̃i − c1)2 + 1

< N−
1
3 +

1 + ε22
ε22

∫ ∞
λ̃1

p̃ω(σ̃1)

N∑
i=1

1

(σ̃i − c1)2 + 1
dσ̃1

<
8CL
ε1ε22

,

(7.26)

where we use the property that σ̃i + ε2 < c1 < σ̃ (i = 2, . . . , N).
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Now with the aid of (7.26), we claim that for all ω ∈ A5, if we take CA to be a constant bigger than
both ε−1

3 + 8CL(ε1ε
2
2)−1(M1 − c1) and 16CL(ε1ε

2
2)−1(M1 − c1), then

|f̃ ′ω,ak(σ̃)| < CA if σ̃ ∈ [λ̃1 + ε3,M1]. (7.27)

Since f̃ ′ω,ak(σ̃) is increasing on (λ̃1,+∞), to prove (7.27), it suffices to check that

f̃ ′ω,ak(λ̃1 + ε3) > − CA, (7.28)

f̃ ′ω,ak(M1) < CA. (7.29)

If (7.28) does not hold, we have that, in light of (7.26),

f̃ ′ω,ak(2M1 − c1) = f̃ ′ω,ak(λ̃1 + ε3) +

∫ 2M1−c1

λ̃1+ε3

f̃ ′′ω,ak(σ̃)dσ̃

≤ f̃ ′ω,ak(λ̃1 + ε3) + [(2M1 − c1)− (λ̃1 + ε3)]
8CL
ε1ε22

≤ − CA + 2(M1 − c1)
8CL
ε1ε22

< 0.

(7.30)

It implies that f̃ ′ω,ak(σ̃) is negative on (λ̃1, 2M1− c1), and then f̃ω,ak(σ̃) is decreasing there. By (7.7), p̃ω(σ̃)
is increasing there. We hence have

P(σ̃1 ∈ (M1,+∞) | ω)

P(σ̃1 ∈ [λ̃1 + ε3,M1] | ω)
≥ P(σ̃1 ∈ (M1, 2M1 − c1) | ω)

P(σ̃1 ∈ [λ̃1 + ε3,M1] | ω)
=

∫ 2M1−c1
M1

p̃ω(σ̃)dσ̃∫M1

λ̃1+ε3
p̃ω(σ̃)dσ̃

> 1, (7.31)

which is contradictory to (7.15). On the other hand, if (7.29) does not hold, then

f̃ ′ω,ak(λ̃1) = f̃ ′ω,ak(M1)−
∫ M1

λ̃1

f̃ ′′ω,ak(σ̃)dσ̃ ≥ f̃ ′ω,ak(M1)− (M1− λ̃1)
8CL
ε1ε22

≥ CA− (M1−c1)
8CL
ε1ε22

≥ ε−1
3 . (7.32)

Hence we have, by the monotonicity of f̃ ′ω,ak(σ̃), that f̃ ′ω,ak(σ̃) ≥ ε−1
3 for all σ̃ ∈ [λ̃1,M1]. Hence we have

∫ λ̃1+ε3

λ̃1

p̃ω(σ̃)dσ̃ =
1

C̃ω,ak

∫ λ̃1+ε3

λ̃1

exp(−f̃ω,ak(σ̃))dσ̃

≥ 1

C̃ω,ak

∫ λ̃1+ε3

λ̃1

exp[−f̃ω,ak(λ̃1 + ε3) + ε−1
3 (λ̃1 + ε3 − σ̃)]dσ̃

= (e− 1)ε3
exp[−f̃ω,ak(λ̃1 + ε3)]

C̃ω,ak
,

(7.33)

and ∫ M1

λ̃1+ε3

p̃ω(σ̃)dσ̃ =
1

C̃ω,ak

∫ M1

λ̃1+ε3

exp(−f̃ω,ak(σ̃))dσ̃

≤ 1

C̃ω,ak

∫ M1

λ̃1+ε3

exp[−f̃ω,ak(λ̃1 + ε3)− ε−1
3 (σ̃ − λ̃1 − ε3)]dσ̃

< ε3
exp[−f̃ω,ak(λ̃1 + ε3)]

C̃ω,ak
.

