
1 Probability space and random variables

As graduate level, we inevitably need to study probability based on measure theory. It
obscures some intuitions in probability, but it also supplements our intuition, and in the
end hopefully it will be our new intuition.

Since measure theory by its own is a part of analysis, but not probability, we do not
give proofs to measure theoretic results, and use the concepts without explanation if they
are contained in standard textbooks, for example, the Real and Complex Analysis by
W. Rudin. All the proofs of not so standard measure theoretic theorems are in our text
book Probability: Theory and Examples by R. Durrett, unless otherwise stated.

First we review the definition of a probability space, which appears in undergraduate
textbooks (like the Probability and Random Processes by G. Grimmett and D. Stirzaker),
without rigorous reference to measure space.

First, the set of all possible outcomes of an experiment (not a mathematical term,
but this is where the aximatic probability theory starts) is denoted by Ω. It can be very
small like {head, tail}, so that no advanced measure theory is needed, while it can also be
quite big like {all Brownian motion paths}, so that you would be lost without the guide
of measure theory.

Some subsets of Ω are called events. Note that not all subsets are events, especially
if Ω is quite large. There are practical reasons for that (it is impossible to single out the
outcome of an experiment exactly to be 1/2 = 0.50000000 . . . centimetre). But for us, it
is due to the requirement of mathematical consistence, as we will see later.

We call the set of events F , and require that it satisfies

• ∅ ∈ F and Ω ∈ F .

• If A ∈ F , then the complement Ac ∈ F .

• If A1, A2, . . . , An, . . . ∈ F , then
⋃∞
n=1 An ∈ F .

In measure theoretic language, it is equivalent to say that F is a σ-algebra on Ω.
To define a probability space, we need to introduce the concept of probability for each

event. Let P be a function from F to [0, 1], that satisfies

• P (∅) = 0 and P (Ω) = 1.

• P (Ac) = 1− P (A),

• IfA1, A2, . . . , An, . . . ∈ F are disjoint to one another, then P (
⋃∞
n=1Ai) =

∑∞
n=1 P (An).

The last condition is not very intuitive, and it is called the countably additive property
of P .

Suppose Ω,F , P are defined as above, we call the triple (Ω,F , P ) a probability space.
In measure theoretic language, it is nothing but a positive measure space with total
measure 1. (A measure space is a triple (X,Σ, µ), where X is a set, Σ is a σ-algebra of
the subsets of X, and µ is a function from Σ to R ∪ {±∞}, such that µ(∅) = 0 and for
pairwise disjoint sets E1, . . . , En, . . . ∈ Σ, µ (

⋃∞
n=1En) =

∑∞
n=1 µ(En).)

We briefly discuss the idea that a σ-algebra S on X is generated by a collection of
subsets Sα of Ω. S is defined as the smallest σ-algebra that contains all Sα. This definition

1



is not constructive, and the construction of S is not easy unless the collection of Sα is
finite. If we start from the collection of open sets (assuming that Ω has a topological
structure so that we can talk about the open sets there), then the generated σ-algebra is
called the Borel σ-algebra, consisting of the Borel sets. We mostly encounter the Borel
sets on the real line, where the open sets are unions of open intervals.

Next we define random variables on a probability space Ω = (Ω,F , P ).

Definition 1. A random variable X on (Ω,F , P ) is a mapping Ω→ R such that for each
Borel set B on R, X−1(B) ∈ F .

It is not hard to see (exercise) that B is also generated by the sets (−∞, x] where
x ∈ R. So a more practical definition of a random variable is

Definition 2. A random variable X on (Ω,F , P ) is a mapping Ω→ R such that for each
semi-closed set (−∞, x], X−1(−∞, x] ∈ F . Then the function F (x) = P (X−1(−∞, x]) is
a function from R to [0, 1], and it is called the distribution function of X.

It is clear that for any random variable X, the distribution function F is non-
decreasing, because for a < b,

F (b)− F (a) = P (X−1(−∞, b])− P (X−1(−∞, a]) = P (X−1(a, b]) ≥ 0.

Another simple property satisfied by a distribution function is F (∞) = limx→∞ F (x) = 1
and F (−∞) = limx→−∞ F (x) = 0. F may not be a continuous function, but we can show
that it is right-continuous, that is, limx↓a F (x) = F (a). This is because of the countably
additive property of the measure. One consequence of the countable additivity is that of
A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · and

⋂∞
n=1An = ∅, then limn→∞ P (An) = 0. (Exercise.) So

if x1, x2, . . . is a decreasing sequence whose limit is a, then the sequence X−1(a, xn] are
nested sets whose common intersection is ∅, so

lim
n→∞

F (xn)− F (a) = lim
n→∞

P (X−1(a, xn]) = 0.

Thus we prove the right-continuity of F (x). Actually the properties above characterize
distribution functions.

Theorem 1. If a function F : R → [0, 1] is non-decreasing, right-continuous, and
F (∞) = 1, F (−∞) = 0, then it is a distribution function for a random variable.

To prove this theorem, we need a technical result in measure theory, and we need to
introduce some concepts.

We say a collection of subsets A of Ω an algebra if A ∈ A ⇒ Ac ∈ A and A,B ∈
A ⇒ A ∪ B ∈ A. It is obvious that a σ-algebra is an algebra, but not vice versa. Then
let µ : A → [0,∞) be a mapping. We say µ is a measure on A if it satisfies

1. (finitely additive) µ(∅) = 0, and for A1, . . . , An ∈ A, µ(A1 ∪ · · · ∪ An) = µ(A1) +
· · ·+ µ(An).

2. (countably additive) For countably disjoint A1, A2, . . . ∈ A, if
⋃∞
n=1An ∈ A, then

µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An).
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We say a measure µ on an algebra A is σ-finite if there is a sequence of sets An ∈ A such
that µ(An) <∞ for all n and

⋃∞
n=1 = Ω, the whole set of the space. Then we have

Theorem 2 (Carathéodory extension). Let µ be a σ-finite measure on an algebra A.
Then µ has a unique extension to the σ-algebra generated by A.

Proof of Theorem 1. First we construct a measure space (Ω,F , P ) with Ω = R, F = B =
{Borel sets on R}, and P satisfies that for all a < b, P (a, b] = F (b) − F (a). Then we
define a random variable X on this probability space such that X(x) = x. It is clear that
X is a well-defined random variable, and its distribution function is F (x).

To justify our construction of the measure space, we need the Carathéodory extension
theorem. It is clear that the collection A of subsets of R in the form of (a1, b1]∪ (a2, b2]∪
· · · ∪ (ak, bk] where a1 < b1 < a2 < b2 < · · · < ak < bk is an algebra, and the function P
defined by

P
(

(a1, b1]∪ (a2, b2]∪ · · ·∪ (ak, bk]
)

= F (bk)−F (ak) + . . .+F (b2)−F (a2) +F (b1)−F (a1)

satisfies the finitely additive condition for a measure on A. Since as an exercise we know
that A generates the σ-algebra B of Borel sets on R, and it is also an easy exercise to show
that P satisfy the σ-finite condition, we can apply the Carathéodory extension theorem
to show that P is a well-defined measure on B as long as we show that P is countably
additive, and then it is clear that P is a probability measure.

Suppose A1, A2, . . . ∈ A are disjoint to each other and
⋃∞
n=1An ∈ A. It is not hard

to see that since P is a non-negative function,

∞∑
n=1

P (An) ≤ P

(
∞⋃
n=1

An

)
.

Without loss of generality, we assume that
⋃∞
n=1An = (a, b], and it suffices to show that

for any ε > 0, there is an N such that

N∑
n=1

P (An) > F (b)− F (a)− ε.

By the right-continuous property of F , there is a′ > a such that F (a′) − F (a) < ε/2.

