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TWO LAX SYSTEMS FOR THE PAINLEVÉ II EQUATION,
AND TWO RELATED KERNELS IN RANDOM MATRIX THEORY∗

KARL LIECHTY† AND DONG WANG‡

Abstract. We consider two Lax systems for the homogeneous Painlevé II equation: one of size
2×2 studied by Flaschka and Newell in the early 1980s, and one of size 4×4 introduced by Delvaux,
Kuijlaars, and Zhang and Duits and Geudens in the early 2010s. We prove that solutions to the 4×4
system can be derived from those to the 2 × 2 system via an integral transform, and consequently
relate the Stokes multipliers for the two systems. As corollaries we are able to express two kernels for
determinantal processes as contour integrals involving the Flaschka–Newell Lax system: the tacnode
kernel arising in models of nonintersecting paths and a critical kernel arising in a two-matrix model.
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1. Introduction and statement of results. The homogeneous Painlevé II
equation (PII) is the second order nonlinear ODE

(1.1) y′′ = xy + 2y3.

Despite its unassuming form, its solutions, known as the Painlevé transcendents, ap-
pear in exact solutions of many models in mathematical physics. For example, one
particular solution to (1.1) is the one satisfying the boundary condition

(1.2) q(σ) ∼ Ai(σ) as σ → +∞,

where Ai is the Airy function. This solution is known as the Hastings–McLeod solution
[21]. It is particularly important in random matrix theory, for it defines the celebrated
Tracy–Widom distributions which describe the generic soft edge behavior of random
matrices from orthogonal-, unitary-, or symplectic-invariant ensembles [29], [30].

The PII equation (1.1) is an integrable equation, and its integrability is charac-
terized by the existence of Lax pairs. A Lax pair, or more generally a Lax system, is
a system of overdetermined linear differential equations whose compatibility implies
a nonlinear equation. Let Ψ = Ψ(z1, . . . , zr) be an n× n matrix-valued function with
variables z1, . . . , zr. Let

(1.3)
∂Ψ

∂z1
= A1Ψ, . . . ,

∂Ψ

∂zr
= ArΨ
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be an (overdetermined) system of differential equations satisfied by Ψ with n × n
coefficient matrices A1, . . . , Ar. For the overdetermined differential equations to have
nontrivial solutions, we need the compatibility among A1, . . . , Ar, the Frobenius com-
patibility conditions, sometimes called zero-curvature relations:

(1.4)
∂Ai
∂zj
− ∂Aj

∂zi
+ [Ai, Aj ] = 0 for all i, j = 1, . . . , r.

The Frobenius compatibility conditions are in general nonlinear differential equations
for the entries of Aj , and we call the system (1.3) the Lax system for the nonlinear
equation(s) (1.4). In the most common cases r = 2 and we call the system (1.3) a
Lax pair, but we may also consider the general case r ≥ 2.

Remark 1.1. The term Lax pair originates with the work of Peter Lax in the
late 1960s [27], in which he used the compatibility of a pair of linear differential
equations to study a nonlinear partial differential equation. In the problem considered
by Lax the evolution of the time variable gives an isospectral deformation of the
linear operator. On the other hand, Painlevé equations represent isomonodromic
deformations of the analogous linear equations with respect to the singularities, i.e.,
the monodromy data is invariant as the argument of the (fixed) Painlevé function
changes, and the isomonodromic relations are expressed in the same form of Lax pairs
[17, Chapter 4]. The idea of representing the Painlevé equations as isomonodromy
deformations of a system of linear equations is nearly as old as the Painlevé equations
themselves, dating back to the work of Fuchs [18] and later Garnier [19]. Therefore it
may be more appropriate to call the overdetermined systems (1.3) and (1.18) Garnier–
Fuchs pairs/systems rather than Lax pairs/systems. Such terminology can be found in
the literature; see [24] and [25]. However, the phrase Lax pair is much more abundant
in the literature and this is the nomenclature we use, following the terminology of
[12], [14], [10], and [17].

Nonlinear differential equations which possess a Lax system representation are in
some sense integrable, although they can be rather complicated. All of the Painlevé
equations, including (1.1), can be represented by Lax pairs/systems [17]. However,
the construction of Lax pairs/systems for a given Painlevé equation is far from trivial,
and the relations between different Lax pair/systems for a Painlevé equation deserve
investigation for their own sake. In this paper we demonstrate the relation between
one classical Lax pair and a recently discovered Lax system for the PII equation (1.1).
However, the main motivation of our paper is not purely theoretical but is driven by
the appearance of these Lax systems in random matrix theory and related problems.
The classical Lax pair and the new Lax system are both related to random matrix
theory, but in quite different aspects.

1.1. The Flaschka–Newell Lax pair for PII. First we present a classical Lax
pair for (1.1), found by Flaschka and Newell [16].

Remark 1.2. The Flaschka–Newell Lax pair was originally presented for the gen-
eral PII equation which has a free parameter (see section 1.5), and we only present
it for the homogeneous case (1.1). A different Lax pair for PII was found by Jimbo
and Miwa around the same time [22] (with a precursor in [19]), but in the homoge-
neous case the Jimbo–Miwa Lax pair can be reduced to the Flaschka–Newell one [17,
section 4.2]. Other Lax pairs associated to PII have been found by Harnad, Tracy,
and Widom in [20] (of size 2× 2) and by Joshi, Kitaev, and Treharne in [25] (of size
3× 3). The equivalence among these Lax pairs is discussed in [25].
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Let Φ = Φ(ζ;σ) be a 2× 2 matrix-valued function with variables ζ and σ which
satisfies the overdetermined equations

∂

∂ζ
Φ(ζ;σ) = AΦ(ζ;σ),(1.5a)

∂

∂σ
Φ(ζ;σ) = BΦ(ζ;σ),(1.5b)

where

(1.6) A =

(
−4iζ2 − i(σ + 2q2) 4ζq + 2ir

4ζq − 2ir 4iζ2 + i(σ + 2q2)

)
, B =

(
−iζ q
q iζ

)
,

and q and r are parameters which may depend on σ. It is an amiable exercise to show
that the compatibility of the two equations in (1.5) is reduced to the fact that q ≡ q(σ)
solves the Painlevé equation (1.1), and the parameter r in (1.6) is r ≡ r(σ) = q′(σ).

It is known that all solutions to the (1.1) are meromorphic, so if we choose q ≡ q(σ)
to be any particular solution to (1.1) and take r ≡ q′(σ), then the system (1.5) is
solvable provided σ is not a pole of the chosen PII transcendent. Notice then that,
given a particular solution q(σ) and fixing σ that is not a pole of this solution, we
can find a solution to the overdetermined equation (1.5) using only (1.5a), given
proper initial conditions. Thus below we concentrate on (1.5a) when we talk about
the solutions to (1.5), where q(σ) is a fixed solution to (1.1), r(σ) = q′(σ), and σ is
a constant that is not a pole of q. In some formulas in this paper, we suppress the
dependence on σ if it is treated as a constant.

Since ∞ is the only singular point of A, and

(1.7) A = (I +O(ζ−1))

(
−4iζ2 0

0 4iζ2

)
as ζ →∞,

it is natural to construct the fundamental solution Φ such that

(1.8) Φ(ζ) = (I +O(ζ−1))

(
e−

4
3 iζ

3−iσζ 0

0 e
4
3 iζ

3+iσζ

)
as ζ →∞.

But ∞ is an irregular singularity of A, so the Stokes phenomenon allows us only to
consider the solution Φ that satisfies (1.8) sectorally. For a rigorous version of the
heuristic argument above see [17, section 5.0].

For j = 0, 1, . . . , 5, define the sectors (see Figure 1),

(1.9) Sj =

{
z ∈ C : −π

6
+
jπ

3
< arg z <

π

6
+
jπ

3

}
.

Their boundaries are the rays with outward orientation

(1.10) Σk =
{
te(k−1/2) iπ3 | t ∈ [0,∞)

}
, k = 0, . . . , 5.

Then there are fundamental solutions Ψ(0), . . . ,Ψ(5) to (1.5a) such that Ψ(j) satisfies
the boundary condition (1.8) in sector Sj . Of course the solution space to (1.5a) is
two-dimensional and so there are linear relations between the solutions Ψ(0), . . . ,Ψ(5).
These relations depend on the particular Painlevé transcendent appearing in the co-
efficient matrices A and B in (1.6) and can be described in the following way [17,
section 5.0].
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J1 =

1 0
t1 1Σ1

S1

J2 =
1 t2
0 1

Σ2

S2
J3 =

1 0
t3 1

Σ3

S3

J4 =

1 t1
0 1

Σ4

S4

J5 =
1 0
t2 1

Σ5
S5

J0 =

1 t3
0 1

Σ0

S0

Fig. 1. Rays Σk, sectors Sk, and jump matrices Jk placed on Σk for k = 0, . . . , 5.

For each PII solution q(σ) to (1.1), there is a triple of complex numbers (t1, t2, t3)
satisfying the relation

(1.11) t1 + t2 + t3 + t1t2t3 = 0

such that the fundamental solutions Ψ(k) associated with q(σ) satisfy

Ψ(k) = Ψ(k−1)Jk, k = 0, . . . , 5, with Jk shown in Figure 1 and Ψ(−1) := Ψ(5).

(1.12)

The jump matrices Jk are called the Stokes matrices, and the numbers t1, t2, t3 are
called the Stokes multipliers corresponding to the given PII solution q(σ). Remarkably,
each triple (t1, t2, t3) of Stokes multipliers satisfying (1.11) corresponds uniquely to a
PII solution, and so the solutions to PII are parametrized by the surface (1.11). Thus
in order to specify a solution to PII, it is enough to specify the Stokes multipliers
(t1, t2, t3); see [17, Proposition 5.1]. In Figure 1 we show the rays, the sectors, and
the jump matrices Jk.

For a given set of Stokes multipliers, the jump properties (1.12) determine any of
the fundamental solutions in terms of the solution Ψ(0). Indeed if we denote

(1.13) Ψ(0)(ζ;σ) =
(
ψ(1)(ζ;σ), ψ(2)(ζ;σ)

)
,

where ψ(1) and ψ(2) are two two-dimensional vector-valued functions defined on the
whole complex plane, then the other Ψ(k) are expressed in ψ(1) and ψ(2) as in Figure
2. The asymptotics of the columns of Ψ(k) are summarized below (with δ being any
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Ψ(1) =

ψ(1) + t1ψ
(2), ψ(2)

Ψ(2) = ψ(1) + t1ψ(2), t2ψ(1) + (t1t2 + 1)ψ(2)

Ψ(3) =

(t2t3 + 1)ψ(1) − t2ψ
(2), t2ψ

(1) + (t1t2 + 1)ψ(2)

Ψ(4) = (t2t3 + 1)ψ(1) − t2ψ(2),−t3ψ(1) + ψ(2)

Ψ(5) =

ψ(1),−t3ψ(1) + ψ(2)

Ψ(0) =

ψ(1), ψ(2)

Fig. 2. The formulas of Ψ(0), . . . ,Ψ(5) expressed in ψ(1) and ψ(2).

small positive constant):

ψ(1)(ζ)

ψ(1)(ζ) + t1ψ
(2)(ζ)

(t2t3 + 1)ψ(1)(ζ)− t2ψ(2)(ζ)

 = (I +O(ζ−1))

(
e−

4
3 iζ

3−iσζ

0

)


if arg(ζ) ∈ (− 2π
3 + δ, π3 − δ),

if arg(ζ) ∈ (δ, π − δ),
if arg(ζ) ∈ ( 2π

3 + δ, 5π
3 − δ),

(1.14)

ψ(2)(ζ)

−t3ψ(1) + ψ(2)(ζ)

t2ψ
(1) + (t1t2 + 1)ψ(2)(ζ)

 = (I +O(ζ−1))

(
0

e
4
3 iζ

3+iσζ

)


if arg(ζ) ∈ (−π3 + δ, 2π
3 − δ),

if arg(ζ) ∈ (π + δ, 2π − δ),
if arg(ζ) ∈ (π3 + δ, 4π

3 − δ).
(1.15)

1.1.1. Critical kernel in one-matrix model. As mentioned earlier, the
Hastings–McLeod solution to (1.1), the one satisfying (1.2), is of special importance
in random matrix theory. It is the solution to PII that corresponds to the Stokes
multipliers (t1, t2, t3) = (1, 0,−1), and it is well established that it has no poles on the
real line. Thus the solution Ψ(0) ≡ Ψ(0)(ζ;σ) exists for any real σ [17, section 11.7].

Consider the one-matrix model given by the probability measure on the space of
n× n Hermitian matrices M ,

(1.16)
1

Cn
exp(−ntTrV (M))dM,

where V is the potential and t > 0 is a scaling factor. The eigenvalues of M are a
determinantal process that is characterized by a correlation kernel. In the case that
V (x) = x4/4 − x2 and n → ∞, the model is in a critical phase if t = 1. As n → ∞,
under the double scaling limit t = 1− (2n)−2/3σ, the correlation kernel at u(n/4)−1/3
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and v(n/4)−1/3 converges to

(1.17) Kcr
1 (u, v;σ) =

−ψ(1)
1 (u;σ)ψ

(1)
2 (v;σ) + ψ

(1)
2 (u;σ)ψ

(1)
1 (v;σ)

2πi(u− v)
,

where ψ
(1)
1 and ψ

(1)
2 are the two components of the 2-vector ψ(1) defined in (1.13);

see [4]. We use the notation Kcr
1 to emphasize that this kernel arises in a one-matrix

model and to differentiate it from the kernel (1.74) which arises in a two-matrix model,
which we denote Kcr

2 . Note that although we only state the limiting correlation kernel
for a very special potential function, the convergence to Kcr

1 holds for a large class of
potentials that have a quadratic interior critical point. See [7] for the universality of
the limiting kernel Kcr

1 .
Finally we remark that if we give the potential V a logarithmic perturbation at 0,

i.e., let V (x) = x4/4−x2− (2α/n) log|x|, then the limiting kernel at 0 is changed, and
it is expressed by the Flaschka–Newell Lax pair for the Hastings–McLeod solution of
the inhomogeneous PII equation. See [6] for details, and also see section 1.5.

1.2. A 4 × 4 Lax system for PII. Now we introduce the other Lax system
for the PII equation (1.1), which was discovered recently by Delvaux, Kuijlaars, and
Zhang in their study of nonintersecting Brownian motions [12], by Delvaux in the
study of nonintersecting squared Bessel processes [9], and by Duits and Geudens in
their study of the two-matrix model [14]; see also [10], [26]. In its most general form
this Lax system is a four-dimensional overdetermined differential system consisting of
16 equations. Here we consider a 4 × 4 matrix valued function M = M(z, s1, s2, τ),
and the Lax system is

∂

∂z
M = UM,(1.18a)

∂

∂s1
M = V1M,

∂

∂s2
M = V2M,

∂

∂τ
M = WM.(1.18b)

The coefficient matrix U is given by

(1.19) U =

(
U11 U12

U21 U22

)
,

where each U ij is a 2× 2 block, such that

U11 =

(
τ − s2

1 + u
C

√
r2q

γC
√
r1

−γ
√
r1q

C
√
r2

−τ + s2
2 − u

C

)
, U12 =

(
ir1 0
0 ir2

)
,

U22 =

(
τ + s2

1 − u
C

√
r1q

γ
√
r2C

−γ
√
r2q√
r1C

−τ − s2
2 + u

C

)
,

U21 = i

 r1z − 2s1 +
s41
r1
− 2s21u

r1C
+ u2−q2

r1C2

√
r1r2C(q′+uq)

γ − (r21s
2
2+r22s

2
1)q

γC(r1r2)3/2

γ
√
r1r2C(q′ + uq)− γ(r21s

2
2+r22s

2
1)q

C(r1r2)3/2
−r2z − 2s2 +

s42
r2
− 2s22u

r2C
+ u2−q2

r2C2

 .

(1.20)

Here the numbers r1 and r2 are positive constants, and C, γ, q, q′, and u depend on
r1, r2, s1, s2, τ . We relegate the formulas for V1, V2,W to Appendix A, since we do not
use them in the rest of this paper. In the symmetric case r1 = r2 = 1 and s1 = s2,
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we refer the reader to [9, section 5.3], and [14]; and in the τ = 0 case we refer the
reader to [12, section 5.2]. By the compatibility of the overdetermined system, which
is routine but laborious (see [10, section 6.5]), we derive

(1.21) C = (r−2
1 + r−2

2 )1/3, γ = exp

(
8

3

r2
1 − r2

2

(r2
1 + r2

2)2
τ3 − 4

r1s1 − r2s2

r2
1 + r2

2

τ

)
,

and q and u are functions of

(1.22) σ :=
2

C

(
s1

r1
+
s2

r2
− 2τ2

r2
1 + r2

2

)
.

Furthermore, q = q(σ) satisfies the PII equation (1.1), q′ = q′(σ) is the derivative
with respect to σ, and u is the PII Hamiltonian

(1.23) u(σ) := q′(σ)2 − q(σ)2 − q(σ)4,

which satisfies

(1.24) u′(σ) = −q(σ)2.

Now as with the Lax pair (1.5), we fix a particular solution q(σ) to PII and assume
σ is not a pole of this solution. We can then solve the Lax system by (1.18a) alone,
with proper initial conditions.

Remark 1.3. The authors of [12], [14], [10], and [9] introduced the Lax system
(1.18) as a technical tool to study the tacnode Riemann–Hilbert problem (RHP), a
4× 4 RHP associated with the PII equation (1.1). The tacnode RHP is only defined
for the Hastings–McLeod solution to PII, but the Lax system is algebraic and the
Frobenius compatibility conditions (1.4) are independent of boundary condition, so
the Lax system exists for all solutions to the PII equation. From the Lax system we
can construct an RHP that is associated with all solutions to the PII equation and
thus generalize the tacnode RHP. See RHP 1.5 in section 1.4.3 below.