(7.34)

Hence we have

P(σ̃1 ∈ (λ̃1, λ̃1 + ε3) | ω)

P(σ̃1 ∈ [λ̃1 + ε3,M1] | ω)
=

∫ λ̃1+ε3
λ̃1

p̃ω(σ̃)dσ̃∫M1

λ̃1+ε3
p̃ω(σ̃)dσ̃

> 1, (7.35)

which is also contradictory to (7.15). Hence we have (7.27).
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We have that if ω ∈ A5 and σ̃1 ∈ [λ̃1 + ε3,M1], then (i) σ̃1 spreads fairly even due to (7.27); and
(ii) F1(σ̃1;ω) varies monotonically and significantly, by (7.23). We therefore conclude that for all ω ∈ A5,
for some ε4 > 0 independent of ω,

Var(F1(σ̃1;ω) | ω and σ̃1 ∈ [λ̃1 + ε3,M1]) > ε4. (7.36)

Then using (7.25), we have

Var(F1(σ̃1;ω) | ω and − logM3 < F1(σ̃1;ω) < logM3)

≥ P(σ̃1 ∈ [λ̃1 + ε3,M1] | ω)

P(− logM3 < F1(σ̃1;ω) < logM3 | ω)
Var(F1(σ̃1;ω) | ω and σ̃1 ∈ [λ̃1 + ε3,M1])

>
1

3
ε4.

(7.37)

Taking A = A5, M = M3, ε = ε1/16, ε′ = 1/3 and ε′′ = ε4, we see that Lemma 12 is verified in the j = 1
case by (7.25) and (7.37).

The j > 1 case Similar to A1 in the proof of the j = 1 case, we can define

B1 = {λ̃j ∈ (d1, d1 + δ2) and λ̃j−1 ∈ (d2 − δ2, d2) and σ̃j+1 < d1 − δ2 and σ̃j−1 > d2 + δ2 and σ̃1 < N1},
(7.38)

such that P(B1) > δ1 for large enough N , where d1, d2, N1 are real numbers, δ1, δ2 are positive numbers,
and d1 + δ2 < d2 − δ2, d2 + δ2 < N1. We additionally require that δ2 < (d2 − d1)/6 for later use.

Next, let p(ω) be the marginal density of ω, and the conditional density of σj , as ω is fixed, is

pω(σ) =
1

Cω
exp(−gω,α1(σ))1(λj < σ < λj−1) where gω,α1 =

σ2

2
−α1σ−

N∑
i=j+1

log(σ−σi)−
j−1∑
i=1

log(σi−σ),

(7.39)
for some constant Cω, or equivalently, the conditional density for σ̃j is

p̃ω(σ̃) =
pω(σ)

N1/6
=

1

C̃ω,ak
exp(−g̃ω,ak(σ̃))1(λ̃j < σ̃ < λ̃j−1),

where g̃ω,ak(σ̃) = N
1
3 σ̃ − akσ̃ +N−

1
3
σ̃2

2
−

N∑
i=j+1

log(σ̃ − σ̃i)−
j−1∑
i=1

log(σ̃i − σ̃),

(7.40)

and C̃ω,ak = N−N/6 exp(2N2/3ak)Cω. Hence

g̃′ω,ak(σ̃) = N
1
3 − ak +N−

1
3 σ̃ −

N∑
i=j+1

1

σ̃ − σ̃i
+

j−1∑
i=1

1

σ̃i − σ̃
, g̃′′ω,ak(σ̃) = N−

1
3 +

∑
i∈J1,NK\{j}

1

(σ̃ − σ̃i)2
,

and

∫ λ̃j−1

λ̃j

p̃ω(σ̃)dσ̃ = 1.