Furthermore, for each An = (a
(n)
1 , b

(n)
1 ] ∪ · · · ∪ (a

(n)
kn
, b

(n)
kn

], we can choose an open set

B′n = (a
(n)
1 , b

(n),′

1 ) ∪ · · · ∪ (a
(n)
kn
, b

(n),′

kn
) and Bn = (a

(n)
1 , b

(n),′

1 ] ∪ · · · ∪ (a
(n)
kn
, b

(n),′

kn
] ∈ A, such

that b
(n),′

i > b
(n)
i for all i = 1, . . . , kn and

P (Bn) = F (b
(n),′

kn
)− F (a

(n)
kn

) + . . .+ F (b
(n),′

1 )− F (a
(n)
1 )

< F (b
(n)
kn

)− F (a
(n)
kn

) + . . .+ F (b
(n)
1 )− F (a

(n)
1 ) +

ε

22+i

= P (An) +
ε

22+i
.

Since B′n ⊃ An and {An} covers (a, b], we have that {B′n} covers [a′, b], and then by a
compactness argument we have that a finite subset of {B′n}, say {B′1, . . . , B′N} without
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loss of generality, covers [a′, b]. Then {B1, . . . , BN} covers (a′, b], and by the definition of
P

P (B1) + P (B2) + · · ·+ P (BN) ≥ F (b)− F (a′),

which implies that

P (A1) + P (A2) + · · ·+ P (AN) +

(
1

2
− 1

22+N

)
ε ≥ F (b)− F (a)− ε

2
,

and we obtain the desired result.

By the method of the proof, if we take F (x) = x, then we construct the Lebesgue
measure on R where the measure of an interval is its length. Although it is not a
probability measure, its importance is obvious. We denote it by λ, and when we write
the integration with dx without specification, it is with respect to the Lebesgue measure.

We remark that if the distribution function F (x) is differentiable almost everywhere
and there is an integrable function f(x), which is called the density function, such that∫ x
−∞ f(t)dt = F (x), then the construction of the probability measure P is quite straight-

forward:

P (B) =

∫
B

f(x)dx, for all Borel set B,

and usually we call it a continuous distribution. If F (x) is a piecewise constant function
with the change from 0 to 1 purely by jumps at countable points, then the construction
of the probability measure P is also simple. For example, if

F (x) =


0 x < 0,
1
2

0 ≤ x < 1,

1 x ≥ 1,

then it defines the Bernoulli distribution on two values 0 and 1, and a random variable
with this distribution attains either value with half probability. This is an example of
discrete distribution, where 0 and 1 are called point masses or atoms of the probability
measure. Note that there are more subtle cases, like the distribution function given by
the Cantor set as follows. Recall that if we express the real numbers in [0, 1] by ternary
expansion, and keep all the real numbers that allow an ternary expansion with all digits
0 or 2, then we have the Cantor set. (For example, 1/3 = (0.1)3, but it is can also
be written as (0.02222 . . . )3, so it is in the Cantor set, but 1/2 can only be written as
(0.1111 . . . )3, so it is not in the Cantor set.) Then for any real number in the Cantor set,
we define for any number in the Cantor set

F
(a1

3
+
a2

9
+
a3

27
+ · · ·

)
=

1

2

(a1

2
+
a2

4
+
a3

8
+ · · ·

)
, ak = 0 or 2,

for x < 0 define F (x) = 0, and for x ≥ 0 not in the Cantor set

F (x) = max
t<x, and t is in the Cantor set

F (t).

Then it is not very hard to check that F (x) is right-continuous and is a well defined
distribution function. But it is not a continuous distribution since there is no well-
defined density function whose integral is F (x), and it is not a discrete distribution since
there is no point mass where the distribution function has a jump.
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By the Lebesgue decomposition theorem and Radom-Nikodym theorem, we do not
need to consider distribution functions more exotic than the Cantor distribution. On the
real line and the Borel sets, we call a σ-finite measure µ absolutely continuous to the
Lebesgue measure, if there is a Lebesgue measurable function f ≥ 0 such that µ(E) =∫
E
fdx for all E ∈ B. We say a measure ν is singular with respect to the Lebesgue

measure, if there is a set E ∈ B such that ν(E) = 0 while the Lebesgue measure of Ac

is 0. In particular, we say a singular measure ν1 is atomic if it is the sum of countable
point masses: ν1 =

∑
cnδan where an ∈ R and cn ≥ 0 with

∑
cn = 1. We say a singular

measure µ2 is singular continuous with respect to the Lebesgue measure, if it has no point
mass, that is, µ2({a}) = 0 for all a ∈ R. Then we have that any probability measure
can be written as αν + β1ν1 + β2ν2, where µ is absolutely continuous, ν1 is atomic, and
ν2 is singular continuous (with respect to the Lebesgue measure) and α, β1, β2 ≥ 0 with
α + β1 + β2 = 1.

We finish the remark to Theorem 1 and its proof by noting that random variables
defined on different probability spaces can have identical distribution. For example, the
Bernoulli distribution can be realised on R with Borel sets and an atomic measure, and
it can also simply be realised on the probability space Ω = {0, 1}, with the σ-algebra
{∅, {0}, {1},Ω}, and the probability measure P (0) = P (1) = 1/2, by the random variable
X : {0, 1} → R such that X(0) = 0 and X(1) = 1. If two random variables, on the same
probability space or not, are equal in distribution, we write

X
d
= Y.

In our module, we consider the collective property of many random variables on the
same probability space, especially the sum of many independent random variables. We
say a set of random variables {Xα} on a probability space (Ω,F , P ) are independent, if
for any finitely many of them, say A1, . . . , An, and any Borel sets B1, . . . , Bn,

P

(
n⋂
i=1

{Xi ∈ Bi}

)
=

n∏
i=1

P (Xi ∈ Bi),

where {X ∈ B} means the measurable set X−1(B). The properties of independent
random variables will be discussed later. Now we consider a theoretical question: Do
there exist independent random variables with given distributions?

If we consider finitely many independent random variables, they can be constructed
by the product of measure spaces.

Suppose (Ω1,F1, P1), . . . , (Ωn,Fn, Pn) are probability spaces, such that X1, . . . , Xn

are random variables on them respectively, with distribution functions F1(x), . . . , Fn(x)
respectively. Then consider the product measure space Ω = {(ω1, . . . , ωn)} = Ω1×· · ·×Ωn

with the product σ-algebra F that is generated by {E1 × · · · × En} where Ei ∈ Fi, and
the product measure P that is uniquely determined by

P (E1 × · · · × En) = P (E1)× · · · × P (En).

We define random variables Y1, . . . , Yn on (Ω,F , P ) such that

Yi(ω1, . . . , ωn) = Xi(ωi).
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It is easy to check that the distribution function for Yi is Fi, since, for example i = 1,

P (Y1 ∈ (a, b]) = P ({X1 ∈ (a, b]} × Ω2 × · · · × Ωn) = P1(X1 ∈ (a, b])× 1× · · · × 1

= F1(b)− F1(a),

and they are independent.
In later discussion, we often start with the phrase “Suppose X1, X2, . . . are a sequence

of independent random variables . . . ”. Is it possible to construct a probability space on
which there are infinitely many independent random variables? The construction for the
product of finitely many measure spaces cannot be naively used for infinite product. But
in a special case, the construction is possible. To state the result, we define the set RN as

RN = {ω = (ω1, ω2, . . . ) | ωi ∈ R},

and then define the σ-algbra BN that is generated by the so-called finite dimensional sets

{(ω1, ω2, . . . ) | there is n ∈ N and B1, . . . , Bn are Borel sets on R
such that ω1 ∈ B1, . . . , ωn ∈ Bn, while ωn+1, ωn+2, . . . are arbitrary real numbers.}.