Since ∞ is the unique singular point of U , it is natural to put the boundary
condition to the solution M at ∞. The situation is a bit more complicated than for
the 2 × 2 Lax system, since infinity is, in the language of [17], a general irregular
singular point of the coefficient matrix U . Nonetheless, it is possible to transform
(1.18a) into an equation with a regular singular point by means of an explicit change
of variable, and then to derive the asymptotic structure of its solutions using the
methods of [31]. This asymptotic structure was derived by Duits and Geudens in [14].
In order to describe it, we define the functions

(1.25)
θ1(z) =

2

3
r1(−z) 3

2 + 2s1(−z) 1
2 , z ∈ C \ [0,∞),

θ2(z) =
2

3
r2z

3
2 + 2s2z

1
2 , z ∈ C \ (−∞, 0],
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and then the four-dimensional vector-valued functions

(1.26)

v1(z) =
1√
2
e−θ1(z)+τz

(
(−z)− 1

4 , 0,−i(−z) 1
4 , 0
)T

,

v2(z) =
1√
2
e−θ2(z)−τz

(
0, z−

1
4 , 0, iz

1
4

)T
,

v3(z) =
1√
2
eθ1(z)+τz

(
−i(−z)− 1

4 , 0, (−z) 1
4 , 0
)T

,

v4(z) =
1√
2
eθ2(z)−τz

(
0, iz−

1
4 , 0, z

1
4

)T
,

and the matrix-valued function

(1.27) A(z) :=
(
v1(z), v2(z), v3(z), v4(z)

)
.

For the fractional powers in (1.26) we take the principal branches, so A(z) has cuts
on R+ and R−. More precisely, the functions v1(z) and v3(z) each have cuts on the
positive real axis, and the functions v2(z) and v4(z) each have cuts on the negative
real axis. We also define the function A+(z) to be the continuation of A(z) from
the upper half plane with a cut on the negative imaginary axis and A−(z) to be the
continuation of A(z) from the lower half plane with a cut on the positive imaginary
axis. To be concrete, we denote

(1.28) A±(z) =
(
v±1 (z), v±2 (z), v±3 (z), v±4 (z)

)
such that for all j = 1, . . . , 4, v±j (z) = vj(z) in C±, and the branch cut for v±j (z) is

{∓it | t ≥ 0}. If we denote by v+
j (z) (resp., v−j (z)) the limiting value of vj(z) from the

upper (resp., lower) half plane for j = 1, 2, 3, 4, then we have the following relations:

(1.29)
v+

1 (z) = −v−3 (z) and v+
3 (z) = v−1 (z), z ∈ R+,

v+
2 (z) = −v−4 (z) and v+

4 (z) = v−2 (z), z ∈ R−.

Again due to the Stokes phenomenon, we cannot find solutions that satisfy the
boundary conditions at ∞ from all directions, but only sectorally. Here we follow the
notation in [14] and define six overlapping sectors in the complex plane,

(1.30) Ωj :=

{
z ∈ C : − π

12
+
jπ

3
< arg z <

7π

12
+
jπ

3

}
, j = 0, . . . , 5,

as shown later in Figure 3. The following result was proved in [14, Lemma 5.2].

Proposition 1.1. For fixed r1, r2 > 0 and Ωj one of the sectors defined in (1.30),
(1.18a) has a unique fundamental solution M (j) such that as z →∞ within Ωj,

(1.31) M (j)(z) =

{(
I +O(z−1)

)
A+(z) for j = 0, 1, 2,(

I +O(z−1)
)
A−(z) for j = 3, 4, 5.

Remark 1.4. In [14, Lemma 5.2], the above result is stated for s1 = s2 ∈ R, and
r1 = r2 = 1, but it is trivial to extend to the more general parameters s1, s2, τ and
r1, r2 > 0.
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Ω0

Ω2

Ω4

Ω5

Ω1

Ω3

Fig. 3. The sectors Ω0, . . . ,Ω5.

Remark 1.5. The general theory outlined in [31, Theorem 19.1] would indicate
a weaker result, namely, an asymptotic expansion in powers of z−1/2 rather than in
powers of z−1. The stronger asymptotics above are the result of some symmetry in
(1.18a); see the proof in [14].

Below we construct six 4-vector-valued functions solutions to

(1.32)
∂

∂z
m = Um,

which we denote by n(0), . . . , n(5), explicitly from the solutions to the Flaschka–Newell
Lax pair (1.5a). It is then shown that the solution n(j) is recessive in the sector Sj
which was defined in (1.9). Thus these solutions comprise the essential components
of the fundamental solutions M (j) satisfying (1.31).

1.3. Main results. In order to state the construction and properties of
n(0), . . . , n(5), we first introduce some notation. Suppose Γ = Γ1 ∪ Γ2 ∪ Γ3 is a
trivalent contour, where Γ1,Γ2, and Γ3 are three rays in the complex plane which
meet at the origin such that Γ1 and Γ2 are oriented away from the origin, and Γ3 is
oriented toward the origin. Denote a, b, c, γ1, and γ2 as

a =
4

3

(
r2
1 − r2

2

r2
1 + r2

2

)
, b =

8τ

C2(r2
1 + r2

2)
, c =

1

C

[
4τ2(r2

1 − r2
2)

(r2
1 + r2

2)2
− 2

(
s1

r1
− s2

r2

)]
,

γ1 = exp

(
− 8r4

1τ
3

3(r2
1 + r2

2)3
+

4r1s1τ

r2
1 + r2

2

)
, γ2 = exp

(
− 8r4

2τ
3

3(r2
1 + r2

2)3
+

4r2s2τ

r2
1 + r2

2

)
,

(1.33)

and then the function

(1.34) G(ζ) = exp
(
iaζ3 + bζ2 + icζ

)
,

and the related functions

G1(ζ) =

√
2

π

γ1

C
√
r1
G(ζ), G2(ζ) =

√
2

π

γ2

C
√
r2
G(ζ), G3(ζ) =

2i

C
ζG1(ζ),

G4(ζ) =
2i

C
ζG2(ζ).(1.35)

Define now an integral transform QΓ that transforms two two-dimensional vector-
valued functions f(ζ) = (f1(ζ), f2(ζ))T and g(ζ) = (g1(ζ), g2(ζ))T into a
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four-dimensional vector-valued function given by

(1.36) QΓ(f, g)(z)

:= M


∫
Γ1
e

2izζ
C f1(ζ)G1(ζ)dζ+

∫
Γ2
e

2izζ
C g1(ζ)G1(ζ)dζ+

∫
Γ3
e

2izζ
C (f1(ζ)+g1(ζ))G1(ζ)dζ∫

Γ1
e

2izζ
C f2(ζ)G2(ζ)dζ+

∫
Γ2
e

2izζ
C g2(ζ)G2(ζ)dζ+

∫
Γ3
e

2izζ
C (f2(ζ)+g2(ζ))G2(ζ)dζ∫

Γ1
e

2izζ
C f1(ζ)G3(ζ)dζ+

∫
Γ2
e

2izζ
C g1(ζ)G3(ζ)dζ+

∫
Γ3
e

2izζ
C (f1(ζ)+g1(ζ))G3(ζ)dζ∫

Γ1
e

2izζ
C f2(ζ)G4(ζ)dζ+

∫
Γ2
e

2izζ
C g2(ζ)G4(ζ)dζ+

∫
Γ3
e

2izζ
C (f2(ζ)+g2(ζ))G4(ζ)dζ

,

where r1, r2, s1, s2, τ , and C are the parameters in (1.20) and (1.21), and

M=e
−τz

(
r21−r

2
2

r21+r22

)


1 0 0 0
0 1 0 0

i
r1

(
τ
r21−r

2
2

r21+r22
+ τ − s2

1 + u
C

)
i
r1

√
r2q

γ
√
r1C

−i
r1

0

−i
r2

γ
√
r1q√
r2C

i
r2

(
τ
r21−r

2
2

r21+r22
− τ + s2

2 − u
C

)
0 −i

r2

,
(1.37)

where q = q(σ) is any fixed PII solution evaluated at σ defined in (1.22), and u = u(σ)
is defined in (1.23).

We have the following proposition.

Proposition 1.2. Fix some solution q to (1.1) and let σ be as in (1.22) such
that it is not a pole of q. Let φ(ζ) and ϕ(ζ) be any two 2-vector solutions to (1.5a).
Assume that for a particular choice of Γ the integral transform QΓ(φ, ϕ)(z) exists and
is finite for every z ∈ C. Then QΓ(φ, ϕ)(z) solves the differential equation (1.32).

The proof of this proposition is given in section 2.
Now we make a special choice of φ(ζ) and ϕ(ζ) in Proposition 1.2 and define

the particular solutions n(0), . . . , n(5) of (1.32). Recall the rays Σ0, . . . ,Σ5 defined in
(1.10) (see also Figure 1). We define the trivalent contours Γ(0), . . . ,Γ(5) as the Γ in
Proposition 1.2 as follows:

Γ(k) = Γ
(k)
1 ∪ Γ

(k)
2 ∪ Γ

(k)
3 , where Γ

(k)
1 = Σ1−k, Γ

(k)
2 = Σ2−k, Γ

(k)
3 = (−Σ3−k),

(1.38)

where the contours Σj are oriented toward infinity, −Σj means the contour Σj oriented
in the opposite direction, and Σi−6 = Σi. For an illustration of the contours, see
Figure 4.

Then we define

(1.39) n(k)(z) = n(k)(z; r1, r2, s1, s2, τ) = QΓ(k)(f (k), g(k)), k = 0, . . . , 5,

where r1, r2, s1, s2, τ are parameters in the formula of QΓ, and f (k) and g(k) are the
columns of fundamental solutions to (1.5a), given as

f (2j)(ζ) =

Ψ
(1−2j)
1,2 (ζ;σ)

Ψ
(1−2j)
2,2 (ζ;σ)

 , g(2j)(ζ) = t2+j

(
Ψ

(1−2j)
1,1 (ζ;σ)(z)

Ψ
(1−2j)
2,1 (ζ;σ)(z)

)
,

f (2j+1)(ζ) =

Ψ
(−2j)
1,1 (ζ;σ)

Ψ
(−2j)
2,1 (ζ;σ)

 , g(2j+1)(ζ) = t1+j

(
Ψ

(−2j)
1,1 (ζ;σ)(z)

Ψ
(−2j)
2,1 (ζ;σ)(z)

)
,

for j = 0, 1, 2,

(1.40)



3628 KARL LIECHTY AND DONG WANG

t2ψ
(1) + (t1t2 + 1)ψ(2)

t2(ψ
(1) + t1ψ

(2))

ψ(2)

n(0)

ψ(1) + t1ψ
(2)

t1ψ
(2)

ψ(1)

n(1)

−t3ψ(1) + ψ(2)

ψ(2)

t3ψ
(1)

n(2)

(t2t3 + 1)ψ(1) − t2ψ
(2) ψ(1)

t2(−t3ψ(1) + ψ(2))
n(3)

−t3ψ(1) + ψ(2)

t2ψ
(1) + (t1t2 + 1)ψ(2)

t1((t2t3 + 1)ψ(1) − t2ψ
(2))

n(4)

ψ(1) + t1ψ
(2)

t3(t2ψ
(1) + (t1t2 + 1)ψ(2))

(t2t3 + 1)ψ(1) − t2ψ
(2)

n(5)

Fig. 4. The contours Γ(k) for the integral representation of n(0), . . . , n(5). On each ray a two-
dimensional vector in the form of c1ψ(1) +c2ψ(2) is given, and they are f , g, or f+g in the integral
formulas QΓ(k) .

where the parameter σ is determined by the relation (1.22), and (t1, t2, t3) are the
Stokes multipliers corresponding to the chosen PII solution. We use the notational
conventions t3+i = ti and Ψ(6+i) = Ψ(i), and the subscripts refer to the matrix entries.
Here we note that all the f (k) and g(k) are linear combinations of ψ(1) and ψ(2), as
shown in Figure 4, and by the jump condition (1.12) we see that

f (2j)(ζ) + g(2j)(ζ;σ) =

(
Ψ

(2−2k)
1,2 (ζ;σ)

Ψ
(2−2k)
2,2 (ζ;σ)

)
,

f (2j+1)(ζ;σ) + g(2j+1)(ζ;σ) =

(
Ψ

(1−2k)
1,1 (ζ;σ)

Ψ
(1−2k)
2,1 (ζ;σ)

)
for j = 0, 1, 2.

(1.41)

From the definitions of the functions n(j)(z) and the relation (1.11), the linear
relations between them are easy to see, especially in Figure 4. We have, for example,
the pair of independent relations

(1.42a) n(5)(z) = −t3n(0)(z)− (1 + t2t3)n(1)(z) + t2n
(2)(z)− n(3)(z),

(1.42b) n(0)(z) = −t2n(1)(z)− (1 + t1t2)n(2)(z) + t1n
(3)(z)− n(4)(z).

The next result of the paper is that the solutions n(0), . . . , n(5) of (1.32) satisfy
the asymptotics of the columns of the fundamental solutions M (0), . . . ,M (5) in some
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of the sectors Ω0, . . . ,Ω5, and thus these fundamental solutions can be built from the
columns n(0), . . . , n(5). To state the proposition, we recall the functions θ1(z) and
θ2(z) defined in (1.25).

Proposition 1.3. Suppose δ > 0 is a small constant. For z = reiθ with θ fixed
and r → +∞, we have the following asymptotic results, where all power functions
take the principal branch (−π, π):

1. Uniformly for θ ∈ (−π/3 + δ, π/3− δ)

n(0)(z) =
1√
2
e−θ2(z)−τz

(
O(z−

3
4 ), z−

1
4 +O(z−

3
4 ),O(z−

1
4 ), iz

1
4 +O(z−

1
4 )
)T

,

(1.43)

uniformly for θ ∈ [0, π/3− δ)

n(2)(z) = − 1√
2
eθ2(z)−τz

(
O(z−

3
4 ), iz−

1
4 +O(z−

3
4 ),O(z−

1
4 ), z

1
4 +O(z−

1
4 )
)T
,

(1.44)

and uniformly for θ ∈ (−π/3 + δ, 0]

n(4)(z) =
1√
2
eθ2(z)−τz

(
O(z−

3
4 ), iz−

1
4 +O(z−

3
4 ),O(z−

1
4 ), z

1
4 +O(z−

1
4 )
)T

.

(1.45)

2. Uniformly for θ ∈ (π/3 + δ, π − δ)

n(2)(z) = − 1√
2
eθ2(z)−τz

(
O(z−

3
4 ), iz−

1
4 +O(z−

3
4 ),O(z−

1
4 ), z

1
4 +O(z−

1
4 )
)T

,

(1.46)

uniformly for θ ∈ [2π/3, π − δ)

n(4)(z) = − 1√
2
e−θ2(z)−τz

(
O(z−

3
4 ), z−

1
4 +O(z−

3
4 ),O(z−

1
4 ), iz

1
4 +O(z−

1
4 )
)T
,

(1.47)

and uniformly for θ ∈ (π/3 + δ, 2π/3]

n(0)(z) =
1√
2
e−θ2(z)−τz

(
O(z−

3
4 ), z−

1
4 +O(z−

3
4 ),O(z−

1
4 ), iz

1
4 +O(z−

1
4 )
)T
.

(1.48)

3. Uniformly for θ ∈ (π + δ, 5π/3− δ)

n(4)(z) =
1√
2
eθ2(z)−τz

(
O(z−

3
4 ), iz−

1
4 +O(z−

3
4 ),O(z−

1
4 ), z

1
4 +O(z−

1
4 )
)T

,

(1.49)

uniformly for θ ∈ [4π/3, 5π/3− δ)

n(0)(z) =
1√
2
e−θ2(z)−τz

(
O(z−

3
4 ), z−

1
4 +O(z−

3
4 ),O(z−

1
4 ), iz

1
4 +O(z−

1
4 )
)T

,

(1.50)
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and uniformly for θ ∈ (π + δ, 4π/3]

n(2)(z)=− 1√
2
e−θ2(z)−τz

(
O(z−

3
4 ), z−

1
4 +O(z−

3
4 ),O(z−

1
4 ), iz

1
4 +O(z−

1
4 )
)T
.

(1.51)

4. Uniformly for θ ∈ (δ, 2π/3− δ)

n(1)(z) =
1√
2
eθ1(z)+τz

(
−i(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ), (−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

,(1.52)

uniformly for θ ∈ [π/3, 2π/3− δ)

n(3)(z) =− 1√
2
e−θ1(z)+τz

(
(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ),−i(−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

,(1.53)

and uniformly for θ ∈ (δ, π/3]

n(5)(z) =
1√
2
e−θ1(z)+τz

(
(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ),−i(−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

.(1.54)

5. Uniformly for θ ∈ (2π/3 + δ, 4π/3− δ)

n(3)(z) =− 1√
2
e−θ1(z)+τz

(
(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ),−i(−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

,(1.55)

uniformly for θ ∈ [π, 4π/3− δ)

n(5)(z) =− 1√
2
eθ1(z)+τz

(
−i(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ), (−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

,(1.56)

and uniformly for θ ∈ (2π/3 + δπ]

n(1)(z) =
1√
2
eθ1(z)+τz

(
−i(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ), (−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

.(1.57)

6. Uniformly for θ ∈ (4π/3 + δ, 2π − δ)

n(5)(z) =− 1√
2
eθ1(z)+τz

(
−i(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ), (−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

,(1.58)
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n(5) ∼ v+1 = −v−3

n(0) ∼ v2

n(1) ∼ v+3 = v−1

n(2) ∼ v4

n(1) ∼ v−1 = v+3

n(0) ∼ v2

n(5) ∼ − v−3 = v+1

n(4) ∼ v4

n(3) ∼ − v1

n(4) ∼ − v+2 = v−4

n(1) ∼ v3

n(2) ∼ − v+4 = −v−2

n(3) ∼ − v1

n(2) ∼ − v−2 = −v+4

n(5) ∼ v3

n(4) ∼ v−4 = −v+2

n(3) ∼ − v+1 = v−3

n(1) ∼ v+3 = v−1

n(0) ∼ v2

n(2) ∼ − v4

n(0) ∼ − v+2 = −v−4

n(2) ∼ − v+4 = −v−2

n(1) ∼ v3

n(3) ∼ − v1

n(4) ∼ v4

n(0) ∼ v2

n(5) ∼ − v−3 = v+1

n(3) ∼ − v1 = −v+3

n(3) ∼ − v1

n(5) ∼ − v3

n(0) ∼ v−3 = v+4

n(4) ∼ v−4 = −v+2

Fig. 5. This figure summarizes the result of Proposition 1.3. The dividing lines are the real and
imaginary axes, as well as arg z = ±π/3 and arg z = ±4π/3. They separate the complex plane into
8 sectors, and within each sector the leading order behavior of some of the solutions n(k)(z) can be
identified with the columns of A+ and A−. If the function vj is written without any superscript it

means that v+
j = v−j throughout the given sector. The zigzag lines are the branch cuts for A+ (the

negative imaginary axis) and A− (the positive imaginary axis).

uniformly for θ ∈ [5π/3, 2π − δ)

n(1)(z) =
1√
2
e−θ1(z)+τz

(
(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ),−i(−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

,(1.59)

and uniformly for θ ∈ (4π/3 + δ, 5π/3]

n(3)(z) =− 1√
2
e−θ1(z)+τz

(
(−z)− 1

4 +O(z−
3
4 ),O(z−

3
4 ),−i(−z) 1

4

+ O(z−
1
4 ),O(z−

1
4 )
)T

.(1.60)

The proof is given in section 3.
To visualize the result of Proposition 1.3, we summarize it in Figure 5.
As a consequence of Proposition 1.3, we see that the vector n(j) is recessive in

the sector Sj shown in Figure 1. We now describe the entries of the fundamental
solutions defined in Proposition 1.1 in terms of the solutions n(0), . . . , n(5).