(7.41)
Then analogous to A2 and A3 in the proof of the j = 1 case, we can define

B3 =

{
ω ∈ B1 |

∫ λ̃j−1

λ̃j−1−δ3
p̃ω(σ̃)dσ̃ <

1

3
and

∫ λ̃j+δ3

λ̃j

p̃ω(σ̃)dσ̃ <
1

3

}
, (7.42)

such that P(B3) > δ1/4 for large enough N , where δ3 > 0. We additionally require that δ3 < δ2/2 for later
use. It is straightforward to see that for all ω ∈ B3,

P(σ̃j ∈ [λ̃j + δ3, λ̃j−1 − δ3]) >
1

3
. (7.43)
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Analogous to the definition of A4, we choose L in Lemma 13 sufficiently large such that [−L,L] ⊇
(d1 − δ2, d2 + δ2), and let

B4 =

{
ω ∈ B3 |

∫ λ̃j−1

λ̃j

p̃ω(σ̃j)
N∑
i=1

1

(σ̃i − d1)2 + 1
dσ̃j <

CL
δ1/16

(7.44a)

and

∫ λ̃j−1

λ̃j

p̃ω(σ̃j)

N∑
i=1

1

(σ̃i − d2)2 + 1
dσ̃j <

CL
δ1/16

}
. (7.44b)

We have that P(B4) > δ1/8 for large enough N . Otherwise, we have that with probability no less than δ1/8,
at least one of the two inequalities in (7.44a) and (7.44b) fails. Without of loss of generality, we assume that

in probability ≥ δ1/16 inequality (7.44a) fails. Then like (7.17), we can derive E
(∑N

i=1
1

(σ̃i−d1)2+1

)
≥ CL,

contradictory to (7.3).
Now consider the function Fj = log(N1/3|xj1|2) defined by (1.20). For a fixed ω ∈ B4, Fj depends on

σj , or equivalently σ̃j . Below we express it as a function of σ̃j and further decompose it into two parts

Fj(σ̃j ;ω) = F
(1)
j (σ̃j ;ω) + F

(2)
j (σ̃j ;ω), where

F
(1)
j (σ̃j ;ω) :=

j−1∑
i=1

log
σj − λi
σj − σi

, F
(2)
j (σ̃j ;ω) :=

N∑
i=j+1

log
σj − λi−1

σj − σi
+

1

3
logN. (7.45)

We also note that F
(2)
j (σ̃;ω) is an increasing function of σ̃ ∈ (λ̃j , λ̃j−1), analogous to F1(σ̃;ω) as σ̃ ∈

(λ̃1,+∞). Similar to A5 in the proof of the j = 1 case, we have that for a large enough N2 > 0, the event

B5 =
{
ω ∈ B4 | [− logN2, logN2] ∩ [F

(2)
j (λ̃j + δ3;ω), F

(2)
j (λ̃j−1 − δ3;ω)] 6= ∅

}
(7.46)

satisfies P(B5) > δ1/16 for large enough N .
We have, by (5.2) and (5.3),

F
(2)
j (σ̃;ω) =

∫
⋃N
i=j+1(σ̃i,λ̃i−1]

−1

σ̃ − x
dx+

1

3
logN. (7.47)

Hence with ω ∈ A4, we have, analogous to (7.22) and (7.23),

F
(2)
j (λ̃j−1 − δ3;ω)− F (2)

j (λ̃j + δ3;ω) <

∫
(−∞,λ̃j ]

(
1

λ̃j + δ3 − x
− 1

λ̃j−1 − δ3 − x

)
dx < log

d2 − d1

δ3
, (7.48)

By (7.48), with N3 = N2 · ((d2 − d1)/δ3), we have, analogous to (7.24),

[F
(2)
j (λ̃j + δ3;ω), F

(2)
j (λ̃j−1 − δ3;ω)] ⊆ [− logN3, logN3], if ω ∈ B5. (7.49)

On the other hand, since λ̃j−1 > d2 − δ2 and σ̃1 < N1, we have

− log
N1 − d2 + δ2 + δ3

δ3
< log

λ̃j−1 − σ̃j
σ̃1 − σ̃j

< F
(1)
j (σ̃j ;ω) < 0, for all σ̃j ∈ [λ̃j + δ3, λ̃j−1 − δ3]. (7.50)

Hence by setting N4 = N3 · ((N1 − d2 + δ2 + δ3)/δ3), we have for any σ̃ ∈ [λ̃j + δ3, λ̃j−1 − δ3],