Note that BN is the Borel σ-algebra on RN with respect to the product topology on RN.
Then we have the result as follows.

Theorem 3 (Kolmogorov extension). Suppose (Rn,Bn, µn) are probability spaces, where
Bn is the Borel σ-algebra on Rn, and µn are consistent, that is,

µn+1((a1, b1]× · · · × (an, bn]× R) = µn((a1, b1]× · · · × (an, bn]),

Then there is a unique probability measure P on (RN,BN) with

P ({ω | ω1 ∈ (a1, b1], . . . , ωn ∈ (an, bn]}) = µn((a1, b1]× · · · × (an, bn]).

Suppose (R,B, P1), (R,B, P2), . . . are probability spaces, all defined on R with the
σ-algebra consisting of the Borel sets. Then the product space of the first n of them is
(Rn,Bn, µn) where µn is characterised by

µn((a1, b1]× · · · × (an, bn]) = P1(a1, b1)× · · · × Pn(an, bn].

It is clear that these measure spaces satisfy the consistency condition in the Kolmogorov
extension theorem, so there exists a probability measure space (RN,BN, P ) as constructed
in the theorem. Now suppose Xn is a random variable on (R,B, Pn) with distribution
function Fn, then the random variable Yn on (RN,BN, P ), defined by Yn(ω) = Xn(ωn), is
a random variable with distribution function Fn. It is not hard to check that Y1, Y2, . . .
are independent.

As the conclusion of this lecture, we are pleased with ourselves that the phrase “Sup-
pose X1, X2, . . . are a sequence of independent random variables . . . ” is meaningful, in
the sense that no matter what distributions F1, F2, . . . , we can canstruct a probability
space on which there are random variables X1, X2, . . . with the given distributions Fi,
and they are independent.
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2 Expectation and variance

(In this section and later, when we talk about a set of random variables, we assume that
they are on the same probability space (Ω,F , P ), unless otherwise specified.)

For a random variable, the most important quantity is its expectation, also called
mean or average in the everyday language, if it exists. Recall that a random variable X
is a measurable function on a probability space (Ω,F , P ). The expectation of the random
variable is defined by the integral of the function:

EX =

∫
XdP =

∫
Ω

X(ω)dP (ω),

if the measurable function is also integrable. (In a more analytic language, X(ω) is an L1

function on the measure space.) Not all measurable funcitons are integrable. IfX is a non-
negative random variable, its expectation either exists as a finite nonnegative number,
or is +∞. If X is not non-negative, then EX is well-defined as long as E|X| < ∞,
otherwise EX may not be well-defined, even if we allow ±∞. Thus for the existence
conditions involving expectation, we often consider the non-negative case and the general
case separately.

The expectation satisfies some well known identities and inequalities for integrations:

Theorem 4. Suppose the expectations for random variables X and Y exist. Then

• E(X + Y ) = EX + EY ,

• E(aX + b) = aEX + b, and

• if X ≥ Y , that is, X(ω) ≥ Y (ω) for all ω ∈ Ω, then EX ≥ EY .

Theorem 5 (Hölder’s inequality). Suppose p, q > 0 and 1/p + 1/q = 1, and random
variables X and Y are Lp-integrable and Lq-integrable respectively, that is, E|X|p and
E|Y |q exist. Then E(XY ) exists and

E(|XY |) ≤ (E|X|p)
1
p (E|Y |q)

1
q .

(The p = q = 2 special case of Hölder’s theorem, the Cauchy-Schwarz theorem, is
most useful.)

The following theorem is not in all real analysis textbooks, because it is valid only
if the measure space is a probability space. But it is in Rudin’s book and we omit the
proof.

Theorem 6 (Jensen’s inequality). Suppose function ϕ : R→ R is convex, that is, for all
x < y ∈ R and a ∈ (0, 1), aϕ(x) + (1− a)ϕ(y) ≥ ϕ(ax+ (1− a)y). Then

E(ϕ(X)) ≥ ϕ(EX),

provided that both EX and E(ϕ(X)) exist.

The next theorem is not commonly seen in real analysis textbooks, so we include the
proof. To sate the theorem, we first introduce a notation: For a random variable X and
a measurable set A ∈ F ,

E(X;A) =

∫
A

XdP.
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Theorem 7 (Chebyshev’s inequality). Suppose ϕ is a non-negative function on R, and
B ∈ B is a Borel set on R, then

inf
x∈B

(ϕ(x))P (X ∈ B) ≤ E(ϕ(X);X ∈ B) ≤ E(ϕ(X)).

Proof. The second inequality is a direct consequence of the non-negativity of ϕ:

E(ϕ(X))− E(ϕ(X);X ∈ B) =

∫
Ω\X−1(B)

ϕ(X)dP ≥ 0.

For the first inequality, we note that for all ω such that X(ω) ∈ B, ϕ(ω) ≥ infx∈B(ϕ(x)),
so

E(ϕ(X);X ∈ B) =

∫
X−1(B)

ϕ(X(ω))dP (ω) ≥
∫
X−1(B)

inf
x∈B

(ϕ(x))dP (ω)

= inf
x∈B

(ϕ(x))

∫
X−1(B)

1dP = inf
x∈B

(ϕ(x))P (X ∈ B).

Since the expectation of a random variable is an integral, the convergence theorems
we have learnt in real analysis can be used. We recall the most well known ones:

Lemma 8 (Fatou). If Xn ≥ 0, then

inf
n→∞

EXn ≥ E
(

lim inf
n→∞

Xn

)
.

Theorem 9 (monotone convergence). If X1, X2, . . . are non-negative random variables
such that Xn ↑ X, that is, X1(ω) ≤ X2(ω) ≤ · · · for all ω ∈ Ω, and Xn → X a.s., then
EXn ↑ EX. (Here EX and EXn are allowed to be +∞.)

Theorem 10 (dominated convergence). If Xn → X a.s., |X| ≤ Y for all n and EY <
+∞, then EXn and EX exist and EXn → EX.

Theorem 11. Suppose Xn → X a.s. Let g, h be continuous functions on R such that

• g(x) ≥ 0 for all x and g(x) > 0 for large enough x,

• |h(x)|/g(x)→ 0 as |x| → 0, and

• E(g(Xn)) ≤ K <∞ for all n.

Then E(h(Xn))→ E(h(X)).

Proof. We use the method of truncation, which we will use again several times in this
module. Let M be a large enough real number, such that g(x) > 0 for all |x| ≥ M , and
M satisfies some other conditions to be specified later. For Xn and X, we denote (the
random variable Y stands for either Xn or X)

Y (M)(ω) =

{
Y (ω) if |Y (ω)| ≤M,

0 otherwise.
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Then we have X
(M)
n → X(M) a.s. as long as P (|X| = M) = 0. Since there can be at most

countably many x ∈ R such that P (|X| = x) > 0), it is easy to choose M to satisfy this
condition. Using the dominated convergence theorem and that |Xn| ≤ sup|X|≤M h(x), we
have

Eh(X(M)
n )→ Eh(X(M)).

Next, we have

|Eh(Xn)− Eh(X(M)
n )| =

∣∣∣∣∫
|x|>M

h(Xn)dP

∣∣∣∣ ≤ ∫
|x|>M

|h(Xn)|dP

≤ εM

∫
|X|>M

g(Xn)dP ≤ εM

∫
Ω

g(Xn)dP

= Eg(Xn) ≤ εMK.

On the other hand, using the argument as above together with the Fatou lemma, we have

|Eh(X)−Eh(X(M))| ≤ εMEg(X) = εME
(

lim inf
n→∞

g(Xn)
)
≤ εM lim inf

n→∞
E(g(Xn)) ≤ εMK.