Theorem 1.4. Fix a PII solution q(σ) with Stokes multipliers (t1, t2, t3). For
j = 0, . . . , 5, let M (j) be the unique 4 × 4 matrix-valued solution to (1.18a) which
satisfies (1.31). We have the following explicit formulas:

M (0) =
(
n(5) + t3n

(0), n(0), n(1),−n(2)
)
, M (1) =

(
−n(3), n(0) + t2n

(1), n(1),−n(2)
)
,

M (2) =
(
−n(3),−n(4), n(1)+t1n

(2),−n(2)
)
, M (3) =

(
−n(3),−n(2)−t3n(3),−n(5), n(4)

)
,

M (4) =
(
−n(3) − t2n(4), n(0),−n(5), n(4)

)
, M (5) =

(
n(1), n(0),−n(5), n(4) + t1n

(5)
)
.

(1.61)
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Fig. 6. Jump matrices J0, . . . , J5 for RHP 1.5.

Since we know the linear relations for the six fundamental solutions described
above, we may describe them as the solution to an RHP. In order to state the RHP,
define the sectors ∆j as

(1.62) ∆j :=

{
z ∈ C :

jπ

3
< arg z <

(j + 1)π

3

}
, j = 0, . . . , 5;

see Figure 6. We then define the function M(z) piecewise in the complex plane as

(1.63) M(z) := M (j)(z) for z ∈ ∆j , j = 0, . . . , 5.

Then M(z) satisfies the following RHP.

Riemann–Hilbert Problem 1.5.
(1) The 4 × 4 matrix-valued function M is analytic in each of the sectors ∆j

defined in (1.62), continuous up to the boundaries, and M(z) = O(1) as
z → 0.

(2) On the boundaries of the sectors ∆j, M = M (j) satisfies the jump conditions

(1.64) M (j)(z) = M (j−1)(z)Jj , for j = 0, . . . , 5, M (−1) ≡M (5),

for the jump matrices J0, . . . , J5 with constant entries specified in Figure 6.
(3) As z →∞, M(z) satisfies the asymptotics

(1.65) M(z) =
(
1 +O(z−1)

)
(v1(z), v2(z), v3(z), v4(z)) ,

where v1, v2, v3, and v4 are defined in (1.26).

It is not hard to see that there is at most one M that satisfies RHP 1.5. So we
have

Corollary 1.6. M (j) (j = 0, . . . , 5) are uniquely determined by RHP 1.5
and (1.63).
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Notice that the jump matrices satisfy the symmetry

(1.66) Jk =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 Jk+3


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ,

where J6+k ≡ Jk. This implies the symmetry of the solutions

M(−z; r1, r2, s1, s2, τ) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

M(z; r2, r1, s2, s1, τ)


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 ,

(1.67)

which appears in [12, Lemma 5.1(b)] for the Hastings–McLeod case. (Their result is
for the tacnode RHP that is equivalent to RHP 1.5 in the Hastings–McLeod case; see
section 1.4.3.) In this special case, there are additional symmetries with respect to
complex conjugation which are not present in the general case.

Remark 1.6. As noted by an anonymous referee, our integral representation of
the fundamental solution of the Lax system (1.18) by the fundamental solution of the
Flaschka–Newell Lax pair (1.5) is essentially similar to the representation of the fun-
damental solution of the Harnad–Tracy–Widom Lax pair by the fundamental solution
of the Jimbo–Miwa Lax pair in [25, Theorem 3.1]. The idea of using a generalized
Laplace transform to produce a Lax pair which is linear in the spectral variable from
another which is quadratic in the spectral variable is in fact quite general and has
been applied to other Painlevé equations as well; see [24].

1.4. Contour integral formulas for two-matrix critical kernel and tac-
node kernel. In the special case (t1, t2, t3) = (1, 0,−1), M(z) is the solution to the
Lax system for the Hastings–McLeod solution to PII, and we refer to this special case
as MHM(z) below. In this section we discuss two occurrences of the entries of MHM,
one in the two-matrix model critical kernel and the other in the tacnode kernel in the
nonintersecting Brownian motion model. Originally these two kernels were expressed
in terms of the tacnode RHP, which differs from the Hastings–McLeod case of our
RHP 1.5 only by a constant matrix factor; see (1.69) below. The integral formulas
for the entries of MHM yield contour integral formulas for these two kernels.

1.4.1. Critical kernel in two-matrix model. Consider the two-matrix model
in which two n×n random Hermitian matrices M1 and M2 have the joint probability
measure

(1.68)
1

Cn
exp(−nTr(V (M1) +W (M2)− τM1M2))dM1dM2,

where V and W are potentials and τ is the coupling constant. We concentrate on
the distribution of eigenvalues of M1, which is a determinantal process and is thus
characterized by a correlation kernel. In the case that V (x) = x2/2, W (y) = y4/4 +
αy2/2 and n→∞, the model is in the critical phase if α = −1 and τ = 1. As n→∞,
under the double scaling limit α = −1+2an−1/3−bn−2/3 and τ = 1+an−1/3+2bn−2/3,
where a and b are constants, the correlation kernel for the eigenvalues of M1, at xn−2/3

and yn−2/3, converges to Kcr
2 (x, y; (a2−5b)/4,−a), whose formula is expressed by the

tacnode RHP. See [14] for the derivation and also [13].
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Similar to the critical kernel Kcr
1 in the one-matrix model, the limiting kernel

Kcr
2 is believed to be universal, and it should occur in very general settings of the

two-matrix model. If V is a quadratic polynomial, the forthcoming paper [5] will
show that Kcr

2 occurs for a large class of potentials W .

1.4.2. Tacnode kernel in nonintersecting Brownian motion model. Con-
sider (1 + λ)n noncolliding particles in Brownian bridges, with diffusion parameter
n−1/2. Suppose the particles are in two groups, such that the left n of them are in
the first group and the right λn of them are in the second. Let particles in the first
group start at a1 at time 0 and end at a1 at time 1, and let particles in the second
group start at a2 at time 0 and end at a2 at time 1. The particles in this model are
a determinantal process, and their multi-time correlation functions are given by the
multi-time correlation kernel.

If a1 = −1 and a2 =
√
λ, the model is in the critical phase as n→∞, such that the

rightmost particle in the first group meets narrowly the leftmost particle in the second
group at time 0.5, and their trajectories touch each other like a tacnode. As n→∞,
under the double scaling a1 = −(1 + (Σ/2)n−2/3) and a2 =

√
λ(1 + (Σ/2)n−2/3),

the multi-time correlation kernel at positions (x/2)n−2/3 and (y/2)n−2/3 and times

(1 + τ1n
−1/3)/2 and (1 + τ2n

−1/3)/2 converges to Lλ,Σtac (τ1, x; τ2, y), which is expressed
by the tacnode RHP.

The derivation of Lλ,Σtac was achieved by several groups of people: Adler, Ferrari,
and van Moerbeke got a multi-time tacnode kernel formula with λ = 1 from a discrete
random walk model [1]; Delvaux, Kuijlaars, and Zhang got a single time tacnode kernel
formula from the nonintersecting Brownian motion model [12]; Johansson got a multi-
time tacnode kernel formula with λ = 1 from the nonintersecting Brownian motion
model [23]; Ferrari and Vető generalized Johansson’s result for general λ > 0 [15].1

The formulas of Adler, Ferrari, and van Moerbeke and Johansson were both expressed
in terms of Airy resolvents but are quite different in structure. They were later proved
to be equivalent [2]. The Delvaux–Kuijlaars–Zhang formula was expressed by the
tacnode RHP (their paper first defined the tacnode RHP, and the RHP is named
thereby). Later Delvaux showed in [10] the equivalence of the results in [12] and [15]
and furthermore wrote the general multi-time tacnode kernel in the tacnode RHP.
See also [26]. A variation of the model where the nonintersecting Brownian bridges
are on a circle was studied by the current authors in [28].

1.4.3. Tacnode RHP revisited. The tacnode RHP which is mentioned in sec-
tions 1.4.1 and 1.4.2 was defined in [12], [14], and [26], with minor variations in
generality and formality. The definition in [26, section 2.1] resembles the Hastings–
McLeod case of our RHP 1.5. Let us denote the solution to the RHP in [26, section
2.1] by M tac. Then M tac is defined on regions ∆0, . . . ,∆5 with the same boundary
conditions and asymptotics at ∞, but the jump matrices are slightly different from
those of MHM. It seems perplexing that two similar but different RHP are associ-
ated to Lax sytem (1.18) (in the Hastings–McLeod case), but the reason is simple:
Although the solutions M (0), . . . ,M (5) are the unique solutions to (1.18a) satisfying
the asymptotics (1.31) throughout the sectors Ωj , as stated in Proposition 1.1, if the
sectors are shrunk to ∆j , the asymptotics (1.31) do not uniquely determine the solu-
tion in each sector. RHP 1.5 and the tacnode RHP in [26] require only asymptotics

1Our notation Lλ,Σtac follows that in [15], but with their σ replaced by Σ. The reason is that σ
occurs in our paper everywhere as the argument of q, the solution of (1.1). We note that in [10], the
author took the same change of notation, as explained in [10, Formula 2.15].
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in sectors ∆j , so there is some freedom to choose the jump matrices corresponding to
different solutions to (1.18a). The relation between RHP 1.5 and the tacnode RHP is
as follows:

M tac(z) = MHM(z)


1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

 for z ∈ ∆0,

M tac(z) = MHM(z)


1 1 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

 for z ∈ ∆3,

M tac(z) = MHM(z) otherwise.

(1.69)

In the paper [26], Kuijlaars found explicit formulas for the entries of the solution
to the tacnode RHP in terms of Airy functions and related operators. He found six
solutions to the differential equation (1.18a) with q(σ) being the Hastings–McLeod
solution to PII, which were labeled m(0), . . . ,m(5). Let us remark here that in the
case (t1, t2, t3) = (1, 0,−1), the solutions n(0), . . . , n(5) constructed in this paper agree
with the ones constructed by Kuijlaars up to sign. Specifically we have

(1.70)
n(0) = m(0), n(1) = m(1), n(2) = −m(2),

n(3) = −m(3), n(4) = m(4), n(5) = −m(5),

which follows from comparing [26, Figure 2] with (1.69) in light of Theorem 1.4.

1.4.4. Contour integral formulas. We can write the critical kernel Kcr
2 for

the two-matrix model in a contour integral formula where the integrand is expressed
by entries of Ψ(0) in (1.13), the solution to the Flaschka–Newell Lax pair. Let Σtac

be a contour consisting of two infinite pieces: the first passing from e−5πi/6 · ∞ to
e−πi/6 · ∞ and the second passing from eπi/6 · ∞ to e5πi/6 · ∞, as pictured in Figure
7. Also let Σ2MM be the contour

(1.71) Σ2MM = [1, eiπ/6·∞)∪[1, e−iπ/6·∞)∪[−1, e5iπ/6·∞)∪[−1, e−5iπ/6·∞)∪[−1, 1],

oriented as shown in Figure 8. Define the functions f and g on C in a piecewise way:

f(ζ;σ) :=


−Ψ

(0)
1,2(ζ;σ) if Im ζ > 0,

Ψ
(0)
1,1(ζ;σ) if Im ζ < 0,

Φ1(ζ;σ) if Im ζ = 0,

g(u;σ) :=


−Ψ

(0)
2,2(ζ;σ) if Im ζ > 0,

Ψ
(0)
2,1(ζ;σ) if Im ζ < 0,

Φ2(ζ;σ) if Im ζ = 0,

(1.72)

where

(1.73) Φ1(ζ;σ) := Ψ
(0)
1,1(ζ;σ) + Ψ

(0)
1,2(ζ;σ), Φ2(ζ;σ) := Ψ

(0)
2,1(ζ;σ) + Ψ

(0)
2,2(ζ;σ).

We then have the following theorem.

Theorem 1.7. The critical kernel in the two-matrix model of Duits and Geudens
[14, equation (2.15)] can be written as

(1.74)

Kcr
2 (x, y; s, τ) =

1

21/3π

∫ i∞

−i∞
du

∫
Σ2MM

dv e−24/3τ(u2−v2)+22/3(xu−yv)

×
(

Φ1(u;σ)g(v;σ)− Φ2(u;σ)f(v;σ)

2π(u− v)

)
,
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Σtac

Σtac

Fig. 7. The contour Σtac. The rays
make the angles π/6 with the real axis.

Σ2MM

Fig. 8. The contour Σ2MM. The rays
make the angles π/6 with the real axis, and
the horizontal segment is the interval [−1, 1].

where σ is given as

(1.75) σ = 22/3(2s− τ2).

This theorem is proved in section 5.1.
Similarly we can write the tacnode kernel Lλ,Σtac in a double contour integral

formula with integrand given by entries of Ψ(0) in (1.13). We have the following
theorem.

Theorem 1.8. The tacnode kernel of Ferrari and Vető [15] can be written as

Lλ,Σtac (τ1, x; τ2, y) = −1τ1<τ2
1√

4π(τ2 − τ1)
exp

(
(y − x)2

4(τ2 − τ1)

)

+
1

Cπ

∫
Σtac

du

∫
Σtac

dv e
− 4i

3 ( 1−
√
λ

1+
√
λ

)(u3−v3)+ 4
C2 (τ1u

2−τ2v2)+ 2i
C (xu−yv)+

iσ(1−
√
λ)

1+
√
λ

(u−v)

×
(

(f(u;σ)g(v;σ)− f(v;σ)g(u;σ))

2πi(u− v)

)
,

(1.76)

where

(1.77) C =

(
1 +

1√
λ

)1/3

and σ = λ1/2C2Σ.

This theorem is proved in section 5.2.

Remark 1.7. In the symmetric case λ = 1, the formula (1.76), up to a rescaling,
was derived by the current authors from a model of nonintersecting paths on the circle
[28]. That model was not robust enough to produce the asymmetric tacnode kernel,
and the above theorem is new for λ 6= 1.

Remark 1.8. Formulas (1.74) and (1.76) are analogous, but (1.76) is more general
in the sense that (i) it has a λ parameter and (ii) the τ1, τ2 parameters corresponding
to τ in (1.74) can be different. In [5], a more general two-matrix model as well as its
dynamical version are considered, and (1.74) is generalized to a formula containing
λ, τ1, τ2 parameters like (1.76).
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1.5. Outlook. In this paper we concentrate on the homogeneous PII equation
(1.1). The general PII equation has a constant term: y′′ = xy + 2y3 − α. Both
the Flaschka–Newell Lax pair (1.5) and the 4 × 4 Lax system can be generalized to
the inhomogeneous PII equation, and each appears in the kernel for a determinantal
process.

The Flaschka–Newell Lax pair for the Hastings–McLeod solution of the inhomoge-
neous PII equation occurs in the one-matrix model with logarithmic perturbation; see
[6] and a brief discussion in section 1.1.1. On the other hand, a 4× 4 RHP associated
with the Hastings–McLeod solution of the inhomogeneous PII equation occurs in the
limiting critical correlation kernel for the nonintersecting squared Bessel processes.
The (nonintersecting) squared Bessel processes are in some sense a generalization
of the (nonintersecting) Brownian motions, and the limiting critical process for the
nonintersecting squared Bessel process is a “hard-edge” generalization of the tacnode
process. Hence the aforementioned 4×4 RHP, which is then called the hard-edge tac-
node RHP, is a natural generalization of the tacnode RHP. This hard-edge tacnode
RHP is also associated with a Lax system that is analogous to and more general than
(1.18). This hard-edge tacnode RHP is also related to a chiral two-matrix model. See
[9] and [11].

It is tempting to conjecture that our construction of the 4 × 4 Lax system from
the 2 × 2 Flaschka–Newell Lax pair can be applied to the inhomogeneous case as
well, thereby giving formulas for the hard-edge tacnode RHP in terms of solutions to
the Flaschka–Newell Lax pair. However, we have so far not been able to derive the
relation in a straightforward way.

Organization of the paper. The algebraic result Proposition 1.2 is proved in
section 2, and the analytic result Proposition 1.3 is proved in section 3. Then the main
result, Theorem 1.4, is proved in section 4, based on Proposition 1.3. As the applica-
tions of the main theorem, Theorems 1.7 and 1.8 are proved in
section 5.

2. The proof of Proposition 1.2. First we note that if m = (m1,m2,m3,m4)T

satisfies (1.32), then the components m3,m4 are expressed in terms of m1,m2 by

ir1m3 = m′1 −
(
τ − s2

1 +
u

C

)
m1 −

√
r2q

γ
√
r1C

m2,(2.1)

ir2m4 = m′2 +
(
τ − s2

2 +
u

C

)
m2 + γ

√
r1q√
r2C

m1,(2.2)

and then (1.32) is reduced to the equations in m1,m2:

m′′1 = +2τm′1 +
r

3/2
1

√
r2q(σ)C2

γ
m′2

(2.3)

+
(
Cq(σ)2r2

1 − r2
1z + 2r1s1 − τ2

)
m1 −

r
3/2
1

√
r2

γC

[
q(σ)τ

(
1

r2
1

− 1

r2
2

)
+ C2q′(σ)

]
m2,

m′′2 = −2τm′2 − r3/2
2

√
r1q(σ)C2γm′1

(2.4)

+
(
Cq(σ)2r2

2 + r2
2z + 2r2s2 − τ2

)
m2 +

r
3/2
2

√
r1γ

C

[
q(σ)τ

(
1

r2
1

− 1

r2
2

)
− C2q′(σ)

]
m1.
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Conversely, if the four components of m satisfy (2.1), (2.2), (2.3), and (2.4), then m
is a solution to (1.32).