[Fj(λ̃j + δ3;ω), Fj(λ̃j−1 − δ3;ω)] ⊆ [− logN4, logN4], if ω ∈ B5. (7.51)

We then have, analogous to (7.25) in the j = 1 case,

P(− logN4 < Fj(σ̃j ;ω) < logN4 | ω) >
1

3
. (7.52)

Further, note that if σ̃ ∈ (λ̃j , d2 − δ2), we have

d

dσ̃
Fj(σ̃;ω) =

∫
⋃N
i=j+1(σ̃i,λ̃i−1]

dx

(σ̃ − x)2
−
∫
⋃j−1
i=1 (λ̃i,σ̃i]

dx

(σ̃ − x)2

>

∫
[λ̃j−δ2,λ̃j ]

dx

(σ̃ − x)2
−
∫

[d2−δ2,+∞)

dx

(σ̃ − x)2
=

δ2

(σ̃ − λ̃j)(σ̃ − λ̃j + δ2)
− 1

d2 − δ2 − σ̃
.

(7.53)
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By direct computation, and based on our assumptions on d1, d2, δ2, δ3, we have that for all ω ∈ B5

d

dσ̃
Fj(σ̃;ω) ≥ 1

6δ2
> 0, σ̃ ∈ [λj + δ3, λj + δ2], (7.54)

which is a counterpart of (7.23).
We note that by (7.41), g̃′′ω,ak is positive and concave on (λ̃j , λ̃j−1), so we have for σ̃ ∈ (λ̃j , λ̃j−1),

0 < g̃′′ω,ak(σ̃) < max{g̃′′ω,ak(λ̃j), g̃
′′
ω,ak

(λ̃j−1)}, (7.55)

and then for large enough N , we can derive in a way parallel to (7.26)

0 < g̃′′ω,ak(σ̃) <
16CL
δ1δ2

2

. (7.56)

Moreover, we can show that for all ω ∈ B5, we can find a large enough CB > 0 such that

|g̃′ω,ak(σ̃)| < CB if σ̃ ∈ [λ̃j + δ3, λ̃j−1 − δ3]. (7.57)

The proof relies on that g̃ω,ak(σ̃) is increasing on (λ̃j , λ̃j−1) and we can show both g̃′ω,ak(λ̃j + δ3) > −CN
and g̃′ω,ak(λ̃j−1 − δ3) < CN . Since the proof techniques are similar to those used for (7.28) and (7.29), we
omit the detail.

We have, analogous to (7.36),

Var(Fj(σ̃j ;ω) | ω and σ̃1 ∈ [λ̃j + δ3, λ̃j + δ2]) > ε4. (7.58)

Also because of the probability inequality (7.43) and the boundedness of g̃′ω,ak(σ̃) given in (7.57), we have
that

P(σ̃j ∈ [λ̃j + δ3, λ̃j + δ2] | ω) >
δ5

3
. (7.59)

for some δ4 > 0. Hence we have, analogous to (7.37),

Var(Fj(σ̃j ;ω) | ω and − logN4 < Fj(σ̃1;ω) < logN4)

≥ P(σ̃j ∈ [λ̃j + δ3, λ̃j + δ2] | ω)

P(− logN4 < Fj(σ̃j ;ω) < logN4 | ω)
Var(Fj(σ̃j ;ω) | ω and σ̃j ∈ [λ̃1 + δ3, δ2])

>
δ5

3
δ4.

(7.60)

Taking A = B5, M = N4, ε = δ1/16, ε′ = 1/3 and ε′′ = δ4δ5/3, we see that Lemma 12 is verified in the
j > 1 case by (7.52) and (7.60).