Combining the limit identity and the two inequalities above, we have

lim sup
n→∞

|Eh(Xn)− Eh(X)| ≤ lim sup
n→∞

|Eh(X(M)
n )− Eh(X(M))|

+ lim sup
n→∞

|Eh(Xn)− Eh(X(M)
n )|

+ lim sup
n→∞

|Eh(X)− Eh(X(M))|

≤ 2εMK.

Since the right-hand side can be arbitrarily small, we prove that limn→∞|Eh(Xn) −
Eh(X)| = 0.

After the discussion of the theoretical properties of expectation, we turn to the com-
putation of expectation, if the distribution of the random variable is known. The next
theorem shows that the integral on the (possibly very large) probability space can be
transformed into an integral on the real line.

For a random variable X, we call a measure µ defined on (R,B) as its distribution,
if for any Borel set B ∈ B, P (X ∈ B) = µ(B). Recall that in Section 1, we defined
the distribution function F (x) for a random variable X. It is clear that given µ, F
is determined by µ simply as F (b) − F (a) = µ(a, b], while we proved that given any
distribution function F , the distribution µ can be constructed by Carathéodory extension
theorem. Hence we have

Theorem 12. Let f be a measurable function from (R,B) to (R,B). Under the condition
either (a) f ≥ 0, or (b) E|f(X)| <∞, we have

Ef(X) =

∫
Ω

f(X)dP =

∫
R
f(y)µ(dy).
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The proof of the theorem is measure theoretic, and we give the idea of the proof. You
can fill in the detail. First, if f is an indicator function such that f(x) = 1 if x ∈ B and
f(x) = 0 if x ∈ Bc, then the right-hand side is simply µ(B) and the left-hand side is
P (X ∈ B) that is equal to µ(B) by the definition of distribution. Next, if f is a simple
function, that is, a linear combination of indicator functions, the identity holds due to
linearity. The next step is to use a sequence of simple function functions to approximate
a non-negative function, and prove the theorem in the case f ≥ 0. The last step is
to consider f+ and f− separately and prove the theorem for signed function f under
the condition that E|f(X)| < ∞. Note that the 4-step routine: indicator function —
simple function — nonnegative function — general signed function is a standard trick for
measure-theoretic proofs.

If the distribution µ is absolutely continuous with respect to the Lesbegue measure,
the integral with respect to µ(dy) can be done easily. If µ is a discrete measure, X is a
a discrete random variable, and you know how to deal with it. (Examples are random
variables normal distribution and Poisson distribution. Please compute E(Xk) with X
having these distributions.) Now we consider another example.

Example 1. Let X be a random variable with the Cantor distribution that is defined
by the Cantor set in Section 1. Compute EX and EX2.

First we compute EX. By definition, µ(a, b] = F (b)−F (a), where F ((0.a1a2 . . . )3) =
(0.a1

2
a2
2
. . . )2 if all a1, a2, . . . are all 0 or 2. Also we have that µ(−∞, 0] = 0 and µ(1,∞) =

0. So

EX =

∫
R
yµ(dy) =

∫ 1

0

yµ(dy).

Now we divide (0, 1] into 3n equal intervals: Ik = ((k− 1)/3n, k/3n], where k = 1, . . . , 3n.
Then

3n∑
k=1

k − 1

3n
µ(Ik) ≤ EX ≤

3n∑
k=1

k

3n
µ(Ik).

We have that µ(Ik) = 1/2n if (k − 1)/3n = (0.a1a2 . . . an)3 if a1, . . . , an are 0 or 2, and
µ(Ik) = 1 otherwise. Then the inequality above can be simplified as

∑
a1=0,2

∑
a2=0,2

· · ·
∑
an=0,2

(a1

3
+
a2

9
+ · · ·+ an

3n

) 1

2n
≤ EX

≤
∑
a1=0,2

∑
a2=0,2

· · ·
∑
an=0,2

(
a1

3
+
a2

9
+ · · ·+ an

3n
+

1

3n

)
1

2n
.

Taking the limit n→∞, we derive that EX = 1/2. Similarly, we have

∑
a1=0,2

∑
a2=0,2

· · ·
∑
an=0,2

(a1

3
+
a2

9
+ · · ·+ an

3n

)2 1

2n
≤ EX2

≤
∑
a1=0,2

∑
a2=0,2

· · ·
∑
an=0,2

(
a1

3
+
a2

9
+ · · ·+ an

3n
+

1

3n

)2
1

2n
,

and derive that EX2 = 3/32 by letting n→∞. (Please check it.)
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The expectation of Xk of random variable X, if exists, is called the k-th monent of
X, and is important, especially for k = 1 (the expectation, usually denoted by µ) and
k = 2. We then define the variance of random variable X by

var(X) = E(X − µ)2 = EX2 − 2µEX + µ2 = EX2 − µ2.

The variance has the property that it is invariant if the random variable is added by a
constant, and it changes quadratically if the random variable is multiplied by a constant.
To be precise,

var(aX + b) = E(aX + b)2 − (E(aX + b))2 = E(a2X2 + 2abX + b2)− (aEX + b)2

= a2EX2 + 2abµ+ b2 = a2µ2 = 2abµ− b2

= a2(EX2 − µ2) = a2 var(X).

So the variance is not a linear functional on X, and generally we cannot expect that
var(X + Y ) = var(X) + var(Y ). However, if X and Y are independent, we have this
identity. To prove it rigorously, we need to learn more properties of independence.

LetX1, . . . , Xn be random variables. They together form a random vector (X1, . . . , Xn)
that is a mapping from (Ω,F) to (Rn,Bn) such that the inverse of B ∈ Bn is a measurable
set in F . (Think why?) We call a probability measure µ on (Rn,Bn) a distribution for
(X1, . . . , Xn) if P ((X1, . . . , Xn) ∈ B) = µ(B). (So the distribution for a single random
variable is a special case.) For any random vector, the distribution exists and is a proba-
bility measure. To see it, we note that µ is the induced measure from the measure P on
(Ω,F , P ) by the measurable mapping f .

Theorem 13. Suppose X1, . . . , Xn are independent random variables and Xi has distri-
bution µi. Then (X1, . . . , Xn) has distribution µ1× µ2× · · · × µn, the product measure of
µ1, . . . , µn on (Rn,Bn).

For the proof of the theorem, we need to introduce some more notations and concepts.
We call a collection A of subsets of Ω a π-system, if it is closed under intersection, that
is, if A,B ∈ A, then A ∩B ∈ A.

Then we have the measure-theoretic result

Theorem 14. Let P be a π-system. If ν1 and ν2 are measures that agree on P and there
is a sequence An ∈ P with An ↑ Ω and νi(An) <∞, then ν1 and ν2 agree on σ(P ).

The proof of this theorem is given in [Durrett, Theorem A.1.5]. It depends on the
π − λ theorem, which we do not introduce in this module.

Now we can continue the proof to Theorem 13.

Proof to Theorem 13. We want to show that for any B ∈ Bn, P ((X1, . . . , Xn) ∈ B) =
µ1 × µ2 × · · · × µn(B). In the special case that B = B1 × · · · ×Bn where B1, . . . , Bn are
Borel sets on R, we have by the independence

P ((X1, . . . , Xn) ∈ B1 × · · · ×Bn) = P (X1 ∈ B1, . . . , Xn ∈ Bn)

= P (X1 ∈ B1)× · · · × P (Xn ∈ Bn)

= µ1(B1)× · · · × µn(Bn)

= µ1 × · · · × µn(B1 × · · · ×Bn).

11



Now we note that the collection of the “cube-like” subsets of Rn, {B1×· · ·×Bn}, is a π-
system. To see it, we note that (A1×· · ·×An)∩(B1×· · ·×Bn) = (A1∩B1)×· · ·×(An∩Bn).
Since both the distribution for (X1, . . . , Xn) and the product measure µ1 × · · · × µn are
probability measures on (Rn,Bn), and they agree on the π-system {B1 × · · · × Bn}, we
derive by Theorem 14, they agree on σ({B1×· · ·×Bn}) = Bn, and they are the same.