Suppose

(2.5) m(z) = QΓ(f, g),

where f and g are any two two-dimensional vector-valued functions that make QΓ

well defined on them. We denote functions Ik = Ik(z), k = 1, 2, 3, 4, where

(2.6) Ik = Ik,1 + Ik,2 + Ik,3,

such that for j = 1, 2, 3, with sgn(k) = 1 if k = 1, 3 and sgn(k) = 2 if k = 2, 4,

Ik,j =

∫
Γj

h
(j)
sgn(k)(ζ)e

2izζ
C Gk(ζ)dζ, where h(1)(ζ) = f(ζ), h(2)(ζ) = g(ζ),

h(3)(ζ) = f(ζ) + g(ζ).(2.7)

Then by definition (1.36),

(2.8) ir1m3(z) = e
−τz

(
r21−r

2
2

r21+r22

)(
−
(
τ
r2
1 − r2

2

r2
1 + r2

2

+ τ − s2
1 +

u

C

)
I1 −

√
r1q

γ
√
r2C

I2 + I3

)
.

On the other hand, also by definition (1.36),

(2.9) m1(z) = e
−τz

(
r21−r

2
2

r21+r22

)
I1, m2(z) = e

−τz
(
r21−r

2
2

r21+r22

)
I2,

and we can evaluate m′1(z) as follows. Since d
dz e

2izζ
C G1(ζ) = e

2izζ
C G3(ζ) by (1.35), we

have for j = 1, 2, 3,

(2.10)
d

dz
I1,j =

∫
Γj

h
(j)
1 (ζ)

(
d

dz
e

2izζ
C

)
G1(ζ)dζ =

∫
Γj

h
(j)
j (ζ)G3(ζ)dζ = I3,j .

Thus

(2.11)
d

dz
I1 = I3,

and we have

m′1(z) =
d

dz

(
e
−τz

(
r21−r

2
2

r21+r22

)
I1

)
= −τ r

2
1 − r2

2

r2
1 + r2

2

m1(z) + e
−τz

(
r21−r

2
2

r21+r22

)
d

dz
I1

= −τ r
2
1 − r2

2

r2
1 + r2

2

m1(z) +m3(z).

(2.12)

Using expressions (2.8), (2.9), and (2.12), we check that (2.1) holds. Similarly, we can
check that (2.2) holds.

Next we show that if the f and g in (2.5) are chosen to be the solutions φ(ζ) and
ϕ(ζ) to (1.32), as in Proposition 1.2, then identities (2.3) and (2.4) also hold.

Consider first m1(z). We have

m′′1(z) =
d2

dz2

(
e
−τz

(
r21−r

2
2

r21+r22

)
I1

)

= τ2

(
r2
1 − r2

2

r2
1 + r2

2

)2

m1(z)− 2τ
r2
1 − r2

2

r2
1 + r2

2

e
−τz

(
r21−r

2
2

r21+r22

)
d

dz
I1 + e

−τz
(
r21−r

2
2

r21+r22

)
d2

dz2
I1.

(2.13)
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The first derivative of I1 is already evaluated in (2.11), and the second derivative can
be computed similarly. We consider I1,1, I1,2, I1,3 individually and have

(2.14)
d2

dz2
I1,j =

∫
Γj

h
(j)
1 (ζ)

(
d2

dz2
e

2izζ
C

)
G1(ζ)dz =

−4

C2

∫
Γj

h
(j)
1 (ζ)ζ2e

2izζ
C G1(ζ)dζ.

Now we use the property that h(j)(ζ) is a solution to (1.32) and have

ζ2h
(j)
1 (ζ) =

i

4

[
d

dζ
h

(j)
1 (ζ) + i(σ + 2q(σ)2)h

(j)
1 (ζ)− (4ζq(σ) + 2iq′(σ))h

(j)
2 (ζ)

]
.

(2.15)

We therefore have, using (1.35),

d2

dz2
I1,j =

1

C2

[
(σ + 2q(σ)2)I1,j − 2q′(σ)

γ1
√
r2

γ2
√
r1
I2,j + 2Cq(σ)

γ1
√
r2

γ2
√
r1
I4,j(2.16)

− i

∫
Γj

(
d

dζ
h

(j)
1 (ζ)

)
e

2izζ
C G1(ζ)dζ

]
.

Furthermore, using integration by parts, we have∫
Γj

(
d

dζ
h

(j)
1 (ζ)

)
e

2izζ
C G1(ζ)dζ = −

∫
Γj

h
(j)
1 (ζ)

[
d

dζ

(
e

2izζ
C G1(ζ)

)]
dζ

+

{
−h(j)

1 (0)G1(0), j = 1, 2,

h
(j)
1 (0)G1(0), j = 3.

(2.17)

Noting that

(2.18) − h(1)
1 (0)− h(2)

1 (0) + h
(3)
1 (0) = 0,

we obtain that

(2.19)

3∑
j=1

∫
Γj

(
d

dζ
h

(j)
1 (ζ)

)
e

2izζ
C G1(ζ)dζ =

3∑
j=1

∫
Γj

h
(j)
1 (ζ)

[
d

dζ

(
e

2izζ
C G1(ζ)

)]
dζ,

and then summing up the j = 1, 2, 3 cases of (2.16),

d2

dz2
I1 =

1

C2

(σ + 2q(σ)2)I1 − 2q′(σ)
γ1
√
r2

γ2
√
r1
I2 + 2Cq(σ)

γ1
√
r2

γ2
√
r1
I4

+ i

3∑
j=1

∫
Γj

h
(j)
1 (ζ)

[
d

dζ

(
e

2izζ
C G1(ζ)

)]
dζ

 .(2.20)

Since

(2.21)
d

dζ

(
e

2izζ
C G1(ζ)

)
=

(
3iaζ2 + 2bζ + ic+

2iz

C

)
e

2izζ
C G1(ζ)

= −3iC2a

4

d2

dz2

(
e

2izζ
C G1(ζ)

)
− ibCe 2izζ

C G3(ζ) + i

(
c+

2z

C

)
e

2izζ
C G1(ζ),
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we have, using (2.14), that

3∑
j=1

∫
Γj

h
(j)
1 (ζ)

[
d

dζ

(
e

2izζ
C G1(ζ)

)]
dζ = −3iC2a

4

d2

dz2
I1 − ibCI3(ζ) + i

(
c+

2z

C

)
I1.

(2.22)

Combining (2.20) and (2.22), we solve that

(
1−3a

4

)
d2

dz2
I1=

(
σ + 2q(σ)2−c

C2
− 2z

C3

)
I1−

2q′(σ)

C2

γ1
√
r2

γ2
√
r1
I2+

b

C
I3 +

2q(σ)

C

γ1
√
r2

γ2
√
r1
I4.

(2.23)

Plugging (2.23) and (2.10) into (2.13), and using the formulas (1.21) and (1.33) for
the coefficients, we have

m′′1(z) =

(
τ2 r

2
2 − 3r2

1

r2
1 + r2

2

+ 2r1s1 + r2
1Cq(σ)2 − r2

1z

)
m1 − r2

1C
γ1
√
r2

γ2
√
r1
q′(σ)m2(2.24)

+ 2τm3 + r2
1C

2 γ1
√
r2

γ2
√
r1
q(σ)m4.

On the other hand, among the terms on the right-hand side of (2.3), m1(z),m2(z),
m′1(z) are already evaluated in (2.9) and (2.12), while m′2(z) can be evaluated similarly
to m′1(z) as

(2.25) m′1(z) = −τ r
2
1 − r2

2

r2
1 + r2

2

m2(z) +m4(z).

It is not hard to see that the right-hand side of (2.3) can also be expressed as the
right-hand side of (2.24). Thus we prove (2.3). In the same way we can prove (2.4).

3. Proof of Proposition 1.3. Since parts 1–6 are similar, we prove part 1 in
detail in section 3.1 and explain how the proof is adapted to other cases in section
3.2. Parts 2 and 3 can be proved by the computation as in part 1. For parts 4, 5,
and 6, although the same method works, the computation should be adjusted because
f (k), g(k) in (1.40) and f (k) + g(k) have different asymptotic behavior at ∞ for even
and odd k.

In the proof of parts 1, 2, and 3, for a computational reason that will be clear
later, we take a change of variable

(3.1) ζ = ξ +
ib

3a+ 4
= ξ +

iτ

C2r2
1

,

where a, b are defined in (1.33), τ and r1 are defined in (1.20), and C is defined in
(1.21), and we define the cubic polynomial F as

(3.2) F (ξ) = iãξ3 + ic̃ξ, where ã = a+
4

3
=

8r2
1

3(r2
1 + r2

2)
,

c̃ ≡ c̃(z) =
b2

3a+ 4
+ c+

2z

C
+ σ =

2z + 4s2/r2

C
,

and c is defined in (1.33), σ is defined in (1.22), and r2, s2 are defined in (1.20).
We note that the leading coefficient of F satisfies ã > 0. We are interested in the
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asymptotics of the functions n(0)(z), . . . , n(5)(z) as z → ∞ in various sectors of the
complex plane. Note that as z → ∞ at a certain angle, the parameter c̃ ≡ c̃(z) also
approaches ∞ at the same angle. Thus we will consider the asymptotic behavior of
the integrals which define n(0)(z), . . . , n(5)(z) as c̃→∞. For brevity we will often use
the notation c̃ rather than c̃(z), and we trust the reader can keep in mind that c̃ is
related to z by a scaling and shift of fixed size.

Remark 3.1. The function F (ξ) will be useful in the proof of parts 1, 2, and

3, because the essential part of asymptotic analysis is the integrals on Γ
(k)
1 ∪ Γ

(k)
3

(k = 0, 2, 4), where the contours Γ
(k)
j are deformed, as explained later in this section.

The integrands on Γ
(k)
1 ∪ Γ

(k)
3 , although various in explicit formulas, all have the

asymptotic behavior

(3.3) e
4
3 iζ

3+iσζ+ 2izζ
C G(ζ)× (factor growing at most linearly at ∞),

and under the change of variable (3.1),

(3.4) log
(
e

4
3 iζ

3+iσζ+ 2izζ
C G(ζ)

)
= F (ξ)− log γ2 −

2r2
2

r2
1 + r2

2

τz,

where γ2 is defined in (1.33).

Recall the sectors ∆0, . . . ,∆5 defined in (1.62). In what follows we consider them
on the ζ-plane and ξ-plane by replacing z by ζ and ξ, respectively, in their definitions.

3.1. Proof of part 1. Note that if z = reiθ, where θ ∈ (−π/3 + δ, π/3 − δ),
then for large enough r, c̃ defined in (3.2) has its argument in a compact subset of
(−π/3, π/3). Below in the proof we assume that

(3.5) arg(c̃) ∈ [−π/3 + δ′, π/3− δ′], δ′ > 0,

even if |c̃| is not large. To be concrete, we may take δ′ = δ/2.
Before giving the rigorous argument of the proof, we describe the strategy.
Step 1. Find the critical points of F (ξ). There are two of them, which are denoted

as ξ+ (on the upper-half plane) and ξ− (on the lower-half plane). Then denote

(3.6) ζ± = ξ± +
ib

3a+ 4
.

Step 2. Deform the contour Γ(k) = Γ
(k)
1 ∪Γ

(k)
2 ∪Γ

(k)
3 defined in (1.38) for k = 0, 2, 4

such that Γ
(0)
1 ∪ Γ

(0)
3 is a contour from e5πi/6 · ∞ to eπi/6 · ∞ and passes through ζ+,

Γ
(2)
1 ∪ Γ

(2)
3 is a contour from eπi/6 · ∞ to e−πi/2 · ∞ and passes through ξ−, and

Γ
(4)
1 ∪ Γ

(4)
3 is a contour from e−πi/2 · ∞ to e5πi/6 · ∞ and passes through ξ−. Then

Γ
(k)
2 goes from a point on Γ

(k)
1 ∪ Γ

(k)
3 to e(1/2−k/3)πi · ∞ for k = 0, 2, 4. Furthermore,

we require that for |z| large enough,

Γ
(0)
1 ∈ {ε ≤ arg ζ ≤ 2π/3− ε}, Γ

(0)
3 ∈ {π/3 + ε ≤ arg ζ ≤ π − ε},(3.7)

Γ
(2)
1 ∈ {4π/3 + ε ≤ arg ζ ≤ 2π − ε}, Γ

(2)
3 ∈ {−π/3 + ε ≤ arg ζ ≤ π/3− ε},(3.8)

Γ
(4)
1 ∈ {2π/3 + ε ≤ arg ζ ≤ 4π/3− ε}, Γ

(4)
3 ∈ {π + ε ≤ arg ζ ≤ 5π/3− ε},(3.9)
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Γ
(0)
2

Γ
(0)
1

Γ
(0)
3

Γ
(2)
2

Γ
(2)
3

Γ
(4)
2

Γ
(4)
1

ζ+

ζ−

Fig. 9. Schematic graphs of Γ(0), Γ(2), and

Γ(4) in the proof of part 1 of Proposition 1.3. Γ
(2)
1

and Γ
(4)
3 are not labeled, because their major parts

overlap.

Γ
(2)
2

Γ
(2)
1

Γ
(2)
3

Γ
(4)
2

Γ
(4)
3

Γ
(0)
2

Γ
(0)
1

ζ−

ζ+

Fig. 10. Schematic graphs of Γ(0), Γ(2),
and Γ(4) in the proof of part 2 of Proposition

1.3. Γ
(4)
1 and Γ

(0)
3 are not labeled, because

their major parts overlap.

Γ
(0)
2 ∈

{
π

3
+ ε ≤ arg ζ ≤ 2π

3
− ε
}
, Γ

(2)
2 ∈

{
−π

3
+ ε ≤ arg ζ ≤ −ε

}
,(3.10)

Γ
(4)
2 ∈

{
π + ε ≤ arg ζ ≤ 4π

3
− ε
}
,

and

(3.11) dist(Γ(k), 0) > ε|z|1/2,

where ε > 0 is a constant depending on δ. Note that we only define Γ
(2)
2 for arg z ≥ 0

and only define Γ
(4)
2 for arg z ≤ 0. For the saddle point analysis, we require

(3.12)

Re log
(
e

4
3 iζ

3+iσζ+ 2izζ
C G(ζ)

)
attains its maximum on Γ

(k)
1 ∪ Γ

(k)
3 at ζ±, k = 0, 2, 4,

where ± is + for k = 1 and − for k = 2, 4. See Figure 9 for a schematic graph
of the contours. In the similar cases 2 and 3, the contours are similar and shown
schematically in Figures 10 and 11. The existence of the contours will be carefully
justified later.

Step 3. Use the standard saddle point analysis to prove the result. In particular,

for all integrals on Γ
(k)
1 and Γ

(k)
3 (k = 0, 2, 4) in the entries of the 4×4 matrix shown in

(1.36), the integrands are expressed as (linear polynomial in ζ plus O(ζ−1)) × eF (ξ),
where ξ is related to ζ by (3.1) and F (ξ) is given in (3.2) and (3.4). Thus ζ± are the
saddle points giving the major contributions to the integrals. We also show that the

integrals over Γ
(k)
2 are negligible.

Below we give the details of the steps.

3.1.1. Step 1: Critical points. For each z ∈ C, the equation dF
dξ = 0 has two

solutions,

(3.13) ξ± = ±i
√
c̃(z)

3ã
.

By (3.5), we have ξ+ ∈ ∆1 and ξ− ∈ ∆4.
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Γ
(4)
2

Γ
(4)
1

Γ
(4)
3

Γ
(0)
2

Γ
(0)
3

Γ
(2)
2

Γ
(2)
1

ζ−

ζ+

Fig. 11. Schematic graphs of Γ(0), Γ(2), and Γ(4) in the proof of part 3 of Proposition 1.3. Γ
(0)
1

and Γ
(2)
3 are not labeled, because their major parts overlap.

3.1.2. Step 2(a): Preliminary lemmas. For the construction of the contours,
we are going to use some planar dynamical system techniques. We interpret the
complex ξ-plane as a two-dimensional real coordinate plane by the standard relation
ξ = x + yi. The function ReF (ξ) is then harmonic in ξ, or equivalently in x, y, and
it has only two critical points ξ±. By condition (3.5), we have

(3.14) ReF (ξ+) < ReF (0) < ReF (ξ−).

Consider the curve L0 with differentiable parametrization (x(t), y(t)) such that

(
∂

∂x
F (x(t) + iy(t)),

∂

∂x
F (x(t) + iy(t))

)
·
(
x′(t)
y′(t)

)
= 0, and x(0) = y(0) = 0.

(3.15)

This curve is the level curve through 0. Since by (3.14) ξ± are not on this level curve,
the level curve can be extended to∞ in both directions, and we assume it below. Then
we have the following result on the directions that L0 approaches ∞. A numerical
plotting of L0 is shown in Figure 12. This plot demonstrates the following result.

Lemma 3.1. L0 lies in ∆0 ∪∆5 ∪∆2 ∪∆3, and it goes to ∞ in directions e0 · ∞
and eπi · ∞.

Proof. By the behavior of ReF (ξ) at ∞, we know that a level curve, on which
ReF (ξ) is finite, can only go to ∞ in six possible directions: kπ/3, k = 0, . . . , 5. For
L0, we also know that the tangent direction at 0 is − arg c̃ ∈ (π/3 + δ′, π/3− δ′) and
π − arg c̃.

In the remaining part of the proof, we consider three cases separately: (a) arg c̃ = 0,
(b) arg c̃ ∈ (−π/3, 0), and (c) arg c̃ ∈ (0, π/3).

In case (a), L0 is exactly the real axis and the result of the lemma is obvious.
In case (b), we have that one part of L0 goes from 0 to sector Ω0 and the other

part goes from 0 to sector Ω3. We denote them L0,+ and L0,−, respectively. We can
see that L0,+ does not go out of Ω0, because on one boundary of Ω0, {ξ 6= 0 | arg ξ =
0}, ReF (ξ) > ReF (0), and on the other boundary of Ω0, {ξ 6= 0 | arg ξ = π/3},
ReF (ξ) < ReF (0). Similarly, L0,− does not go out of Ω3.
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Fig. 12. The dotted
curve is L0. L+ consists of
the curves above L0, and L−
consists of the curves below
L0. Here are ã = 1 and c̃ =
π/4.