In the end of this section, we state some simulation results on the distribution of the eigenvector com-
ponents; see Figures 18 and 19 below. The simulation is done under the following setting for Gα in (1.1):
N = 1000, k = 2, α1 =

√
N , α2 =

√
N − N1/6. The simulation results are based on 6000 replica-

tions. In Figure 18, we plot the kernel density estimates (smooth approximations of histograms), pX , for
X = N1/3|x11|2, N1/3|x12|2, and N |x13|2. In Figure 19, we plot the negative logarithm of the tail function,
− logP(X > t), t ≥ 0.5, for X = N1/3|x11|2, N1/3|x12|2, and N |x13|2. Observe that the limiting distribution
of N |x13|2 shall be Exp(1), in light of Corollary 3. However, the yellow curve is apparently above 1 at t = 0
in Figure 18. This is due to a finite N effect, since according to our proof of Corollary 3, the difference
between the distribution of N |x13|2 and the limiting one, Exp(1), is of order O(N−1/3). We also remark
here that Figure 19 shows (numerically) the difference between the tail behavior of the laws in Theorem 2
and that of Exp(1). A theoretical study of the tails of these laws will be deferred to future study.
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Figure 18: Kernel Density Estimate
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Figure 19: Negative Logarithm of Tail Probability

A Proof of results in Section 2

Proof of Lemma 6 We only give a sketch of the proof of Lemma 6, because the case that j1 = j2, and
all αj =

√
N (equivalent to ak−j+1 = 0) for j = 1, . . . , k is already proved in [46] which follows closely the

method used in [6]. Our proof is an adaption of that in [46]. The main difference between our lemma and
the results in [6] and [46] is that we require ε to be large enough while in [6] and [46], ε is only required
to be positive, because they essentially assume all aj = 0. Our assumption on ε implies that the operators

eε(x−y)Kk1,k2
Airy,a(x, y) and eε(x−y)Kj1,j2

N,scaled(x, y) are both trace class.

Proof. Below in this proof we are going to use notation in [46] that is quite different from the notation used
elsewhere in our paper.

We define, analogous to [46, Formula (16)],

K ′N,j1,j2(x, y) = N−1/6N (j1−j2)/6eN
1/3(y−x)K̃j1,j2

GUE,α(2
√
N +N−1/6y, 2

√
N +N−1/6x). (A.1)

We only need to consider the convergence of eε(y−x)K ′N,j1,j2(x, y) to eε(y−x)K̃k1,k2
Airy,a(y, x) (pointwise and in

trace norm). Analogous to [46, Formulas (18) and (19)], we denote F (z) = z2/2−2z+log z (see [46, Formula
(17)]), w̃c = 1 + εN−1/3 (see [46, Formula (16)]), and define

HN,j2(x) =
N

1
3

2π

∫
Γ

zk k∏
i=j2+1

1

z − αi√
N

 exp(−NF (z)) exp(N
1
3x(z − w̃c))dz, (A.2)

JN,j1(y) =
N

1
3

2π

∫
γ

w−k k∏
i=j1+1

(
w − αi√

N

) exp(NF (w)) exp(−N
1
3 y(w − w̃c))dw, (A.3)

where the contours Γ and γ are defined as in [46, Formula (14)]. Then we have, analogous to [46, Proposition
2.1],

N (j1−j2)/3eε(y−x)K ′N,j1,j2(x, y) = −
∫ ∞

0
HN,j2(x+ t)JN,j1(y + t)dt. (A.4)

Next, analogous to [46, Formulas (21) and (22)], define

H∞,k2(x) =
exp(−εx)

2π

∫
Γ∞

exp

(
xz − z3

3

) k2∏
i=1

1

z − ai
dz, (A.5)

J∞,k1(y) =
exp(εy)

2π

∫
γ∞

exp

(
−yw +

w3

3

) k1∏
i=1

(w − ai)dw, (A.6)

where the contours Γ∞ and γ∞ are defined in [46, Figure 1]. By the arguments in [46, Sections 2.1 and 2.2],
we have, analogous to [46, Proposition 2.2], that for any fixed y0 ∈ R, there exists C > 0, c > 0, an integer
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N0 > 0 such that

|ZN,j2HN,j2(x)−H∞,k2(x)| ≤ C exp(−cx)

N1/3
, for any x > y0, N ≥ N0, (A.7)∣∣∣Z−1

N,j1
JN,j1(y)− J∞,k1(y)

∣∣∣ ≤ C exp(−cy)

N1/3
, for any y > y0, N ≥ N0, (A.8)

where ZN,j = N (j−k)/3 exp(NF (1)). On the other hand, we have

eε(y−x)K̃k2,k1
Airy,a(y, x) = −

∫ ∞
0

H∞,k2(x+ t)J∞,k1(y + t)dt. (A.9)

The proof is finished by using the argument in [6, Section 3.3].