Similar to the expectation formula in Theorem 12, we have the following result.

Theorem 15. Suppose X1, . . . , Xn are random variables, and the distribution for the
random vector (X1, . . . , Xn) is µ. If f : (Rn,Bn)→ (R,B) is a measurable mapping, then
under the condition either (a) f ≥ 0, or (b) E|f(X1, . . . , Xn)| <∞, we have

Ef(X) =

∫
Ω

f(X1, . . . , Xn)dP =

∫
Rn
f(y)µ(dy).

The proof is the same as the one-dimensional case and we omit it. In the special case
that X1 and X2 are independent, with distributions µ1 and µ2 respectively, we have

E(f(X1, X2)) =

∫∫
f(y1, y2)µ1 × µ2(dy)

(if either of the two conditions in Theorem 15 is satisfied). We can use Fubini’s theorem
to compute it. Recall:

Theorem 16 (Fubini). If (Ω1,F1, µ1) and (Ω2,F2, µ2) are two measure spaces, Ω =
Ω1 × Ω2 is the product set, F = F1 × F2 is the product σ-algebra, and µ = µ1 × µ2 is
the product measure. Suppose h : Ω→ R is a measurable function from (Ω,F) to (R,B).
Under the condition either (a) h ≥ 0, or (b)

∫
|h|dµ <∞, we have that∫

Ω1

(∫
Ω2

f(x, y)µ2(dy)

)
µ1(dx) =

∫
Ω

fdµ =

∫
Ω2

(∫
Ω1

f(x, y)µ1(dx)

)
µ2(dy).

Now suppose the independent random variables X1 and X2 are both non-negative.
Then X1X2 = |X1X2|, and we have (µ1, µ2 are distributions for X1, X2 respectively)

E(X1X2) = E(|X1X2|) =

∫
R2

|y1y2|µ1 × µ2(dy) =

∫
R

(∫
R
|y1y2|µ1(dy1)

)
µ2(dy2)

=

(∫
R
|y1|µ1(dy1)

)(∫
R
|y2|µ2(dy2)

)
= E|X1|E|X2| = EX1EX2.

On the other hand, if X1 and X2 satisfy E|X1| < ∞, E|X2|X2 < ∞, then we have
E|X1X2| = E(|X1||X2|) = E|X1|E|X2| < ∞. Then the condition

∫
|h|dµ < ∞ for

Fubini’s theorem is satisfied, where h = y1y2 and µ = µ1×µ2, and we still have the result

E(X1X2) =

∫
R2

y1y2µ1 × µ2(dy) =

(∫
R
|y1|µ1(dy1)

)(∫
R
|y2|µ2(dy2)

)
= EX1EX2.

The final result in this section is:
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Theorem 17. Suppose random variables X1, . . . , Xn are independent. Under the condi-
tion either (a) Xi ≥ 0, or (b) E|Xi| <∞, for all i = 1, . . . , n, then var(X1 + · · ·+Xn) =
var(X1) + · · ·+ var(Xn).

Proof. Under either condition,

E(X1 + · · ·+Xn)2 =
n∑
i=1

EX2
i + 2

∑
1≤i<j≤n

EXiXj =
n∑
i=1

EX2
i + 2

∑
1≤i<j≤n

EXiEXj.

Then it is easy to derive the formula for var(X1 + · · ·+Xn).
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3 More on independence, and weak laws of large

numbers

For the independence of random variables, we still do not have an effective way to check
if a collection of random variables are independent. The definition of independence of
random variables involves arbitrary Borel sets, and it is not practical. Even for theoretical
questions, the definition may not be directly applicable. For example, if we know that
X1, X2, X3 are independent, are the two random variables X1 and X2X3 independent? It
should be true, but if we want to verify it by definition, the condition X2X3 ∈ B cannot
be simply expressed by conditions like X2 ∈ B′ and X3 ∈ B′′. To solve the question, as
usual we need to introduce more concepts and notations.

Definition 3. We say events A1, A2, . . . , An are independent if for any m1, . . . ,mk ∈
{1, 2, . . . , n}, P (Am1 ∩ · · · ∩ Amk) = P (Am1) · · ·P (Amk).

Definition 4. Let A1, . . . ,An be subsets of F on the probability space (Ω,F , P ). We
say A1, . . . ,An are independent if for any Ai ∈ Ai, A1, . . . , An are independent.

A random variable X defines a σ-algebra σ(X), which consists of sets {X−1(B) |
B ∈ B(R)}. It is clear that X1, . . . , Xn are independent if and only if the σ-algebras
σ(X1), . . . , σ(Xn) are independent. Then the following theorem can reduce our task of
checking independence of σ-algebras.

Theorem 18. Suppose A1, . . . ,An are independent subsets of F , and each Ai is a π-
system. Then σ(A1), . . . , σ(An) are independent.

The proof of the theorem requires the “π − λ theorem” and you can find the proof,
together with the proof of the π−λ theorem, in our textbook. Here we note an important
case: The semi-infinite sets (−∞, a] form a π-system, and they generate the Borel σ-
algebra on R. Then for any random variable X, the sets {X ≤ a} = {ω | X(ω) ≤ a}
form a π-system and they generate the σ-algebra σ(X). Hence we have the consequence
of last theorem:

Corollary 19. X1, . . . , Xn are indepdent if and only if for all m1, . . . ,mk ∈ {1, 2, . . . , n}
and xm1 , . . . , xmk , P (Xm1 ≤ xm1 , . . . , Xmk ≤ xmk) =

∏k
i=1 P (Xmi ≤ xmi).

Now we can go back to the question that how to show X1 and X2X3 are independent,
given that X1, X2, X3 are independent. We need to show that σ(X1) and σ(X2X3) are
independent. To describe σ(X2X3), we introduce the mapping f : Ω → R2 by f(ω) =
(X2(ω), X3(ω)), and the mapping g : R2 → R by g(x, y) = xy. Then σ(X2X3) =
{(g◦f)−1(B) | B ∈ B(R)}, and it is generated by {(g◦f)−1(−∞, a]} = {f−1(Aa)}, where
Aa = {(x, y) | xy ≤ a}. It is clear that Aa ∈ B(R2), and then σ(X2X3) ⊆ A = {f−1(B) |
B ∈ B(R2)}. Then it suffices to show that σ(X1) and A are independent. Since B(R2)
is generated by {(−∞, x2]× (−∞, x3]}, A is generated by {f−1(−∞, x2]× (−∞, x3]} =
{X2 ≤ x2} ∩ {X3 ≤ x3}. Since σ(X1) is generated by {X1 ≤ x1}, we need only to check
that

P ({X1 ≤ x1} ∩ ({X2 ≤ x2} ∩ {X3 ≤ x3})) = P (X1 ≤ x1)P (X2 ≤ x2, X3 ≤ x3),

and this is a direct consequence of the independence of X1, X2, X3.
The argument above can be generalised to prove the following result:
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Corollary 20. If for 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), Xi,j are independent, and fi : Rm(i) → R
are measuable, then fi(Xi,1, . . . , Xi,m(i)) are independent.

We prove the special case with n = 2, m(1) = 1, m(2) = 2, f1(x) = x and f2(x, y) = xy
above, and leave the proof for the general case to you.

Now we generalise a result in last section:

Corollary 21. Suppose random variables X1, . . . , Xn are either all non-negative or E|Xi| <
∞ for all i = 1, . . . , n. Then

E(X1 · · ·Xn) = E(X1) · · ·E(Xn).