Fig. 13. The solid curve
is Γ̃

(0)
1 ∪ Γ̃

(0)
3 . The dotted

curves are γ+,1 and γ+,2, and
the dashed curves are L+.
Here ã = 1 and c̃ = eπi/8.

Fig. 14. The solid curves
are Γ̃

(2)
1 ∪ Γ̃

(2)
3 and Γ̃

(4)
1 ∪ Γ̃

(4)
3 .

(They overlap in the bottom
part.) The dotted curve is
γ−,2, and the dashed curves
are L−. Here ã = 1 and
c̃ = eπi/8.

Now the possible directions for L0,+ to approach∞ is limited to 0 and π/3. Next
we exclude π/3. For any ε > 0, we have by direct calculation that ReF (ρeαi) <
ReF (0) for all α ∈ (π/3 − ε, π/3) and large enough ρ, so for ξ ∈ L0,+, arg ξ /∈
(π/3− ε, π) if |ξ| is large enough. Thus L0,+ goes to e0 ·∞. By a similar reason, L0,−
goes to eπi · ∞.

Case (c) is converted to case (b) by the change of variables ξ → ξ̄.

The next technical lemma is proved by straightforward calculation.

Lemma 3.2. Let ρ be a big enough positive number. Then on the circle {ρeiα |
0 ≤ α < 2π}, ReF (ξ) has three local maxima, z2(ρ) = ρeπi/2 + O(ρ−1), z4(ρ) =
ρe7πi/6 + O(ρ−1), and z6(ρ) = ρe−πi/6 + O(ρ−1), and three local minima, around
z1(ρ) = ρeπi/6 + O(ρ−1), z3(ρ) = ρe5πi/6 + O(ρ−1), and z5(ρ) = ρe−πi/2 + O(ρ−1).
Furthermore, on each arc Ak(ρ) between zk−1(ρ) and zk(ρ) (k = 1, . . . , 6 and z0(ρ) =
z6(ρ)), the value of ReF (ξ) is monotonic as ξ moves along the arc.

Now consider the level curves through ξ+ and ξ−, which we denote by L+ and
L−, respectively. Note that locally around ξ±, L± is the union of two smooth local
level curves, and L± goes to ∞ as it extends along the four ends of the smooth local
level curves. See Figure 12 for a numerical plotting of these level curves. The plotting
demonstrates the results of the following two lemmas.

Lemma 3.3.
(a) The branches of L+ go to e0 · ∞, eπi/3 · ∞, e2πi/3 · ∞, and eπi · ∞, and we

denote them L+,1, L+,2, L+,3, and L+,4, respectively.
(b) The branches of L− go to e0 ·∞, e−πi/3 ·∞, e−2πi/3 ·∞, and eπi ·∞, and we

denote them L−,1, L−,2, L−,3, and L−,4, respectively.

Proof. We give the proof to part (a), and that to part (b) is analogous.
By the argument in the beginning of the proof of Lemma 3.1, we know that the

local level curves through ξ+ go to infinity in the directions kπ/3. By inequality
(3.14), we know that L+, the level curve through ξ+, does not intersect L0. Since we
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assume that ξ+ is in sector Ω1, we have that L+ can only go to∞ in directions above
L0, that is, 0, π/3, 2π/3, π.

Recall the notation in Lemma 3.2. Let ρ be a large enough positive number; then
L+ intersects the circle {|ξ| = ρ} at four distinct points. These intersecting points are
on A1(ρ)∪A2(ρ)∪A3(ρ)∪A4(ρ), since they are above L0. By the monotone property
stated in Lemma 3.2, these intersecting points are on distinct arcs Ak(ρ), and then
they are around ρ, ρeπi/3, ρe2πi/3, and −ρ, respectively. Thus L+ goes to infinity in
the four distinct directions.

Lemma 3.4.
(a) L+,1 intersects with the ray {arg ξ = π/3} at a point, which we denote by

ξ1; L+,2 stays in sector ∆1 and has the ray as its asymptote but does not
intersect it.

(b) L+,4 intersects with the ray {arg ξ = 2π/3} at a point, which we denote by
ξ2; L+,3 stays in sector ∆1 and has the ray as its asymptote but does not
intersect it.

(c) L−,1 intersects with the ray {arg ξ = 5π/3} at a point, which we denote by
ξ3; L−,2 stays in sector ∆4 and has the ray as its asymptote but does not
intersect it.

(d) L−,4 intersects with the ray {arg ξ = 4π/3} at a point, which we denote by
ξ4; L−,3 stays in sector ∆4 and has the ray as its asymptote but does not
intersect it.

Proof. We prove parts (a) and (b), and the proof to parts (c) and (d) is similar.
We note that ReF (ξ) is monotonically decreasing as ξ moves to ∞ on either the

ray {arg ξ = π/3} or the ray {arg ξ = 2π/3}, which are the two boundaries of ∆1. So
L+ = L+,1 ∪L+,2 ∪L+,3 ∪L+,4 intersects either ray at one point at most. Since L+,1

goes from ξ+ to e0 · ∞, L+,4 goes from ξ+ to eπi · ∞, and they do not intersect, we
have that L+,1 intersects with the ray {arg ξ = π/3}, at a point, and L+,4 intersects
with the ray {arg ξ = 2π/3} at a point. The results for L+,2 and L+,3 are deduced by
their asymptotic property in Lemma 3.3 and the fact that they do not intersect with
the two rays.

3.1.3. Step 2(b): Construction of Γ(0), Γ(2), and Γ(4). We consider the
images of Γ(0),Γ(2),Γ(4) and their components under the change of variables (3.1),
which are

(3.16) Γ̃
(k)
∗ =

{
ξ ∈ C | ξ +

ib

3a+ 4
∈ Γ

(k)
∗

}
, k = 0, 2, 4, ∗ = 1, 2, 3 or blank.

The construction of Γ̃(k) is equivalent to the construction of Γ(k).
The basic ingredients for the construction of the contours are the flow curves

with respect to the gradient field ∇ReF , i.e., smooth curves with parametrization
(x(t), y(t)) such that

(3.17) (x′(t), y′(t)) =

(
∂

∂x
F (x(t) + iy(t)),

∂

∂x
F (x(t) + iy(t))

)
.

Through any point where ∇ReF does not vanish, there is a unique flow curve. But
from the critical point ξ+ or ξ−, there are four flow curves connecting to ξ±, with two
flowing out of ξ±, that is, ReF increases along the flow curves away from ξ±, and two
flowing in ξ±, that is, ReF increases along the flow curves toward ξ±. Generically the
flow lines connecting ξ± can be extended to ∞, but in some special cases a flow line
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may connect ξ+ and ξ−. If a flow curve extends to ∞, then it can either go into ∞ in
directions eπi/2 · ∞, e7πi/6 · ∞, and e−πi/6 · ∞ or go out of ∞ in directions eπi/6 · ∞,
e5πi/6 · ∞, and e−πi/2 · ∞.

Around ξ±, the flow curves into and out of ξ± alternate with the level curves
ReF (ξ) = ReF (ξ±). Part (a) of Lemma 3.3 shows that one flow curve that flows in
ξ+ lies between L+,1 and L+,2 and is from eπi/6 · ∞, and the other flow curve that
flows in ξ+ lies between L+,3 and L+,4 and is from e5πi/6 · ∞. We denote them by
γ+,1 and γ+,2, respectively, for later use. Part (b) of Lemma 3.3 shows that one flow
curve that flows out of ξ− lies between L−,2 and L−,3 and goes to e−πi/2 ·∞, and the
other flow curve that flows out of ξ− lies above L−,1 and L−,4. We denote them by
γ−,1 and γ−,2, respectively. The flow curve γ−,2 may end at eπi/6 · ∞, e5πi/6 · ∞, or
ξ+, depending on the argument of c̃, but we do not need this piece of information.

Below we construct Γ̃(0), Γ̃(2), and Γ̃(4) in the special case that α̃ = 1 and c̃ = eiθ

with θ ∈ (−π/3 + δ′, π/3 − δ′). This construction may seem impractical, since our
interest is the limiting case that z →∞, or equivalently, c̃→∞. Actually if ã = 1 =
|c̃| = 1, θ = arg z may not satisfy the condition in part 1 of Proposition 1.3. But the
construction for general ã and c̃, particularly for large c̃, will be derived by a scaling
transform of the special case.

Construction of Γ̃
(0)
1 ∪ Γ̃

(0)
3 for ã = 1 and |c̃| = 1. Recall that L+,1 intersects with

the ray {arg ξ = π/3} at ξ1. Since the flow curve γ+,1 lies above L+,1 and extends
to eπi/6 · ∞, it hits the ray {ξ | arg ξ = π/3 and |ξ| > |ξ1|} at a point, which we
denote by ξ′1. By the property of flow curve, ReF (ξ) decreases as ξ moves from ξ+
to ξ′1 along γ+,1. A simple calculation shows that as ξ moves to eπi/6 · ∞ along the
ray {ξ′1 + ρeπi/6 | ρ ≥ 0}, ReF (ξ) is also decreasing. Similarly, γ+,2 hits the ray
{ξ | arg ξ = 2π/3 and |ξ| > |ξ2|} at a point, which we denote by ξ′2. ReF (ξ) decreases
as ξ moves along γ+,2 from ξ+ to ξ′2, and furthermore it decreases as ξ moves to ∞
along the ray {ξ′2 + ρe5πi/6 | ρ ≥ 0}. We define Γ̃

(0)
1 ∪ Γ̃

(0)
3 by the concatenation of (i)

the ray {ξ′2 + ρe5πi/6 | ρ ≥ 0}, (ii) the part of γ+,2 between ξ+ and ξ′2, (iii) the part of
γ+,1 between ξ+ and ξ′1, and (iv) the ray {ξ′1 + ρeπi/3 | ρ ≥ 0}, with the orientation

from e5πi/6 · ∞ to eπi/6 · ∞. For a numerical plotting of Γ̃
(0)
1 ∪ Γ̃

(0)
3 , see Figure 13.

Remark 3.2.
• We have not constructed Γ̃

(0)
1 and Γ̃

(0)
3 individually yet, since the dividing

point between them is not given.

• It seems that we can let Γ̃
(0)
1 ∪ Γ̃

(0)
3 simply be γ+,1 ∪ γ+,2. But then it is not

easy to show that γ+,1 (resp., γ+,2) stay in ∆0 ∪ ∆1 (resp., ∆1 ∪ ∆2), and

then it is a problem to verify (3.7) for Γ
(0)
1 and Γ

(0)
3 later.

Construction of Γ̃
(2)
1 ∪ Γ̃

(2)
3 and Γ̃

(4)
1 ∪ Γ̃

(4)
3 for ã = 1 and |c̃| = 1. First we note

that the flow curve γ−,1 stays in ∆4. Next we note that the level curves L−,1 and
L−,4, the line segment between ξ3 and 0, and the line segment between ξ4 and 0
enclose a region, which we call R. On the boundary of R, ReF (ξ) keeps the same
on the level curves and decreases as ξ moves above to 0 along either of the two line
segments. The flow curve γ−,2 goes into region R. Letting ε be a small enough
positive constant, we take ξ′− as the point on γ−,2 such that |ξ′−− ξ−| = ε and denote
the part of γ−,2 between ξ− and ξ′0 by γε. Then there exists a smooth curve lying
in region R and connecting ξ′− and ξ3/2, which we denote by C3, such that ReF (ξ)
decreases monotonically as ξ moves along C3 from ξ′− to ξ3/2. Similarly, there exists
a smooth curve lying in region R and connecting ξ′− and ξ4/2, which we denote by
C4, such that ReF (ξ) decreases monotonically as ξ moves along C4 from ξ′− to ξ′4/2.
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At last, by direct calculation, we find that ReF (ξ) decreases as ξ moves along the
ray {ξ3/2 + ρeπi/6 | ρ ≥ 0} to eπi/6 · ∞, and analogously that ReF (ξ) decreases as ξ
moves along the ray {ξ4/2 + ρe5πi/6 | ρ ≥ 0} to e5πi/6 · ∞.

Thus we define Γ̃
(2)
1 ∪ Γ̃

(2)
3 by the concatenation of (i) the ray {ξ3/2 + ρeπi/6 |

ρ ≥ 0}, (ii) the curve C3, (iii) the curve γε, and (iv) the flow curve γ−,1, with the

orientation from eπi/6 · ∞ to e−πi/2 · ∞. Similarly, we define Γ̃
(4)
1 ∪ Γ̃

(4)
3 by the

concatenation of (i) the flow curve γ−,1, (ii) the curve γ∗, (iii) the curve C4, and (iv)
the ray {ξ4/2 + ρe5πi/6 | ρ ≥ 0}, with the orientation from e−πi/2 · ∞ to e5πi/6 · ∞.

For a numerical plotting of Γ̃
(2)
1 ∪ Γ̃

(2)
3 and Γ̃

(4)
1 ∪ Γ̃

(4)
3 , see Figure 14. Note that

they have overlap γ−,1 ∪ γε, which explains the overlap in the schematic Figure 9.

Construction of Γ̃
(0)
2 , Γ̃

(2)
2 , and Γ̃

(4)
2 for ã = 1 and |c̃| = 1. In the construction,

we define the function

(3.18) F̂ (ξ) = F (ξ)− i8
3
ξ3 = i

(
ã− 8

3

)
ξ3 + ic̃ξ

and note that the leading coefficient of F̂ satisfies ã − 8/3 < 0. Notice that in the

integral formulas (1.36), integrands on Σ
(0)
2 , Σ

(2)
2 , and Σ

(4)
2 , although different, can

all be written in the form of exp(−4iζ3/3 − iσζ + 2izζ/C)G(ζ)× (factor growing at
most linearly in ζ), and we have

(3.19) exp(−4iζ3/3− iσζ + 2izζ/C)G(ζ)− F̂ (ξ) = exp(quadratic polynomial in ζ).

The ray {ρeπi/2 | ρ > 0} intersects with Γ̃
(0)
1 ∪ Γ̃

(0)
3 at a point, which we denote

by ξ′′0 . Then we define Γ̃
(0)
2 to be the ray {ρeπi/2 | ρ ≥ |ξ′′0 |}. The following properties

can be checked by direct computation: (i) Γ̃
(0)
2 is contained in Ω1, and (ii)

Re F̂ (ξ′′0 ) < ReF (ξ′′0 ) < ReF (ξ+) and(3.20)

Re F̂ (ξ) decreases as ξ moves along Γ̃
(0)
2 from ξ′′0 to ∞.

Let ϕ ∈ (0, π/6) be a small enough positive number such that

(3.21)
2 sin(ϕ/2)3/2√
(8− 3ã) sin(3ϕ)

<
2

3
(3ã)−1/2 sin(3δ′/2).

Then the ray {ρe−iϕ | ρ ≥ 0} intersects with Γ̃
(2)
1 ∪ Γ

(2)
3 at a point, which we denote

by ξ′′2 , and the ray {ρei(π+ϕ) | ρ ≥ 0} intersects Γ̃
(4)
1 ∪ Γ̃

(4)
3 at a point, which we denote

by ξ′′4 . We define Γ̃
(2)
2 by the ray {ρe−iϕ | ρ ≥ |ξ′′2 |} if arg(c̃) ∈ (−ϕ/2, π/3 − δ′) and

define Γ̃
(4)
2 by the ray {ρei(π/2+ϕ) | ρ ≥ |ξ′′4 |} if arg(c̃) ∈ (−π/3 + δ′, ϕ/2). Then we

have that

(3.22) Re F̂ (ξ) < ReF (ξ−)

{
for all ξ ∈ Γ̃

(2)
2 if arg(c̃) ∈ (−ϕ/2, π/3− δ′),

for all ξ ∈ Γ
(4)
2 if arg(c̃) ∈ (−π/3 + δ′, ϕ/2).

Below we check (3.22) in the case that ξ ∈ Γ̃
(2)
2 , and the case ξ ∈ Γ̃

(4)
2 is analogous.

We first note that for all c̃ = eiθ with θ ∈ (−ϕ/2, π/3− δ′) and for all ρ > 0,

(3.23) Re
(
ic̃ρe−iϕ

)
= ρRe ei(θ−ϕ+π/2) ≤ ρRe ei(π/2−ϕ/2) = ρ sin(ϕ/2).
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So the value Re F̂ (ξ) for ξ on the ray {ρe−iθ | ρ ≥ 0} satisfies

Re F̂ (ξ) = Re F̂ (ρe−iθ) = Re

(
i

(
ã− 8

3

)
ρ3e−3iθ + ic̃ρe−iθ

)
≤
(
ã− 8

3

)
ρ3

0 sin(3θ) + ρ0 sin(θ/2) =
2 sin(ϕ/2)3/2√
(8− 3ã) sin(3ϕ)

.

(3.24)

On the other hand,

(3.25) ReF (ξ−) =
2

3
(3ã)−1/2Re (c̃3/2) >

2

3
(3ã)−1/2 sin(3δ′/2)

since |c̃| = 1 and arg(c̃) ∈ (−ϕ/2, π/3 − δ′). So inequalities (3.21) and (3.25) imply

(3.22) in the case that ξ ∈ Γ̃
(2)
2 .

Remark 3.3. Although our construction depends on the value of arg(c̃), by the
compactness argument it is clear that for all c̃ that satisfy (3.5), there exists ε > 0
such that we can make

1. for arg(c̃ ∈ (−π/3 + δ′, π/3− δ′), Γ̃
(0)
1 ∈ ∆0 ∪∆1, Γ̃

(0)
2 ∈ ∆1, Γ̃

(0)
3 ∈ ∆1 ∪∆2,

and dist(Γ̃
(0)
1 , ∂(∆0 ∪∆1)) > ε, dist(Γ̃

(0)
2 , ∂(∆1)) > ε, dist(Γ̃

(0)
3 , ∂(∆1 ∪∆2))

> ε;

2. for arg(c̃ ∈ (−ϕ/2, π/3− δ′), Γ̃
(2)
1 ∈ ∆4 ∪∆5, Γ̃

(2)
2 ∈ ∆5, Γ̃

(2)
3 ∈ ∆5 ∪∆0, and

dist(Σ
(2)
1 , ∂(Ω4 ∪ Ω5)) > ε, dist(Γ̃

(2)
2 , ∂(∆5)) > ε, dist(Γ̃

(2)
3 , ∂(∆5 ∪∆0)) > ε;

3. for arg(c̃ ∈ (−π/2 + δ′, ϕ/2), Γ̃
(4)
1 ∈ ∆2 ∪∆3, Γ̃

(4)
2 ∈ ∆3, Γ̃

(4)
3 ∈ ∆3 ∪∆4, and

dist(Γ̃
(4)
1 , ∂∆2 ∪∆3)) > ε, dist(Γ̃

(4)
2 , ∂(∆3) > ε, dist(Γ̃

(4)
3 , ∂(∆3 ∪∆4)) > ε.