Proof of Lemma 7 By Lemma 6, for any n, the joint distribution of λ
(N−j)
1 , λ

(N−j−1)
1 , λ

(N−j)
2 , λ

(N−j−1)
2 , . . . , λ

(N−j)
n

converges weakly to that of ξ
(k−j)
1 , ξ

(k−j−1)
1 , ξ

(k−j)
2 , ξ

(k−j−1)
2 , . . . , ξ

(k−j)
n up to a scaling transform. Hence we

have that the interlacing inequality (2.6) implies the weak interlacing property

+∞ > ξ
(k−j)
1 ≥ ξ(k−j−1)

1 ≥ ξ(k−j)
2 ≥ ξ(k−j−1)

2 ≥ · · · ≥ ξ(k−j)
n . (A.10)

On the other hand, the determinantal structure requires that the point process consisting of ξ
(k−j)
i and

ξ
(k−j−1)
l is simple, so with probability 1 the inequalities in (A.10) are all strict. So with probability 1 we

have (2.7) by letting n→∞.

Proof of Lemma 8 We prove the lemma in three steps: First the right tail estimate of ξ
(k)
j in part 1,

then the left tail estimate of ξ
(k)
j , and at last we prove part 2 about the rigidity of ξ

(k)
n .

Proof of the right tail estimate of ξ
(k)
j . We note that

P(ξ
(k)
j > t) ≤ P(ξ

(k)
1 > t) ≤ E(# of ξ

(k)
i on [t,+∞)) =

∫ +∞

t
Kk,k

Airy,a(x, x)dx. (A.11)

Then by (1.7), ∫ +∞

t
Kk,k

Airy,a(x, x)dx =
1

(2πi)2

∫
γ

du

∫
σ

dv
e
u3

3
−tu

e
v3

3
−tv

∏k
j=1(u− aj)∏k
j=1(v − aj)

1

(u− v)2
. (A.12)

Let γ and σ be deformed into γstd(
√
t) and σstd(−

√
t) (c.f. (4.14)). By standard saddle point analysis, we

find that as t → +∞, the integral (A.12) concentrates on the region u ∈ γstd(
√
t) ∩ {u −

√
t = O(t−1/4)}

and v ∈ σstd(−
√
t) ∩ {v +

√
t = O(t−1/4)}. Then we conclude that as t→ +∞,∫ +∞

t
Kk,k

Airy,a(x, x)dx = O
(
t−3/2 exp

(
−4

3
t3/2
))

. (A.13)

Hence by choosing C properly, we have P(ξ
(k)
j > t) <

∫ +∞
t Kk,k

Airy,a(x, x)dx < Ce−t/C .

Proof of the left tail estimate of ξ
(k)
j . We note that by the interlacing property in Lemma 7, P(ξ

(k)
j < −t) <

P(ξ
(0)
j < −t), where ξ

(0)
j is the j-th particle in the determinantal point process defined by the Airy kernel

(1.6). Then by [53], with any λ ∈ (0, 1), we have

P(ξ
(0)
j < −t) =

j−1∑
n=0

E(n;−t) < (1− λ)1−j
∞∑
n=0

(1− λ)nE(n;−t) = 2j−1D(−t, λ), (A.14)

where E(n;−t) is the probability that exactly n particles are in [−t,∞) as denoted in [53, Section ID], and
D(−t, λ) is defined by [53, Formula (1.17)] as

D(−t, λ) = exp

(
−
∫ ∞
−t

(x+ t)q(x;λ)2dx

)
, where

dq(s;λ)

ds2
= sq(s;λ) + 2q3(s;λ),

q(s;λ) ∼
√
λAi(s) as s→∞.