Proof. The n = 2 case is already proved. If n > 2, we use induction, and denote
Y = X1 · · ·Xn−1. We have that Y and Xn are independent. If all Xi ≥ 0, then Y ≥
0. If all E|Xi| < ∞, then by the induction hypothesis, E|Y | = E(|X1| · · · |Xn−1|) =
E|X1| · · ·E|Xn−1| <∞. Thus in either case,

E(X1 · · ·Xn) = E(Y Xn) = EY EXn = EX1 · · ·EXn−1EXn,

and finish the proof.

Now we start to introduce the first of the two most important topics in this module:
the Law of Large Numbers (LLN), (while the other is the Central Limit Theorem, (CLT)).
Basically, a law of large numbers is that a sequence of random variables {Yn} converge
to a fixed number. The problem is: In what sense do we talk about the convergence?
Recall that a random variable is a function on the probability space. In calculus we learn
the pointwise convergence and the uniform convergence, and they are not equivalent. In
the further study of real analysis we learn about the L1 convergence and L2 convergence
(for L1/L2 integrable functions), and the weak* convergence (if we view the space of
integrable functions as a Banach/Hilbert space). First we consider weak laws of large
numbers, which involve some weak form of convergence, in contrast to the strong laws of
large numbers to be introduced later.

Theorem 22. Let X1, X2, . . . be independent random variables with EXi = µ and
var(Xi) ≤ C <∞. If Sn = X1 +X2 + · · ·+Xn, then Sn/n→ µ in L2.

Proof. We need to show that

lim
n→∞

∫ (
Sn
n
− µ

)2

dP = lim
n→∞

E

(
Sn
n
− µ

)2

= 0.

Noting that E(Sn/n) = n−1E(X1 + · · ·+Xn) = n−1(E(X1) + · · ·+E(Xn)) = µ, we only
need to show that limn→∞ var(Sn/n) → 0. Using the independence of X1, X2, . . . , we
have

lim
n→∞

var

(
Sn
n

)
= lim

n→∞

Sn
n2

= lim
n→∞

var(X2) + · · ·+ var(Xn)

n2
≤ lim

n→∞

nC

n2
= 0,

and finish the proof.
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Remark 1. Here we only need the consequence of the independence of X1, X2, . . . that
var(X1 + . . . + Xn) = var(X1) + · · · + var(Xn), and this kind of identities hold as long
as E(XiXj) = E(Xi)E(Xj) for all i 6= j, which is the uncorrelation of X1, X2, . . . . So
Theorem 22 holds if the independence condition is replaced by the weaker condition that
X1, X2, . . . are uncorrelated.

Remark 2. Theorem 22, and other laws of large numbers, are mostly applied in the
setting that X1, X2, . . . are “independent and identically distributed” (i.i.d. for short).

The L2 convergence is not the commonly used convergence in probability theory,
since it does not sound “probabilistic”. One important convergence is the convergence in
probability, as defined below:

Definition 5. We say a sequence of random variables {Yn} converges to Y in probability
if for all ε > 0, P (|Yn − Y | > ε)→ 0 as n→∞.

A simple result is

Lemma 23. If p > 0 and E|Yn|p → 0, then Yn → 0 in probability.

Proof. Given any ε, δ > 0, there is N such that for all n > N ,∫
|Yn|pdP < δεp.

Then for n > N , P (|Yn|> ε) < δ. Thus we prove the lemma.

Remark 3. This lemma is a consequence of the Chebyshev inequality.

Then as a direct consequence of Lemma 23 with p = 2, we have that Theorem 22
implies

Theorem 24. Let X1, X2, . . . satisfy the conditions in Theorem 22, and µ and Sn be
defined as in Theorem 22. Then Sn/n→ µ in probability.

It turns out that for the average of i.i.d. random variables to converge to their expec-
tation in probability, the requirement that the variance is finite is unnecessary. We have
the following result:

Theorem 25. Let X1, X2, . . . be i.i.d. with E|Xi| < ∞ and EXi = µ. Let Sn = X1 +
· · ·+Xn. Then Sn/n→ µ in probability.

The proof of this theorem is more involved, and we need to establish some technical
lemmas.

Lemma 26. For each n, let Xn,1, . . . , Xn,n be independent random variables. Let bn > 0
be positive numbers with bn →∞ as n→∞, and let X̄n,k = Xn,k1|Xn,k|≤bn, that is,

X̄n,k(ω) =

{
Xn,k(ω) if |Xn,k(ω)| ≤ bn,

0 otherwise.
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Suppose that as n→∞,

n∑
k=1

P (|Xn,k| > bn)→ 0, and
1

b2
n

n∑
k=1

EX̄2
n,k → 0.

If we let Sn = Xn,1 + · · · + Xn,n and an =
∑n

k=1 EX̄n,k, then (Sn − an)/bn → 0 in
probability.

Before giving the proof to Lemma 26, we state a lemma that is similar to Lemma 23,
whose proof is left to you.

Lemma 27. Let S1, S2, . . . be random variables such that ESn = µn and var(Sn) = σ2
n.

Suppose {bn} are positive numbers and σ2
n/b

2
n → 0 as n→∞, then (Sn − µn)/bn → 0 in

probability.

Proof of Lemma 26. First consider S̄n = X̄n,1 + · · · + X̄n,n instead of Sn. S̄n has the
advantage that its variance is finite. Furthermore,

var(S̄n) =
n∑
k=1

var(X̄n,k) ≤
n∑
k=1

E|X̄n,k|2.

(Here we use that X̄n,1, . . . , X̄n,n are independent. Why?) Thus by Lemma 27, we have
that (S̄n − an)/bn → 0 in probability, or equivalently, for any ε, δ > 0, there is N such
that for all n > N , P (|(S̄n − an)/bn| > ε) < δ.

Next we use the property that Xn,k and X̄n,k are similar. We have that for any δ′ > 0,
there is N ′ such that for all n > N ′,

P (Sn 6= S̄n) ≤
n∑
k=1

P (Xn,k 6= X̄n,k) =
n∑
k=1

P (|Xn,k| > bn) < δ′.

Therefore for n > max(N,N ′), P (|(Sn − an)/bn| > ε) ≤ P (|(S̄n − an)/bn| > ε) + P (Sn 6=
S̄n) < δ + δ′, and we prove the lemma.

The lemma above for arrays of random variables imply the following result for a
sequence of random variables, and it is called the weak law of large numbers.

Theorem 28 (Weak law of large numbers). Let X1, X2, . . . be i.i.d. with

xP (|Xi| > x)→ 0, as x→∞.

Let Sn = X1 + · · ·+Xn and let µn = E(X11|X1|≤n). Then Sn/n− µn → 0 in probability.

Proof. We use the result of Lemma 26. Let Xn,k = Xk and bn = n. Then

lim
n→∞

n∑
k=1

P (|Xn,k > bn) = lim
n→∞

n∑
k=1

P (|Xk| > n) = lim
n→∞

nP (|X1| > n) = 0.

On the other hand,

lim
n→∞

1

b2
n

n∑
k=1

EX̄2
n,k = lim

n→∞

1

n2

n∑
k=1

E(Xk1|Xk|≤n)2 = lim
n→∞

1

n
E(X11|X1|≤n)2.
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We denote |X1|1|X1|≤n = Yn. Then

E(Y 2
n ) =

∫
Ω

Y 2
n dP =

∫
Ω

(∫ Yn

0

2ydy

)
dP =

∫
Ω

(∫ ∞
0

2y1Yn>ydy

)
dP

=

∫ ∞
0

(∫
Ω

2y1Yn>ydP

)
dy =

∫ ∞
0

2y

(∫
Ω

1Yn>ydP

)
dy

=

∫ ∞
0

2yP (Yn > y)dy.