Construction for the contours with general ã and c̃. At last we consider the general
case that ã is any positive number between 0 and 8/3, and c̃ is any number such

that arg c̃ ∈ (−π/3 + δ′, π/3 − δ′). We first construct the contours Γ̃
(0)
scaled, Γ̃

(2)
scaled,

and Γ̃
(4)
scaled with respect to the parameters 1 and c̃/|c̃| in place of α̃ and c̃ and then

scale the contours in ξ-plane by the factor
√
|c̃|/ã, that is, ξ ∈ Γ̃(k) if and only

if ξ/
√
|c̃|/ã ∈ Γ̃

(k)
scaled. Then Γ̃

(0)
1 ∪ Γ̃

(0)
3 is still through the point ξ+ = i

√
c̃
3ã , and

Γ̃
(2)
1 ∪ Γ̃

(2)
3 and Γ̃

(4)
1 ∪ Γ̃

(4)
3 are still through the point ξ− = −i√ c̃

3ã .
Our goal is to construct Γ(0),Γ(2),Γ(4), and it can be done by a translation of

Γ̃(0), Γ̃(2), Γ̃(4) according to (3.16). Note that after a translation, the contours Γ
(k)
j

may not lie in the same sectors as Σ
(k)
j do. But as |z| → ∞, or equivalently |c̃| → ∞,

the finite translation can be neglected. To be precise, if |z| is large enough, then
arg(z) ∈ (−π/3+δ, π/3−δ) implies that arg(c̃) satisfies (3.5), and arg(z) ∈ [0, π/3−δ)
(resp., arg(z) ∈ (−π/3 + δ, 0]) implies that arg(c̃) ∈ (−ϕ/2, π/3− δ′) (resp., arg(c̃) ∈
(−π/3+δ′, ϕ/2)). Thus we derive results (3.7)–(3.12) by properties stated in Remark

3.3 for the contours Γ̃
(k)
scaled.

3.1.4. Step 3: Saddle point analysis. First we compute n(0)(z) as |z| → ∞
with arg z ∈ (−π/3 + δ, π/3 − δ). As discussed in the beginning of this section, this
condition is equivalent to (3.5) and |c̃| → ∞.

We write

(3.26) n(0)(z) =M(ñ(0)(z) + n̂(0)(z)),



TWO LAX SYSTEMS FOR PAINLEVÉ II 3649

where

ñ(0)(z) =


∫

Γ
(0)
1
e

2izζ
C Ψ

(1)
1,2(ζ)G1(ζ)dz +

∫
Γ
(0)
3
e

2izζ
C Ψ

(2)
1,2(ζ)G1(ζ)dζ∫

Γ
(0)
1
e

2izζ
C Ψ

(1)
2,2(ζ)G2(ζ)dz +

∫
Γ
(0)
3
e

2izζ
C Ψ

(2)
2,2(ζ)G2(ζ)dζ∫

Γ
(0)
1
e

2izζ
C Ψ

(1)
1,2(ζ)G3(ζ)dz +

∫
Γ
(0)
3
e

2izζ
C Ψ

(2)
1,2(ζ)G3(ζ)dζ∫

Γ
(0)
1
e

2izζ
C Ψ

(1)
2,2(ζ)G4(ζ)dz +

∫
Γ
(0)
3
e

2izζ
C Ψ

(2)
2,2(ζ)G4(ζ)dζ

 ,(3.27)

n̂(0)(z) =


∫

Γ
(0)
2
e

2izζ
C Ψ

(1)
1,1(ζ)G1(ζ)dζ∫

Γ
(0)
2
e

2izζ
C Ψ

(1)
2,1(ζ)G2(ζ)dζ∫

Γ
(0)
2
e

2izζ
C Ψ

(1)
1,1(ζ)G3(ζ)dζ∫

Γ
(0)
2
e

2izζ
C Ψ

(1)
2,1(ζ)G4(ζ)dζ

 ,(3.28)

M is defined in (1.37), and Ψ(k) is the fundamental solution of (1.5a) that is expressed
in ψ(1) and ψ(2) in Figure 2.

We note that (Ψ
(1)
1,2,Ψ

(1)
2,2)T = ψ(2) that is defined in (1.13). By (3.7) and (3.11),

we have that for all ζ ∈ Γ
(0)
1 , the asymptotic formula (1.15) holds uniformly. Then

we use the asymptotics of Ψ
(1)
1,2(ζ),Ψ

(1)
2,2(ζ) to derive that uniformly

e
2izζ
C Ψ

(1)
1,2(ζ)G1(ζ) =

√
2

π

γ1

Cγ2
√
r1
e
− 2r22
r21+r22

τz
eF (ξ)O(ζ−1),(3.29)

e
2izζ
C Ψ

(1)
2,2(ζ)G2(ζ) =

√
2

π

1

C
√
r2
e
− 2r22
r21+r22

τz
eF (ξ)(1 +O(ζ−1)),(3.30)

e
2izζ
C Ψ

(1)
1,2(ζ)G3(ζ) = 2i

√
2

π

γ1

C2γ2
√
r1
ζe
− 2r22
r21+r22

τz
eF (ξ)O(ζ−1),(3.31)

e
2izζ
C Ψ

(1)
2,2(ζ)G4(ζ) = 2i

√
2

π

1

C2
√
r2
ζe
− 2r22
r21+r22

τz
eF (ξ)(1 +O(ζ−1)),(3.32)

where ξ depends on ζ by (3.1). Similarly, (Ψ
(2)
1,2,Ψ

(2)
2,2)T = t2ψ

(1) + (t1t2 + 1)ψ(2), and

by (3.7) and (3.11), we also have that for all ζ ∈ Γ
(0)
3 , the asymptotic formula (1.15)

holds uniformly. Then similar to (3.29)–(3.32), we have uniformly

e
2izζ
C Ψ

(2)
1,2(ζ)G1(ζ) =

√
2

π

γ1

Cγ2
√
r1
e
− 2r22
r21+r22

τz
eF (ξ)O(ζ−1),(3.33)

e
2izζ
C Ψ

(2)
2,2(ζ)G2(ζ) =

√
2

π

1

C
√
r2
e
− 2r22
r21+r22

τz
eF (ξ)(1 +O(ζ−1)),(3.34)

e
2izζ
C Ψ

(2)
1,2(ζ)G3(ζ) = 2i

√
2

π

γ1

C2γ2
√
r1
ζe
− 2r22
r21+r22

τz
eF (ξ)O(ζ−1),(3.35)

e
2izζ
C Ψ

(2)
2,2(ζ)G4(ζ) = 2i

√
2

π

1

C2
√
r2
ζe
− 2r22
r21+r22

τz
eF (ξ)(1 +O(ζ−1)).(3.36)

We compute the second component of the four-dimensional vector ñ(0)(z) in detail.
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The uniform convergence asymptotics (3.30) and (3.34) imply that

ñ
(0)
2 (z) =

√
2

π

1

C
√
r2
e
− 2r22
r21+r22

τz
∫

Γ
(0)
1 ∪Γ

(0)
3

eF (ξ)(1 +O(ζ−1))dζ

=

√
2

π

1

C
√
r2
e
− 2r22
r21+r22

τz
∫

Γ̃
(0)
1 ∪Γ̃

(0)
3

eF (ξ)(1 +O(ξ−1))dξ.

(3.37)

According to the construction in section 3.1.3, the contour Γ̃
(0)
1 ∪Γ̃

(0)
3 has the following

property that ReF (ξ) attains its unique maximum on it at ξ+, ReF (ξ) decreases fast
as ξ →∞ along it, and locally around ξ+ it is the steepest descent contour for ReF (ξ).
Thus a standard application of the saddle point method yields∫

Γ̃
(0)
1 ∪Γ̃

(0)
3

eF (ξ)(1 +O(ξ−1))dξ =

√
2π

−F ′′(ξ+)
eF (ξ+)(1 +O(ξ−1

+ ))

=

√
π

2

(r2
1 + r2

2)1/3

r
2/3
1 r

1/6
2

z−1/4e−θ2(z)(1 +O(z−1/2)).

(3.38)

Hence

ñ
(0)
2 (z) =

√
2

π

1

C
√
r2

√
π

2

(r2
1 + r2

2)1/3

r
2/3
1 r

1/6
2

e
− 2r22
r21+r22

τz
eF (ξ+)

=
1√
2
e
− 2r22
r21+r22

τz
z−1/4e−θ2(z)(1 +O(z−1/2)).(3.39)

Similarly, we have for the fourth component of ñ(0)(z)

ñ
(0)
4 (z) = 2i

√
2

π

1

C2
√
r2
e
− 2r22
r21+r22

τz
∫

Γ
(0)
1 ∪Γ

(0)
3

ζeF (ξ)(1 +O(ζ−1))dζ

= 2i

√
2

π

1

C2
√
r2
e
− 2r22
r21+r22

τz
∫

Γ̃
(0)
1 ∪Γ̃

(0)
3

(
ξ +

ib

3a+ 4

)
eF (ξ)(1 +O(ξ−1))dξ

=
ir2√

2
e
− 2r22
r21+r22

τz
z1/4e−θ2(z)(1 +O(z−1/2)).

(3.40)

For the first and third components of ñ(0)(z), we can do the same computation, but
we only need the estimates as follows:

ñ
(0)
2 (z) = e

− 2r22
r21+r22

τz
z−1/4e−θ2(z)O(z−1/2), ñ

(0)
2 (z) = e

− 2r22
r21+r22

τz
z1/4e−θ2(z)O(z−1/2).

(3.41)

Next we consider the components of n̂(0)(z) and give some detail in the estimate

of the first component. We note that (Ψ
(1)
1,1,Ψ

(1)
2,1)T = ψ(1) + t1ψ

(2). By (3.10) and

(3.11), we have that for all ζ ∈ Γ
(0)
2 , the asymptotic formula (1.14) holds uniformly.

Then we use the asymptotics of Ψ
(1)
1,1(ζ) to derive that uniformly

(3.42) e
2izζ
C Ψ

(1)
1,2(ζ)G1(ζ) =

√
2

π

γ1

Cγ2
√
r1
e
− 2r22
r21+r22

τz
eF̂ (ξ)+f(ξ)O(ζ−1),
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where F̂ (ξ) is defined in (3.18) and

(3.43) f(ξ) =
8b

3a+ 4
ξ2 + i

(
8b2

(3a+ 4)2
− 2σ

)
ξ − 8b3

3(3a+ 4)3
+

2σb

3a+ 4
.

Note that the coefficients of F (ξ) and F̂ (ξ) are given in terms of ã and c̃. If we denote

F(ξ) = F (ξ)
∣∣∣
c̃→c̃/|c̃|

= iãξ3 + i
c̃

|c̃|ξ, F̂(ξ) = F̂ (ξ)
∣∣∣
c̃→c̃/|c̃|

= i

(
ã− 8

3

)
ξ3 + i

c̃

|c̃|ξ,
(3.44)

then

(3.45) F (ξ) = |c̃|3/2F
(

ξ√
|c̃|

)
, F̂ (ξ) = |c̃|3/2F̂

(
ξ√
|c̃|

)
.

By the construction of Γ
(0)
2 and (3.20), we have that for all ζ ∈ Γ

(0)
2 , or equivalently

ξ ∈ Γ̃
(0)
2 , there exists ε > 0 such that

(3.46) Re F̂
(

ξ√
|c̃|

)
< ReF

(
ξ+√
|c̃|

)
− ε.

As z → ∞, we have c̃ = 2C−1z + O(1), and then for all ζ ∈ Γ
(0)
2 , or equivalently

ξ ∈ Γ̃
(0)
2 ,

(3.47) Re F̂ (ξ) < ReF (ξ+)−
(

2ε

C

)3/2

|z|3/2.

Since f(ξ) is independent of z and f(ξ) = O(ξ2) as ξ →∞, we have that as z →∞,

if |ξ| ≤ |z|3/5, then |f(ξ)| = O(z6/5). Thus for ξ ∈ Σ
(0)
2 and |ξ| ≤ |z|3/5, there exists

ε′ > 0 such that for large enough z

(3.48) Re F̂ (ξ) + f(ξ) < ReF (ξ+)− ε′|z|3/2.

On the other hand, if ξ ∈ Σ
(0)
2 and |ξ| > |z|3/5 and z → ∞, then F̂ (ξ) is dominated

by the cubic term, and it is clear that inequality (3.48) still holds.
By the approximation (3.42), using (3.48) and that Re F̂ (ξ)→ −∞ fast as ξ →∞

along Γ̃
(0)
2 , we estimate that

n̂
(0)
1 (z) =

√
2

π

γ1

Cγ2
√
r1
e
− 2r22
r21+r22

τz
∫

Γ̃
(0)
2

eF̂ (ξ)+f(ξ)O(ξ−1)dξ(3.49)

= e
− 2r22
r21+r22

τz
e−θ2(z)o(e−ε

′|z|3/2),

where ε′ > 0 is a constant, which can be taken to be the same as in (3.48). By the
same method, we obtain the general result

(3.50) n̂
(0)
k (z) = e

− 2r22
r21+r22

τz
e−θ2(z)o(e−ε

′|z|3/2), k = 1, 2, 3, 4.
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Plugging (3.39), (3.40), (3.41), and (3.50) into (3.26), we derive that

(3.51) n(0)(z) =
1√
2


e−θ2(z)−τzO(z−3/4)

z−1/4e−θ2(z)−τz(1 +O(z−1/2))
e−θ2(z)−τzO(z−1/4)

z1/4e−θ2(z)−τz(1 +O(z−1/2))


and prove part 1 of Proposition 1.3.

3.2. Sketch of the proof of parts 2–6.

3.2.1. Proof of parts 2 and 3. The proof of parts 2 and 3 is parallel to that of
part 1. We also take the change of variables (3.1) and compute the critical point ξ±
as in (3.13). But now ξ+ ∈ ∆2 and ξ− ∈ ∆5 in the setting of part 2, and ξ+ ∈ ∆0 and
ξ− ∈ ∆3 in the setting of part 3. Also we use the method from planar dynamic systems

to construct L0, L±, and the flow curves, and then Γ̃
(k)
scaled, and finally Γ̃(k) and Γ(k)

(k = 0, 2, 4). The results are shown in Figures 10 and 11. An obvious 2π/3 rotational
symmetry can be observed in Figures 9, 10, and 11, and it is a direct consequence
of the symmetry among the settings in the three parts. At last, the saddle point
analysis is applied, and the critical point ζ+ yields the result e−θ2(ζ)−τzO(z−1/4), and
the critical point ζ− yields the result eθ2(ζ)−τzO(z−1/4). The explicit leading terms
of the O(z−1/4) factors are computed in the way of section 3.1.4.

3.2.2. Proof of parts 4, 5, and 6. Similar to the proof to parts 1, 2, and 3,
the essential part of the asymptotic analysis in the proof of parts 4, 5, and 6 is the

integrals on Γ
(k)
1 ∪Γ(k) (k = 1, 3, 5), where the contours Γ

(k)
j are deformed, in a similar

way to the deformation of contours shown in section 3.1 for part 1. The integrands

on Γ
(k)
1 ∪Γ(k), although various in explicit formulas, all have the asymptotic behavior

(3.52) e−
4
3 iζ

3−iσζ+ 2izζ
C G(ζ)× (factor growing at most linearly at ∞),

which is comparable to (3.3) in Remark 3.1.
Thus we take the change of variables, comparable to (3.1),

(3.53) ζ = ξ − ib

−3a+ 4
= ξ − iτ

C2r2
2

,

define

F (ξ) = −iãξ3 + ic̃ξ, where ã =
4

3
− a =

8r2
2

3(r2
1 + r2

2)
,(3.54)

c̃ = − b2

−3a+ 4
+ c+

2z

C
− σ =

2z − 4s1/r1

C
,

and have

(3.55) log
(
e−

4
3 iζ

3−iσζ+ 2izζ
C G(ζ)

)
= F (ξ) + log γ1 −

2r2
1

r2
1 + r2

2

τz.

Remark 3.4. Here and below notations like ξ, F , ã, and c̃, are different from their
counterparts in section 3 but serve the same purpose in the proof. We use the same
notations to emphasize the identical use, while we trust that they do not lead to
confusion.
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Γ
(1)
2

Γ
(1)
1

Γ
(1)
3

Γ
(3)
2

Γ
(3)
3

Γ
(5)
2

Γ
(5)
1

ζ+

ζ−

Fig. 15. Schematic graphs of Γ(1), Γ(3),
and Γ(5) in the proof of part 4 of Proposition

1.3. Γ
(3)
1 and Γ

(5)
3 are not labeled, because

their major parts overlap.

Γ
(3)
2

Γ
(3)
1 Γ

(3)
3

Γ
(5)
2

Γ
(5)
3

Γ
(1)
2

Γ
(1)
1ζ−

ζ+

Fig. 16. Schematic graphs of Γ(1), Γ(3),
and Γ(5) in the proof of part 5 of Proposition

1.3. Γ
(5)
1 and Γ

(1)
3 are not labeled, because

their major parts overlap.

Then we find the critical points of F (ξ) and denote them

(3.56) ξ± = ±
√
c̃

ã
,

and then let

(3.57) ζ± = ξ± −
ib

−3a+ 4
.

We deform Γ(k) (k = 1, 3, 5) such that Γ
(k)
1 ∪Γ

(k)
3 are through either ζ+ or ζ−, satisfy

Re log
(
e−

4
3 iζ

3−iσζ+ 2izζ
C G(ζ)

)
attains its maximum on Γ

(k)
1 ∪ Γ

(k)
3 at ζ±, k = 1, 3, 5,

(3.58)

and the deformed contours satisfy conditions analogous to (3.7)–(3.11). Since the
construction of the contours is different from the constructions in parts 1, 2, and 3
only in computational detail, we omit it, and we only show Figures 15, 16, and 17 to
indicate the result of the construction.