(A.15)
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The function q(s;λ) is the Ablowitz-Segur solution to the Painlevé II equation [1], [49], its asymptotics at
+∞ is given by the Airy function multiplied by constant

√
λ. The asymptotic behaviour of q(s;λ) has been

extensively studied, see [28] for a rigorous and systematic discussion. We then derive the upper bound of

D(−t, λ) for large t from the asymptotics of q(s;λ), and finally justify the estimate P(ξ
(k)
j < −t) < Ce−t/C

for some properly chosen C.

Proof of the rigidity of ξ
(k)
n . We note that by the interlacing property (2.6), for all n > k,

P

(∣∣∣∣∣ξ(k)
n +

(
3πn

2

)2/3
∣∣∣∣∣ > n

3
5

)
≤ P

(
# of ξ

(0)
l in

(
−
(

3πn

2

)2/3

+ n
3
5 ,∞

)
is ≥ n− k

)

+ P

(
# of ξ

(0)
l in

(
−
(

3πn

2

)2/3

− n
3
5 ,∞

)
is < n

)
. (A.16)

Since ξ
(0)
n are the n-th particle in the determinantal point process with the Airy kernel, so the problem is

reduced to the rigidity of particles in this determinantal point process. The desired regidity can be deduced

from the mean and variance of the number of ξ
(0)
l in (−T,∞) and the Markov inequality. If we denote the

number of ξ
(0)
l in (−T,∞) as v1(T ), in the notation of [51], then

E(v1(T )) = 2T 3/2/(3π) +O(1), and Var(v1(T )) = O(log T ) (A.17)

as T → +∞, see [51, Theorem 1 and the paragraph above Theorem 1] §. That is enough to show that as
l→∞,

P

(
v1

((
3πn

2

)2/3

− n
3
5

)
≥ n− k

)
= O

(
log n

n6/5

)
, P

(
v1

((
3πn

2

)2/3

+ n
3
5

)
< n

)
= O

(
log n

n6/5

)
.

(A.18)
By choosing the constant c properly, we obtain (2.9) for all n ≥ 2.

Proof of Lemma 9 This lemma is analogous to Lemma 8. We prove it in four steps, with the first three
steps parallel to those in the proof of Lemma 8: First, the right tail estimate of σj (part 1), next the left
tail estimate of σj (part 1), and then the rigidity for σn close to the edge (part 2), and at last the rigidity
of σn in the bulk (part 3). In part 1 we also need to consider σN , but we omit it, because the estimates for
σN are analogous to the estimate for σ1.

Proof of the right tail estimate of σj. We use the same idea as in (A.11), and write

P(σj > 2
√
N + tN−

1
6 ) ≤ P(σ1 > 2

√
N + tN−

1
6 ) =

∫ ∞
2
√
N+tN−1/6

K0,0
GUE,α(x, x)dx =

∫ ∞
t

K ′N,0,0(x, x)dx,

(A.19)
where K ′N,0,0(x, x) is defined in (A.1). Although we can evaluate the right-hand side of (A.19) like (A.12),
we prefer an indirect method that relies on result and proof of Lemma 6. We recall that as a special case of
(A.4),

K ′N,0,0(x, x) = −
∫ ∞

0
HN,0(x+ t)JN,0(x+ t)dt, (A.20)

and then by (A.7) and (A.8), there exists N0 > 0 and C > 0 such that for x > 0, N > N0,

|ZN,0HN,0(x)−H∞,k(x)| ≤ C exp(−cx)

N1/3
,
∣∣∣Z−1

N,j1
JN,0(x)− J∞,k(x)

∣∣∣ ≤ C exp(−cy)

N1/3
, (A.21)

where ZN,0 = N−k/3 exp(−3N/2) and H∞,k, J∞,k are defined in (A.5) and (A.6). Hence by the very rough
estimate (whose proof is omitted) that H∞,k(x) = O(1) and J∞,k(x) = O(1) for all x > 0, and with the
help of (A.9), we have that

K ′N,0,0(x, x)−Kk,k
Airy,a(x, x) = O(N−1/3e−cx), for all x > 0 and N > N0. (A.22)

§It is pointed out in [42] that [51, Theorem 1] has a calculational error. See [42, Theorem 6.2]. Since we only need the

magnitude of the variance, this mistake does not affect our argument. We also note that the variance of P(# of ξ
(0)
l in (−T,−∞))

as T → +∞ can be computed by the contour integral method that is used in the proof of our Proposition 10.
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Therefore, the desired right tail estimate of σj is implied by the estimate (A.13) for the right tail estimate

of ξ
(k)
j .