Using that 0 ≤ Yn ≤ n and for all y ∈ [0, n], P (Yn > y) ≤ P (|X1| > y), we have

1

n
E(Y 2) ≤

∫ n

0

2yP (|X1| > y)dy = 2

∫ 1

0

nxP (|X1| > nx)dx.

Since for all x > 0, nxP (|X1| > nx)→ 0, we have (exercise: justify the argument)

lim
n→∞

1

b2
n

n∑
k=1

EX̄2
n,k = lim

n→∞

1

n
E(Y 2) = 0.

Thus Lemma 26 yields the theorem.

An intermediate step in the proof can ge generalised to the following result:

Lemma 29. If Y ≥ 0 and p > 0, then E(Y p) =
∫∞

0
pyp−1P (Y > y)dy.

The proof is left as an exercise.
At last, we can prove Theorem 25, the practically most convenient form of the weak

law of large numbers.

Proof of Theorem 25. Since E|X1| < ∞, by the dominanted convergence theorem, we
have

lim
x→∞

xP (|X1| > x) = 0 and lim
n→∞

E(X11|X1|≤n) = EX1.

Hence Theorem 28 implies Theorem 25.
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4 Borel-Cantelli lemmas and strong law of large num-

bers

In this section we introduce the strong laws of large numbers, that is, the convergence
of the average of random variables to their expectation, almost surely. Recall that we
say a sequence of random variables {Xn} converges to X a.s. if for all ω ∈ Ω \ E,
Xn(ω) → X(ω) as n → ∞, where E ∈ F and P (E) = 0. We call this kind of laws of
large strong, because the almost sure convergence implies the convergence in probability,
but the converse is not true. To see it, suppose Xn → X a.s. we define the random
variable Yn = supk≥n|Xk−X|. They are non-negative and decreases as n increases. Thus
EYn are non-negative and decreasing. Furthermore, we have lim infn→∞ Yn = 0 a.s.. By
Fatou’s lemma,

lim inf
n→∞

EYn ≤ E
(

lim inf
n→∞

Yn

)
= 0.

So for any ε, δ > 0, there is N such that for all n > N , E|Xn−X| ≤ EYn < εδ, and then
P (|Xn −X| > ε) < δ.

On the other hand, we have examples that Xn → X in probability but not almost
surely. To construct an example, we define random variables {X2,1, X2,2, X4,1, X4,2, X4,3,
X4,4, X8,1, . . . , X8,8, X16,1, . . . } on the probability space ([0, 1],B, λ), where λ is the Lebesgue
measure, such that

X2n,k(ω) =

{
1 if (k − 1)/2n ≤ ω ≤ k/2n,

0 otherwise.

Then the sequence converges to 0 in probability, but does not converge to any limit almost
surely.

The tool to prove strong laws of large numbers is the Borel-Cantelli lemma, and
the second Borel-Cantelli lemma. They are about the probability that infinitely many
events occurs, given the probability of each event. To be precise, we consider a se-
quence of events A1, A2, . . . ∈ F on the probability space (Ω,F , P ). Then the event
{at least one An occurs} is simply A1 ∪ A2 ∪ · · · , the event {at least k of An occur} is⋃∞
n1=1

⋃∞
n2=n1+1 · · ·

⋃∞
nk=nk−1+1(An1∩An2∩· · ·∩Ank , and the event {at least infinitely many

An occur} is

lim sup
n→∞

An =
∞⋂
n=1

(
∞⋃
k=n

Ak

)
,

and we denote it as An i. o. where i. o. means “infinitely often”.

Lemma 30 (Borel-Cantelli). If
∑∞

n=1 P (An) <∞, then P (An i. o.) = 0.

The intuitive interpretation of of this lemma is simple. Think each An as a partial
cover of Ω. If the total area of the covers is finite, then the area of the region that is
covered infinitely many times has to be zero.

Proof. To show that P (An i. o.) = P (lim supn→∞An = 0, it suffices to show that for all
ε > 0, there is N such that P (

⋃∞
n=N An) < ε. Since P (

⋃∞
n=N An) ≤

∑∞
n=N P (An), we

can take N to be large enough such that
∑∞

n=N P (An) < ε, and it is clear that such N
exists.
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The Borel-Cantelli theorem implies that if a sequence of random variables converges
in probability, then there is a subsequence that converges almost surely. Actually we
have a stronger result:

Theorem 31. The sequence of random variables Xn → X in probability, if and only if
for any subsequence Xn(m), there is a further subsequence Xn(mk) that converges almost
surely to X.

Proof. First suppose Xn → X in probability. Without loss of generality, we assume that
{X(n(m)} = {Xn}, and it suffices to show that there is a subsequence Xnk that converges
to X a.s.. We choose Xnk such that

P

(
|Xnk −X| >

1

k

)
<

1

2k
.

Denoting Ak = {|Xnk−X| > 1/k}, we have that
∑∞

k=1 P (Ak) < 1, and then P (Ak i. o.) =
0 by the Borel-Cantelli lemma. For all ω /∈ Ak i. o., we have that there is N such that
ω /∈ Ak for all k > N , that is, |Xnk(ω)−X(ω)| ≤ 1/k for all k > N , and then Xnk(ω)→
X(ω). Thus we prove that Xnk → X a.s..

On the other hand, if {Xn} does not converge to X, then there exist ε, δ > 0 and a
subsequence {Xn(m)} such that

P
(
|Xn(m) −X| > ε

)
> δ for all n(m).

It is clear that any subsequence of {Xn(m)} does not converge to X in probability. Suppose
{Xn(m)} has a subsequence that converges to X a.s., then the subsequence also converge
to X in probability, and it is a contradiction. Thus we finish the proof.

Theorem 31 connects the two kinds of convergence. As an application, we consider
the convergence of {f(Xn)}, where {Xn} converges and f is a continuous function. In
the setting of almost sure convergence, it is straightforward. Xn(ω)→ X(ω) implies that
f(Xn(ω))→ f(X(ω)), so if Xn → X a.s., then f(Xn)→ f(X) a.s.. Furthermore, if f is
bounded, that is, |f(x)| < M for all x ∈ R, then by the dominated convergence theorem,
since |f(Xn)| < M , we have Ef(Xn) → Ef(X). The following corollary show that the
results above are also valid if the convergence is in probability.

Corollary 32. If f is a continuous function and Xn → X in probability, then f(Xn)→
f(X) in probability. In addition, if f is bounded, then Ef(Xn)→ Ef(X).

Proof. Suppose Xn → X in probability, then using Theorem 31, we have that any sub-
sequence {Xn(m)} has a further subsequence {Xn(mk)} that converges a.s. to X. Thus
any subsequence {f(Xn(m))} has a further subsequence {f(Xn(mk))} that converges a.s.
to f(X). Using Theorem 31 conversely, we have that the sequence {f(Xn)} converges to
f(X) in probability.

To prove the remaining part of the theorem, we note that for any subsequence
{Ef(Xn(m))} of {Ef(Xn)}, it has a further subsequence {Ef(Xn(mk))} that converges
to Ef(X), since we can take the further subsequence f(Xn(mk)) to converge a.s.to f(X).
Hence we finish the proof by the simple fact: If any subsequence of {xn} ⊆ R has a
further subsequence that converges to x, then xn → x.
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The converse of the Borel-Cantelli lemma is not true, and it is an exercise for you to
find a counterexample. However, with the independence of events, we have the following
result.

Lemma 33 (Second Borel-Cantelli). If the events An are independent, then
∑∞

n=1 P (An) =
∞ implies that P (An i. o.) = 1.

Proof. It suffices to show that for all n, P (
⋃∞
k=nAk) = 1, or equivalently, P (

⋂∞
k=nA

c
k) =

0. Since An, An+1, . . . are independent, Acn, A
c
n+1, . . . are also independent, and for any

N ≥ n, we have

P

(
∞⋂
k=n

Ack

)
≤ P

(
N⋂
k=n

Ack

)
=

N∏
k=n

P (Ack) = exp

(
N∑
k=n

log(1− P (Ak))

)

≤ exp

(
−

N∑
k=n

P (Ak)

)
.