At last we apply the saddle point analysis and find that the critical point ζ+ yields
the result eθ1(ζ)−τzO(z−1/4), and the critical point ζ− yields the result e−θ1(ζ)−τz

O(z−1/4), and prove the results. The detailed computation is omitted.

4. Proof of Theorem 1.4. The proof of Theorem 1.4 follows from combining
the results of Propositions 1.1, 1.2, and 1.3. We will write the detailed proof of the
formula for M (0). The proofs for M (1),M (2), . . . ,M (5) are nearly identical, and we
leave them to the reader. Throughout the proof, we refer the reader to Figure 18,
which divides the complex plane into 12 sectors, each of size π/6. Within each of
these sectors, the asymptotic dominance scheme of the columns of the matrix A+(z)
is indicated. For example, in the sector 0 < arg z < π/6 the sequence 4, 1, 3, 2 means
that as z →∞,

(4.1) v+
1 (z) = o

(
v+

4 (z)
)
, v+

3 (z) = o
(
v+

1 (z)
)
, v+

2 (z) = o
(
v+

3 (z)
)
,
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Γ
(5)
2

Γ
(5)
1

Γ
(5)
3

Γ
(1)
2

Γ
(1)
3

Γ
(3)
2

Γ
(3)
1

ζ+

ζ−

Fig. 17. Schematic graphs of Γ(1), Γ(3), and Γ(5) in the proof of part 6 of Proposition 1.3. Γ
(1)
1

and Γ
(3)
3 are not labeled, because their major parts overlap.

4, 1, 3, 2

1, 4, 2, 3

1, 2, 4, 32, 1, 3, 4

2, 3, 1, 4

3, 2, 4, 1

3, 4, 2, 1

4, 3, 1, 2

4, 1, 3, 2 3, 2, 4, 1

3, 4, 2, 1

4, 3, 1, 2

Fig. 18. The dominance scheme for A+(z). The complex plane is separated into sectors of angle
π/6. In each sector the relative dominance as z →∞ of the columns of A+(z) is indicated, e.g., the
sequence 4, 1, 3, 2 in the sector 0 < arg z < π/6 means that |v+

4 (z)| � |v+
1 (z)| � |v+

3 (z)| � |v+
2 (z)|

as z →∞. The zigzag line indicates the branch cut for A+(z) (cf. [14, Figure 13]).

where we recall that v+
j are columns of A+. It is easy to check this dominance scheme

in each of the sectors from the definitions (1.26) and the relations (1.29). The rays
which separate the different dominance schemes are called the Stokes rays.

Denote the columns of M (0) by m
(0)
1 ,m

(0)
2 ,m

(0)
3 ,m

(0)
4 so that

(4.2) M (0)(z) =
(
m

(0)
1 (z),m

(0)
2 (z),m

(0)
3 (z),m

(0)
4 (z)

)
.

According to Proposition 1.1, M (0)(z) = (I + O(z−1))A+(z) as z → ∞ throughout
the sector Ω0, so the dominance scheme in Figure 18 applies also to the columns of
M (0)(z) in this sector. Notice that Ω0 = {z ∈ C : −π/12 < arg z < 7π/12} overlaps
with five of the sectors shown in Figure 18: −π/6 < arg z < 0; 0 < arg z < π/6;
π/6 < arg z < π/3; π/3 < arg z < π/2; and π/2 < arg z < 4π/3.

We also refer to Figure 5, which summarizes the results of Proposition 1.3. In
that figure the asymptotic behavior as z → ∞ of the solutions n(j)(z) is matched to
that of the functions v±1 , . . . , v

±
4 .
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In the sector 0 < arg z < π/6, we have that n(0)(z) ∼ v+
2 (z), and m

(0)
2 (z) ∼ v+

2 (z).
According to the dominance scheme in this sector, this indicates that both n(0)(z) and

m
(0)
2 (z) are recessive solutions to (1.18a) in this sector, i.e., they are not dominant

over any other solutions to (1.18a) as z → ∞ in this sector except the trivial one.

Recessive solutions are unique up to a constant factor. Since both n(0)(z) and m
(0)
2 (z)

match the leading order behavior of v+
2 (z) in this sector, we must have

(4.3) m
(0)
2 (z) = n(0)(z).

By considering the recessive solutions in the sectors π/3 < arg z < π/2 and
π/2 < arg z < 4π/3, we similarly obtain

(4.4) m
(0)
3 (z) = n(1)(z), m

(0)
4 (z) = −n(2)(z).

It remains only to find m
(0)
1 (z), which is the only column of M (0)(z) which is not

recessive in one of the sectors which overlap Ω0. We look instead for a sector in which
it is the least dominant possible among those overlapping Ω0. Notice in the sector

−π/12 < arg z < 0, m
(0)
1 (z) dominates m

(0)
2 (z) but is dominated by the other columns

of M (0)(z). According to Figure 5, in this sector we have n(5)(z) ∼ v+
1 (z).

Since n(5)(z) solves (1.18a) it is a linear combination of the rows of M (0)(z),

(4.5) n(5)(z) = c1m
(0)
1 (z) + c2m

(0)
2 (z) + c3m

(0)
3 (z) + c4m

(0)
4 (z),

for some constants c1, c2, c3, c4. In the sector −π/12 < arg z < 0, n(5)(z) ∼ v+
1 (z)

and m
(0)
3 (z) ∼ v+

3 (z), which dominates v+
1 (z) there, so c3 = 0. Similarly, in the

sector 0 < arg z < π/6, n(5)(z) ∼ v+
1 (z), and m

(0)
4 (z) ∼ v+

4 (z), which dominates
v+

1 (z) there, so c4 = 0. Furthermore, in the sector −π/12 < arg z < 0, we have

c1m
(0)
1 (z) + c2m

(0)
2 (z) ∼ c1v

+
1 (z) + c2v

+
2 (z) ∼ c1v

+
1 (z), so c1 = 1 by the comparison

with the asymptotics of n(5)(z). Using (4.3) as well, we obtain

(4.6) n(5)(z) = m
(0)
1 (z) + c2n

(0)(z).

To find the value of c2, we can use the linear relation (1.42a),

(4.7) n(5)(z) = −t3n(0)(z)− (1 + t2t3)n(1)(z) + t2n
(2)(z)− n(3)(z),

and consider the asymptotics of n(5)(z) in the sector π/2 < arg z < 7π/12. The
leading order behavior of each of the functions on the right-hand side of (4.7) is given
in Proposition 1.3 (see also Figure 5). Inserting these asymptotics into (4.7) gives, as
z →∞ with π/2 < arg z < 7π/12,

(4.8) n(5)(z) ∼ −t3v+
2 (z)− (1 + t2t3)v+

3 (z)− t2v+
4 (z) + v+

1 (z).

According to Figure 18, v+
2 (z) is dominant as z →∞ in this sector, so (4.8) becomes

(4.9) n(5)(z) ∼ −t3v+
2 (z),

or equivalently, in the sector π/2 < arg z < 7π/12,

(4.10) n(5)(z) ∼ −t3n(0)(z).
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4, 3, 1, 2

3, 4, 2, 1

3, 2, 4, 14, 1, 3, 2

4, 3, 1, 2

3, 4, 2, 1

3, 2, 4, 1

2, 3, 1, 4

2, 1, 3, 4 1, 2, 4, 3

1, 4, 2, 3

4, 1, 3, 2

Fig. 19. The dominance scheme for A−(z). The complex plane is separated into sectors of angle
π/6. In each sector the relative dominance as z →∞ of the columns of A−(z) is indicated, e.g., the
sequence 4, 3, 1, 2 in the sector 0 < arg z < π/6 means that |v−4 (z)| � |v−3 (z)| � |v−1 (z)| � |v−2 (z)|
as z →∞. The zigzag line indicates the branch cut for A−(z).

Comparing (4.9) and (4.6), and noting that n(0)(z) ∼ v+
2 (z) dominates m

(0)
1 (z) ∼

v+
1 (z) in the sector π/2 < arg z < 7π/12, we find that c2 = −t3. Thus (4.6) gives the

formula for m
(0)
1 (z):

(4.11) m
(0)
1 (z) = n(5)(z) + t3n

(0)(z).

Combining (4.3), (4.4), and (4.11) gives the formula for M (0)(z) in Theorem 1.4.
The formulas for the rest of the solutions M (1)(z), . . . ,M (5)(z) can be obtained

in a similar manner. Always three out of the four columns of M (j) can be identified
as solutions to (1.18a) which are recessive in some part of Ωj . These recessive so-
lutions can be identified with one of the functions n(k)(z) using Proposition 1.3, or
equivalently referencing Figure 5. There is one column which is never recessive in Ωj ,
but it can be determined using the linear relations (1.42) in a manner similar to how
m(0) was determined above. In Figure 19 we include the dominance scheme for the
columns of A−, which should be consulted when considering M (3)(z), M (4)(z), and
M (5)(z).

5. Proof of contour integral formulas for kernels. In this section, we as-
sume q(σ) is the Hastings–McLeod solution to the PII equation (1.1). Then the
solutions Ψ(0)(ζ;σ), . . . ,Ψ(0)(ζ;σ) to the Lax pair (1.5) that are defined in section 1.1
are also assumed to be associated with the Hastings–McLeod solution q(σ). These
solutions to (1.5) are related by the jump conditions (1.12), which are in turn deter-
mined by the parameters (t1, t2, t3). In this section we assume (t1, t2, t3) = (1, 0,−1),
associated with the Hastings–McLeod solution. Recall that for j = 0, . . . , 5, n(j)(z) =
n(j)(z; r1, r2, s1, s2, τ) defined in (1.39) are vector-valued functions with the parame-
ters r1, r2, s1, s2, τ . The vectors n(j) also depend on a solution to the PII equation
(1.1) by definition, and we assume it to be the Hastings–McLeod solution q(σ) in this
section.

By the symmetry of (1.5), and the identity Ψ(0)(ζ;σ) = Ψ(3)(ζ;σ) that holds
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because t2 = 0 for the Hastings–McLeod solution (see Figure 2), we have that

(5.1) Ψ(0)(ζ;σ) =

(
0 1
1 0

)
Ψ(0)(ζ;σ)

(
0 1
1 0

)
.

It implies that, with functions f(ζ;σ), g(ζ;σ),Φ1(ζ;σ),Φ2(ζ;σ) defined in (1.72) and
(1.73),

Φ1(ζ;σ) = Φ2(−ζ;σ) for all ζ ∈ C,(5.2)

f(ζ;σ) = − g(−ζ;σ) for all ζ ∈ C \ R.(5.3)

At last, we note that the differential equation (1.5b) implies that

∂f(ζ;σ)

∂σ
= − iζf(ζ;σ) + q(σ)g(ζ;σ),

∂g(ζ;σ)

∂σ
= q(σ)f(ζ;σ) + iζg(ζ;σ),

∂Φ1(ζ;σ)

∂σ
= − iζΦ1(ζ;σ) + q(σ)Φ2(ζ;σ),

∂Φ2(ζ;σ)

∂σ
= q(σ)Φ1(ζ;σ) + iζΦ2(ζ;σ).

(5.4)

5.1. Proof of Theorem 1.7. The Duits–Guedens critical kernel for the two-
matrix model was derived in [14], and our proof of Theorem 1.7 is based on the
presentation in [26]. The critical kernel is described in terms of the tacnode RHP
with parameters [26, Formula (2.41)]

(5.5) r1 = r2 = 1, s1 = s2 = s, τ ∈ R.

In [26, Formulas (4.5) and (4.9)], two vector-valued functions m̂(z) and m̃(z), depend-
ing on parameters s and τ , are introduced as the linear combinations of the columns
of the solution to the tacnode RHP. By the relation (1.70) between the tacnode RHP
and RHP 1.5, we have in our notation

m̃(z; s, τ) = n(1)(z; 1, 1, s, s, τ) + n(2)(z; 1, 1, s, s, τ),

m̂(z; s, τ) = n(0)(z; 1, 1, s, s, τ)− n(3)(z; 1, 1, s, s, τ).
(5.6)

The critical kernel Kcr
2 (x, y; s, τ) has the expression [26, Theorem 2.9 and Formula

(4.13)]

Kcr
2 (x, y; s, τ) =

1

2πi(x− y)
[m̃1(ix; s,−τ)m̂4(iy; s, τ) + m̃2(ix; s,−τ)m̂3(iy; s, τ)

(5.7)

− m̃3(ix; s,−τ)m̂2(iy; s, τ)− m̃4(ix; s,−τ)m̂1(iy; s, τ)] ,

and for the proof of Theorem 1.7 we also need [26, equation (4.13)]

∂

∂s
Kcr

2 (x, y; s, τ) =
−1

πi
(m̃1(ix; s,−τ)m̂1(iy; s, τ) + m̃2(ix; s,−τ)m̂2(iy; s, τ)) ds.

(5.8)

Now we use the integral formulas of n(3) and n(0) to express the functions m̂1

and m̂2 in terms of the entries of Ψ(0)(ζ;σ) which are defined in section 1.1. First we
consider n(0). By the definition given by (1.36)–(1.41), we have that each component
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of n(0)(z) is expressed by a sum of integrals on Γ
(0)
1 , Γ

(0)
2 , and Γ

(0)
3 . Since n(0)(z)

is associated to the Hastings–McLeod solution, and then (t1, t2, t3) = (1, 0,−1), by

(1.40) for any component of n(0)(z), the integrand on Γ
(0)
2 vanishes, and the integrands

on Γ
(0)
1 and Γ

(0)
3 are identical. Similarly, we have that each component of n(3)(z) is

expressed by a sum of integrals on Γ
(3)
1 , Γ

(3)
2 , and Γ

(3)
3 such that the integrand on Γ

(3)
2

vanishes and the integrands on Γ
(3)
1 and Γ

(3)
3 are identical. Furthermore, with Σtac

as in Figure 7, we can deform Γ
(0)
1 ∪ Γ

(0)
3 into the upper half of Σtac and Γ

(3)
1 ∪ Γ

(3)
3

into the lower half of Σtac, both with reversed orientation. Thus we can write, after
expressing the integrands in (1.36) by (1.40), (1.41), and (1.12),

m̂1(z; s, τ) =

√
2

π

e−
τ3

3 +2sτ

21/3

∫
Σtac

e24/3τζ2+22/3izζf(ζ; 22/3(2s− τ2)) dζ,(5.9)

m̂2(z; s, τ) =

√
2

π

e−
τ3

3 +2sτ

21/3

∫
Σtac

e24/3τζ2+22/3izζg(ζ; 22/3(2s− τ2)) dζ,(5.10)

where the functions f(ζ; 22/3(2s − τ2)) and g(ζ; 22/3(2s − τ2)) the contour Σtac are
defined in (1.72) and in Figure 7, respectively. By the same argument, we have that
m̂3(z; s, τ) and m̂4(z; s, τ) have similar but slightly more complicated formulas as
integrals on Σtac. Here we note that the contour Σtac can be replaced by Σ2MM where
the definition for f and g is still given by (1.72).

Next we use the integral formulas of n(1) and n(2) to express the functions m̃1

and m̃2. Similar to the argument for m̂1 and m̂2, because n(1) and n(2) are associated

to the Hastings–McLeod solution, the integrands on Γ
(1)
2 and Γ

(1)
3 for the integral

formula of the jth component of n(1) are identical to the integrands on Γ
(2)
3 and Γ

(2)
1 ,

respectively, for the integral formula of the jth component of n(2), and the integrand

on Γ
(1)
1 for the integral formula of the jth component of n(1) is the negative of the

integrand on Γ
(2)
2 for the integral formula of the jth component of n(2). Using the

contours Γ
(k)
j shown in Figure 4, we find that the integrals on Γ

(1)
1 and Γ

(1)
2 cancel

the integrals on Γ
(2)
2 and Γ

(2)
3 , respectively, when we compute n(1) + n(2). Hence by

(1.40), (1.41), and (1.12), we derive analogous to (5.9) and (5.10),

m̃1(z; s,−τ) = −
√

2

π

e
τ3

3 −2sτ

21/3

∫ i∞

−i∞
e−24/3τζ2+22/3izζΦ1(ζ; 22/3(2s− τ2)) dζ,(5.11)

m̃2(z; s,−τ) = −
√

2

π

e
τ3

3 −2sτ

21/3

∫ i∞

−i∞
e−24/3τζ2+22/3izζΦ2(ζ; 22/3(2s− τ2)) dζ,(5.12)

where Φ1(ζ; 22/3(2s − τ2)) and Φ2(ζ; 22/3(2s − τ2)) are defined in (1.73). Similarly,
m̃3(z; s,−τ) and m̃4(z; s,−τ) have similar but slightly more complicated formulas as
integrals on the imaginary axis.

Plugging (5.9), (5.10), (5.11), and (5.12) into (5.8), we find

(5.13)
∂

∂s
Kcr

2 (x, y; s, τ) =
−21/3

iπ2

∫ i∞

−i∞
du

∫
Σtac

dv e−24/3τ(u2−v2)−22/3(xu+yv)

×
(

Φ1(u; 22/3(2s−τ2))f(v; 22/3(2s−τ2))+Φ2(u; 22/3(2s−τ2))g(v; 22/3(2s−τ2))

)
.
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Next we make the change of variable u 7→ (−u). We note that the contour for u
changes direction under this transform. Hence by (5.2), (5.13) becomes

(5.14)
∂

∂s
Kcr

2 (x, y; s, τ) =
21/3

iπ2

∫ i∞

−i∞
du

∫
Σtac

dv e−24/3τ(u2−v2)+22/3(xu−yv)

×
(

Φ2(u; 22/3(2s−τ2))f(v; 22/3(2s−τ2))+Φ1(u; 22/3(2s−τ2))g(v; 22/3(2s−τ2))

)
.

The right-hand side of the above equation can also be expressed as a derivative
with respect to s. Indeed, using (5.4) we find

(5.15)
∂

∂σ

(
Φ2(u;σ)f(v;σ)− Φ1(u;σ)g(v;σ)

i(u− v)

)
= Φ2(u;σ)f(v;σ) + Φ1(u;σ)g(v;σ).