Proof of the left tail estimate of σj = λ
(N)
j . We use the same idea as in the proof of the left tail estimate of

ξ
(k)
j , that P(σj < 2

√
N − tN−1/6) ≤ P(λ

(N−k)
j < 2

√
N − tN−1/6), so it is not hard to see that it suffices to

prove that there exists C > 0 such that

P(λ
(N−k)
j < 2

√
N − k − t(N − k)−

1
6 ) < Ce−t/C , for all 2 ≤ t ≤ 2(N − k)2/3. (A.23)

where λ
(N−k)
j is the j-th largest eigenvalue of a GUE random matrix with dimension N − k. The j = 1

case of (A.23) exists in literature, see [43, Section 5.3, especially Formula (5.16)], where a stronger version
of (A.23) is derived in a very accessible way. The j > 1 case of (A.23) is not found in literature, to the best
knowledge of the authors. However, we can extend the method in [43, Section 5.3] to solve this case. To see
it, we note that like (A.14), with λ ∈ (0, 1), we have

P(λ
(N−k)
j < 2

√
N − k − t(N − k)−

1
6 ) =

j−1∑
n=0

E(n; 2
√
N − k − t(N − k)−

1
6 )

< (1− λ)1−j
∞∑
n=0

(1− λ)nE(n; 2
√
N − k − t(N − k)−

1
6 )

= (1− λ)1−j det (Id−λK) ,

(A.24)

where K is the N ×N matrix whose (m,n) entry is

〈Pm−1, Pn−1〉L2((1− t
2

(N−k)−2/3,∞),dµ), (A.25)

such that the meanings of Pm and dµ are the same as in [43, Formula (1.11)]. Then by the same arguments
that leads to [43, Formula (5.14)], we have

det (Id−λK) =

N∏
i=1

(1− λρi) ≤ e−
1
2

∑N
i=1 ρi = exp

(
−λNµN

(
(1− t

2
(N − k)−2/3,∞)

))
, (A.26)

where ρi are the eigenvalues of K, and µN is the measure defined in [43, Formula (1.4)]. We note that if
we let λ = 1 in (A.26), then (A.26) is equivalent to [43, Formula (5.14)]. At last, using the estimate of
µN ((1 − t

2(N − k)−2/3,∞)) given in [43, Section 5.3], we derive an estimate of det (Id−λK), which yields

the desired estimate of P(λ
(N−k)
j < 2

√
N − k− t(N − k)−1/6) and P(σj < 2

√
N − tN−1/6). Finally, we note

that essentially the idea of the proof above is in [56].

Proof of the rigidity of σn for n ≤ CN1/10. As in (2.12), we note that (2.12) is analogous to (2.9), and can

be proved by an analogous argument. Instead of (A.17), we have that if v
(n)
1 (T ) is the number of eigenvalues

of an n-dimensional GUE random matrix in the interval (2
√
n − n−1/6T,+∞), then as n → ∞, T ≥ T0 a

positive constant, and T/n = o(1), by the result of [37] ¶

E(v
(n)
1 (T )) = 2T 3/2/(3π) +O(1), and Var(v

(n)
1 (T )) = O(log T ). (A.27)

Then we prove (2.12) by the same argument as the proof of (2.9).

The proof of the regidity of σn as in (2.13). This is a direct consequence of the interlacing property λ
(N−k)
n ≤

σn ≤ λ(N−k)
n−k and the rigidity of GUE eigenvalues in [33, Theorem 2.2], which states the rigidity of eigenvalues

for Wigner matrices that of which the GUE random matrices are a special case.

¶The mean estimate is given in [37, Lemma 2.2], and the variance estimate is given in [37, Lemma 2.3] under an additional
condition that T → ∞ as n → ∞. However, as pointed out by [42, Remark under Theorem 6.3], if we only need a crude
estimate as in (A.27), then the argument in [37] works for all T > T0 > 0.
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