We also note that in (5.14), if we deform the integral contour Σtac into Σ2MM, with
the definition of f(v;σ) and g(v;σ) given in (1.72) when v ∈ R, the integral on the
right-hand side does not change. Therefore in (5.14) we can replace Σtac with Σ2MM.
Let us denote

(5.16) K̂cr
2 (x, y; s, τ) =

1

21/3π

∫ i∞

−i∞
du

∫
Σ2MM

dv e−24/3τ(u2−v2)+22/3(xu−yv)

×
(

Φ1(u;σ)g(v;σ)− Φ2(u;σ)f(v;σ)

2π(u− v)

)
,

where σ = 22/3(2s−τ2) as in (1.75). Notice that without the deformation of Σtac into
Σ2MM, the integral in (5.16) would be singular when the contours cross and would
have to be be regarded as a principal value integral. The deformation removes the
singularity. Then (5.14) and (5.15) imply that

(5.17)
d

ds
Kcr

2 (x, y; s, τ) =
d

ds
K̂cr

2 (x, y; s, τ).

If we can show

lim
σ→−∞

Kcr
2 (x, y; s, τ) = 0,(5.18)

lim
σ→−∞

K̂cr
2 (x, y; s, τ) = 0,(5.19)

then (1.74) follows from (5.17). Below we prove (5.18) and (5.19).
We need the asymptotic behavior of Ψ(0)(ζ;σ), . . . ,Ψ(5)(ζ;σ), the fundamental

solutions to (1.5a), as σ → −∞, when q(σ) is the Hastings–McLeod solution to (1.1),
or equivalently, when (t1, t2, t3) = (1, 0,−1) in (1.11). The result was obtained in [8,
section 6], and we summarize it below.

Suppose σ < 0. We define the 2 × 2 matrix-valued function m(23)(z), where we
follow the notational convention in [8] and suppress the dependence on σ, by

m(23)(z)e−i
√

2
3 (−σ)3/2(z2−1)3/2σ3(5.20)

=


Ψ(0)

(√
−σ
2 z;σ

)
= Ψ(3)

(√
−σ
2 z;σ

)
if z ∈ C1 ∪ C3,

Ψ(1)
(√

−σ
2 z;σ

)
= Ψ(2)

(√
−σ
2 z;σ

)
if z ∈ C2,

Ψ(4)
(√

−σ
2 z;σ

)
= Ψ(5)

(√
−σ
2 z;σ

)
if z ∈ C4,
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1 0
e2iλg 1

1 −e−2iλg

0 1

0 −1
1 e−2iλg+

1 0
−e2iλg 1

1 −e−2iλg

0 1

1−1
C1

C2

C3

C4

Fig. 20. The jump condition for m(23)(z), where λ = 21/23−1(−σ)3/2 and g = g(z) = (z2 − 1)3/2.

where C1, C2, C3, C4 are regions of the complex plane as shown in Figure 20, and
the power function (z2 − 1)3/2 has a cut on [−1, 1] taking the branch such that
(z2 − 1)3/2 ∼ z3 as z → ∞. Then m(23)(z) = I +O(z−1) as z → ∞, and it satisfies
the jump condition as shown in Figure 20; cf. [8, Figure 6.18].

Then as observed in [8], the RHP for m(23)(z) converges formally to an RHP on
the interval [−1, 1] with jump matrix

(
0 −1
1 0

)
, and this RHP has a simple solution:

P (∞)(z) =
1

2

(
a(z) + a(z)−1 i(a(z)− a(z)−1)
i(a(z)−1 − a(z)) a(z) + a(z)−1

)
, where a(z) =

(z − 1)1/4

(z + 1)1/4
.

(5.21)

The function a(z) has a cut on [−1, 1] taking the branch of the fractional power so that
a(z) ∼ 1 as z →∞. By constructing local parametrices at 1 and −1, the convergence
can be made rigorous, as discussed in [8, section 3]. By standard argument, we derive
the following result.

Lemma 5.1. Fix ε > 0. As σ → −∞, ‖m(23)(z) − P (∞)(z)‖ → 0 uniformly for
all {z ∈ C | |z − 1| > ε and |z + 1| > ε}. Here if z is on the jump curve, then the

uniform convergence holds for both m
(23)
+ (z) and m

(23)
− (z).

By Lemma 5.1 and the asymptotics of Ψ(k)(ζ;σ) implied by it, we use the explicit
formulas (5.11) and (5.12) for m̃1(z; s,−τ) and m̃2(z; s,−τ) and derive that as s →
−∞, m̃1(z; s,−τ) and m̃2(z; s,−τ) vanishes exponentially. In a similar way, we have
that m̃3(z; s,−τ) and m̃4(z; s,−τ) also vanishes exponentially.

To estimate m̂j(z; s, τ), as s → −∞, it is better to replace the contour Σtac by
Σσ2MM that depends on σ = 22/3(2s − τ2) < 0, which is simply the contour Σ2MM

scaled by factor
√−σ/2:

(5.22) Σσ2MM = [
√
−σ/2, eiπ/6 · ∞) ∪ [

√
−σ/2, e−iπ/6 · ∞)

∪ [−
√
−σ/2, e5iπ/6 · ∞) ∪ [−

√
−σ/2, e−5iπ/6 · ∞) ∪ [−

√
−σ/2,

√
−σ/2].

Then by direct computation based on (5.9) and (5.10), we can find that m̂1(z; s, τ) and
m̂2(z; s, τ) vanish exponentially as s → −∞. Similarly, we can show that m̂1(z; s, τ)
and m̂2(z; s, τ) also do. Hence we prove (5.18) by plugging in the exponential vanishing
property stated above to (5.7).

Similarly, if we replace Σ2MM by Σσ2MM when we evaluate the double contour
integral in (5.16), we find it vanishes exponentially as s → −∞, and (5.19) holds.
The details are left to the reader. Thus Theorem 1.7 is proved.

5.2. Proof of Theorem 1.8. The multi-time correlation kernel for the tacnode
process was first derived in the form of Airy resolvents, and it was presented in the
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most general form in [15], where the notation Lλ,Σtac (τ1, x; τ2, y) is defined. We use this
notation in Theorem 1.8. In [10], it was shown that the kernel can also be represented
in the form of the tacnode RHP. In this section we prove Theorem 1.8 based on the
formula of in [10].

First we recall that in [10, section 2.1.1, RHP 2.1] an RHP is defined, and it is
essentially the same as the tacnode RHP in [26] that is discussed in section 1.4.3.

In [10, section 2.1.1], a matrix M̂(z) is defined with parameters r1, r2, s1, s2, τ , and
without much difficulty we can check that

M̂(z; r1, r2, s1, s2, τ) = e
r21−r

2
2

2 τz M (1)

(
z; r1, r2, s1, s2,

r2
1 + r2

2

2
τ

)∣∣∣∣
(t1,t2,t3)=(1,0,−1)

,

(5.23)

where M (1)(z; r1, r2, s1, s2, τ) is the solution to RHP 1.5 in sector ∆1, associated to
the Hastings–McLeod solution. Then the vector function p(z) defined in [10, Formula

(2.9)], which is the sum of the first and second columns of M̂(z), becomes

(5.24) p(z) = (pj(z; r1, r2, s1, s2, τ))
T
j=1,...,4

= e
r21−r

2
2

2 τz

(
n(0)

(
z; r1, r2, s1, s2,

r2
1 + r2

2

2
τ

)
− n(3)

(
z; r1, r2, s1, s2,

r2
1 + r2

2

2
τ

))
.

Then the functions p̂j(z; s̃, τ) (j = 1, 2), which are denoted in [10, Formula (2.26)]
and are related to the first two components of p(z) by [10, Formula 4.37], become

(5.25) p̂1(z; s, τ) =
λ−1/24

√
2π

exp

(
−λτ

(
λ−1/2C−2s+

2

3
τ2

))
× p1

(
z;λ1/4, 1,

λ3/4

2

(
λ−1/2C−2s+ τ2

)
,

1

2

(
λ−1/2C−2s+ τ2

)
, τ

)
,

(5.26) p̂2(z; s, τ) =
1√
2π

exp

(
−τ
(
λ−1/2C−2s+

2

3
τ2

))
× p2

(
z;λ1/4, 1,

λ3/4

2

(
λ−1/2C−2s+ τ2

)
,

1

2

(
λ−1/2C−2s+ τ2

)
, τ

)
,

where p1, p2 are components of p, C is defined in (1.77) and where λ > 0 is the

parameter in the correlation kernel formula Lλ,Σtac . Then by [10, Theorem 2.9] (noting

that our notation Lλ,Σtac means the same as Lλ,σtac in [10] if σ and Σ are related by [10,
Formula (2.15)], or equivalently (1.77)),

Lλ,Σtac (τ1, x; τ2, y) = −1τ1<τ2
1√

4π(τ2 − τ1)
exp

(
(y − x)2

4(τ2 − τ1)

)
+ L̃λ,Σtac (τ1, x; τ2, y),

(5.27)

where, with σ = λ1/2C2Σ as specified in (1.77),

L̃λ,Σtac (τ1, x; τ2, y)(5.28)

=
1

C2

∫ ∞
σ

(
λ1/3p̂1(x; s, τ1)p̂1(y; s,−τ2) + λ−1/2p̂2(x; s, τ1)p̂2(y; s,−τ2)

)
ds.
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The vector-valued function p(z) is in the same form as m̂(z) defined in (5.6) with
more general parameters. Thus similar to (5.9) and (5.10), we can write p1(z) and
p2(z) as integrals on contour Σtac, and then have by (5.25) and (5.26)

p̂1(z; s, τ) =
1

π(1 +
√
λ)1/3

(5.29)

×
∫

Σtac

f(ζ; s) exp

[
−4i

3

1−
√
λ

1 +
√
λ
ζ3 +

4τ

C2
ζ2 +

(
2iz

C
+ i

1−
√
λ

1 +
√
λ
s

)
ζ

]
dζ,

p̂2(z; s, τ) =
1

π(1 + 1/
√
λ)1/3

(5.30)

×
∫

Σtac

g(ζ; s) exp

[
−4i

3

1−
√
λ

1 +
√
λ
ζ3 +

4τ

C2
ζ2 +

(
2iz

C
+ i

1−
√
λ

1 +
√
λ
s

)
ζ

]
dζ,

where f and g are defined in (1.72).
In this section, we need a technical lemma.

Lemma 5.2. Let ε > 0 and N ∈ R. Then there exists C(ε,N) > 0 such that for
all σ > N and k = 1, 2

Ψ
(0)
k,2(ζ;σ) = ei(

4
3 ζ

3+σζ)O(1) for all ζ ∈ C such that Im (ζ) > ε,(5.31)

Ψ
(0)
k,1(ζ;σ) = e−i(

4
3 ζ

3+σζ)O(1) for all ζ ∈ C such that Im (ζ) < −ε.(5.32)

Proof. We prove (5.31), and the proof of (5.32) is analogous. The Airy resolvent
formulas in [3] yield (see [26, Formulas (2.38) and (2.39)])

(5.33) Ψ
(0)
1,2(ζ;σ) = ei(

4
3 ζ

3+σζ)f̃(ζ;σ), Ψ
(0)
1,2(ζ;σ) = ei(

4
3 ζ

3+σζ)g̃(ζ;σ),

where

(5.34) f̃(ζ;σ) = −
∫ ∞
σ

e2i(x−σ)ζQσ(x)dx, g̃(ζ;σ) = 1 +

∫ ∞
σ

e2i(x−σ)ζRσ(x, σ)dx,

and the definitions of Qσ(x) and Rσ(x, σ) are given in [26, Formulas (2.18) and (2.19)].
For all σ > N , Qσ(x) and Rσ(x, σ) decays at the speed comparable to the Airy
function, so that f̃(ζ;σ) and g̃(ζ;σ) are bounded and (5.31) is proved.

Then we can write the kernel L̃λ,Σtac (τ1, x; τ2, y) as

(5.35)

L̃λ,Σtac (τ1, x; τ2, y) =
1

πC

∫
Σtac

du

∫
Σtac

dv e
− 4i

3
1−
√
λ

1+
√
λ

(u3+v3)+
4(τ1u

2−τ2v
2)

C2 +
2i(xu+yv)

C

× 1

πC3

∫ ∞
σ

exp

(
i
1−
√
λ

1 +
√
λ
s(u+ v)

)[
f(u; s)f(v; s) +

1√
λ
g(u; s)g(v; s)

]
ds,
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where the change of order of integrations is justified by Lemma 5.2. Next we make
the change of variable v 7→ (−v). Note now that the contour Σtac is invariant under
this transform. Hence by (5.2), (5.35) becomes

(5.36)

L̃λ,Σtac (τ1, x; τ2, y) =
1

πC

∫
Σtac

du

∫
Σtac

dv e
− 4i

3
1−
√
λ

1+
√
λ

(u3−v3)+
4(τ1u

2−τ2v
2)

C2 +
2i(xu−yv)

C

× 1

πC3

∫ ∞
σ

exp

(
i
1−
√
λ

1 +
√
λ
s(u− v)

)[
f(u; s)g(v; s) +

1√
λ
g(u; s)f(v; s)

]
ds.

By (5.4), we have

(5.37)
∂

∂s

[
i

2
(1 + λ−1/2)e

is(1−
√
λ)

1+
√
λ

(u−v) f(u; s)g(v; s)− f(v; s)g(u; s)

u− v

]
= exp

(
i
(1−

√
λ)

1 +
√
λ
s(u− v)

)[
f(u; s)g(v; s) +

f(u; s)g(v; s)√
λ

]
.

Using this identity, we can write (5.36) as

(5.38)

L̃λ,Σtac (τ1, x; τ2, y) =
1

πC

∫
Σtac

du

∫
Σtac

dv e
− 4i

3 ( 1−
√
λ

1+
√
λ

)(u3−v3)+ 4
C2 (τ1u

2−τ2v2)+ 2i
C (xu−yv)

× i(1 + λ−1/2)

2πC3

∫ ∞
σ

∂

∂s

e is(1−√λ)1+
√
λ

(u−v)
(f(u; s)g(v; s)− f(v; s)g(u; s))

u− v

 ds.
Performing the integration in s and using C3 = 1 + λ−1/2, we derive

L̃λ,Σtac (τ1, x; τ2, y)

(5.39)

=
1

Cπ

∫
Σtac

du

∫
Σtac

dv e
− 4i

3 ( 1−
√
λ

1+
√
λ

)(u3−v3)+ 4
C2 (τ1u

2−τ2v2)+ 2i
C (xu−yv)+

iσ(1−
√
λ)

1+
√
λ

(u−v)

×
[

(f(u;σ)g(v;σ)− f(v;σ)g(u;σ))

2πi(u− v)

]
,

given that

(5.40) f(u;σ)g(v;σ)− f(v;σ)g(u;σ)→ 0, as σ → +∞, for all u, v ∈ Σtac.

We thus have that (5.40) is implied by Lemma 5.2. Thus we finish the proof of
Theorem 1.8.

Appendix A. Formulas of V1, V2, and W in (1.18b). In order to present the
coefficient matrices of (1.18b), it is convenient to introduce several notations which
were used in [10]. Below we define several parameters which depend on r1,2, s1,2,
and τ . These are the same notations given in [10, Theorem 6.2] up to the rescaling
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τ 7→ 2τ/(r2
1 + r2

2). The quantities C and γ are the ones which were defined in (1.21);
q and q′ are the PII solution and its derivative; u is the PII Hamiltonian defined in
(1.23); and all Painlevé functions are evaluated at the point σ which is defined in
(1.22). Other notations in this appendix are independent of the rest of the paper.
In particular the parameters b and c given below are not the same ones as in (1.33).
We use these symbols to match the notation of [10] and we trust it will not cause
confusion. Define the parameters

b =
1

Cr2
√
r1r2γ

[(
s2

2 +
2r2

2τ

r2
1 + r2

2

)
q − uq + q′

C

]
,(A.1)

b̃ =
γ

Cr1
√
r1r2

[(
s2

1 +
2r2

1τ

r2
1 + r2

2

)
q − uq + q′

C

]
,

β =
γ

Cr2
√
r1r2

[(
s2

2 −
2r2

2τ

r2
1 + r2

2

)
q − uq + q′

C

]
,(A.2)

β̃ =
1

Cr1
√
r1r2γ

[(
s2

1 −
2r2

1τ

r2
1 + r2

2

)
q − uq + q′

C

]
,

as well as

(A.3) d =
q

C
√
r1r2γ

, d̃ =
qγ

C
√
r1r2

, c =
s2

1

r1
− u

r1C
, c̃ =

s2
2

r2
− u

r2C
.

Also introduce the notation

f =
4r2C

−1γ−1

(r2
1 + r2

2)r1
√
r1r2

[
q′τ

C
+

(r2
1 − r2

2)τ2q

r2
1 + r2

2

− (s1r1 − s2r2)q

2

]
(A.4)

+ b

(
−c− r2

r1
c̃+

(r2
1 + r2

2)τ

r1

)
− d2d̃+

r2

r1
c̃2d− 2s2d

r1
,

f̃ =
4r1C

−1

(r2
1 + r2

2)r2
√
r1r2

[
q′τ

C
− (r2

1 − r2
2)τ2q

r2
1 + r2

2

+
(s1r1 − s2r2)q

2

]
(A.5)

+ b̃

(
−r1

r2
c− c̃+

(r2
1 + r2

2)τ

r2

)
− d̃2d+

r1

r2
c2d̃− 2s1d̃

r2
.

Then the matrices V1, V2, and W in (1.18b) are given below. Note that besides the
scaling of τ , the solution to the Lax system in [10] differs from (the Hastings–McLeod
case of) the solution to Lax system (1.18) by a scalar factor exp(−τz(r2

1−r2
2)/(r2

1+r2
2)),

so our Lax system is slightly different from [10, Formulas (6.21)–(6.24)] in U and W .

(A.6)

V1 = 2


c 0 −i 0

d̃ 0 0 0

i
(
−c2 + r2

r1
dd̃+ s1

r1
− z
)

ib −c −d
iβ 0 0 0

 ,

V2 = 2


0 d 0 0
0 c̃ 0 i

0 −iβ̃ 0 0

−ib̃ i
(
−c̃2 + r1

r2
dd̃− s2

r2
− z
)
−d̃ −c̃

 ,

W = diag(z,−z, z,−z) + 2


0 −b 0 −id
−b 0 id̃ 0

0 −if 0 −β̃
if̃ 0 −β 0

 .
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