Here we use the inequality that log(1 − x) ≤ −x for all x ∈ [0, 1]. Since for any ε > 0,
we can let N large enough such that

∑N
k=n P (Ak) > − log ε, we can make the right-hand

side of the inequality above less than ε, and have P (
⋂∞
k=nA

c
k) < ε. Since ε is arbitrary,

we derive that P (
⋂∞
k=nA

c
k) = 0 and finish the proof.

An application of the second Borel-Cantelli lemma is the following negative result for
the strong law of large numbers.

Theorem 34. If X1, X2, . . . are i.i.d. with E|Xi| =∞, then P (|Xn| ≥ n i. o.) = 1. So if
Sn = X1 + · · ·+Xn, then P (limn→∞ Sn/n exists ∈ (−∞,∞)) = 0.

Proof. Let µ be the distribution of X1. Then E|X1| =
∫
|x|µ(dx) and P (|Xn| ≥ n) =

P (|X1| ≥ n) =
∫

1|x|≥nµ(dx). We have

P (|X1| ≥ 1)+P (|X2| ≥ 2)+· · · =
∫
f(x)µ(dx), where f(x) = k for all k ≤ |x| < k + 1.

It is clear that∫
f(x)µ(dx) ≤

∫
|x|µ(dx) ≤

∫
(f(x) + 1)µ(dx) =

∫
f(x)µ(dx) + 1,

and so P (|X1| ≥ 1) + P (|X2| ≥ 2) + · · · = ∞. Using the second Borel-Cantelli lemma,
we have that P (|Xn| ≥ n i. o.) = 1.

Next, denote the set Ak ⊆ Ω as the set {ω | limn→∞ Sn(ω)/n exists ∈ [−k, k]}. We
can check that Ak ∈ F . Below we show that Ak ⊆ Ω\{|Xn| ≥ n i. o.}, and so P (Ak) = 0.
Hence we derive that P (limn→∞ Sn/n exists ∈ (−∞,∞)) = P (A1 ∪ A2 ∪ · · · ) = 0.

Suppose ω ∈ Ak. Then there exists c ∈ [−k, k] and N such that for all n > N ,(
c− 1

3

)
n < Sn(ω) = X1(ω) + · · ·+Xn(ω) <

(
c+

1

3

)
n.
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We have

|Xn+1(ω)| = |Sn+1(ω)− Sn(ω)| <
(
c+

1

3

)
(n+ 1)−

(
c− 1

3

)
n =

2

3
n+ c+

1

3

≤ 2

3
n+ k +

1

3
.

Suppose without loss of generality that N > 3k, then |Xn+1(ω)| < n + 1 for all n > N ,
which means that ω /∈ {|Xn| ≥ n i. o.}.

The theorem above implies that the condition E|Xi| <∞ is necessary for a reasonable
strong law of large numbers, in contrast to the weak law of large numbers where we only
require nP (|Xn| ≥ n) → 0 as n → ∞ in Theorem 28. (To be fair, we need that µn
converges to a limit in Theorem 28 to make the result comparable to Theorem 34. But
nP (|Xn| ≥ n)→ 0 together with the convergence of {µn} is still weaker than E|Xi| <∞.

Finally we give the proof of the strong law of large numbers, which is slightly stronger
than the converse of Theorem 34.

Theorem 35. Let X1, X2, . . . be pairwise independent identically distributed random
variables with E|Xi| < ∞. Let EXi = µ and Sn = X1 + · · · + Xn. Then Sn/n → µ
a.s. as n→∞.

Before giving the proof to Theorem 35, we remark that the pairwise independence
of random variables X1, X2, . . . means that any pair of random variables Xi, Xj are
independent, but the independence of three or more random variables may fail. So this
condition is weaker than the independence of {Xn}.

The basic idea of the proof of Theorem 35 is again the truncation.

Lemma 36. Let Yk = Xk1|Xk|≤k and Tn = Y1 + . . .+ Yn. Then Theorem 35 is equivalent
to that Tn/n→ µ a.s..

Proof. If we can show that Xk = Yk almost surely for all large enough k, then almost
surely (Sn/n − Tn/n) → 0, and the equivalence is proved. Next, Xk(ω) = Yk(ω) for all
large enough k if and only if ω ∈ Ω\{|Xk| > k i. o.}. By the assumption that E|Xi| <∞,
we can show that P (|X1| > 1) + P (|X2| > 2) + · · · < ∞, see the proof of Theorem 34.
Thus the applicaiton of the Borel-Cantelli lemma implies that P{|Xk| > k i. o.} = 0 and
we finish the proof.

Below we prove that Tn/n→ µ a.s.. First we derive a technical lemma.

Lemma 37. For the random variables Yk defined in Lemma 36, we have

∞∑
k=1

1

k2
EY 2

k <∞.

Proof. Let µ be the distribution of X1. Then

EY 2
k =

∫
x21|x|≤kµ(dx), and EY 2

1 + EY 2
2 + · · · =

∫
x2g(x)µ(dx),
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where

g(x) =

{∑∞
n=k+1

1
n2 for |x| ∈ (k, k + 1],∑∞

n=1
1
n2 = π2

6
< 1.645 for x ∈ [−1, 1].

Note that for |x| > 1,

g(x) = g(|x|) <
∫ ∞
|x|

1

t2
dt =

1

|x|
,

and then ∫
x2g(x)µ(dx) =

∫ 1

−1

x2g(x)µ(dx) +

∫
R\[−1,1]

x2g(x)µ(dx)

≤
∫ 1

−1

π2

6
µ(dx) +

∫
R\[−1,1]

|x|µ(dx)

≤ 1.645 + E|X1| <∞.

The next lemma is left as an exercise.

Lemma 38. If X ′n → µ′ a.s., and X ′′n → µ′′ a.s., then {Xn = X ′n ± X ′′n} converges to
µ = µ′ ± µ′′ a.s..

We are going to use the lemma above in the special case that Xn = X+
n −X−n , where

X±n is the positive/negative part of Xn. If E|Xi| <∞, then EX+ <∞ and EX− <∞.
Thus we only need to prove Theorem 35 in the case that Xn are non-negative.

Proof of Theorem 35. First we show that a subsequence of {Tn} converges to µ a.s.. Let
α > 1, and define k(n) = [αn]. We take the subsequence as {Tk(n)}.

For all ε > 0, we have

P

(∣∣∣∣Tk(n)

k(n)
− E

Tk(n)

k(n)

∣∣∣∣ > ε

)
≤ ε−2E

(
Tk(n)

k(n)
− E

Tk(n)

k(n)

)2

=
ε−2

k(n)2
var(Tk(n))

=
ε−2

k(n)2

k(n)∑
m=1

var(Ym).

Here we use Chebyshev’s inequality and that Y1, . . . , Ym are pairwise independent. Then

∞∑
n=1

P

(∣∣∣∣Tk(n)

k(n)
− E

Tk(n)

k(n)

∣∣∣∣ > ε

)
= ε−2

∞∑
n=1

1

k(n)2

k(n)∑
m=1

var(Ym)

= ε−2

∞∑
m=1

var(Ym)
∑

n:k(n)≥m

1

k(n)2
.

Using the inequality (exercise) ∑
n:αn≥m

1

[αn]2
≤ 4

(1− α−2)m2
,
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we have
∞∑
n=1

P

(∣∣∣∣Tk(n)

k(n)
− E

Tk(n)

k(n)

∣∣∣∣ > ε

)
≤ 4ε−2

(1− α−2)

∞∑
m=1

E(Y 2
m)

1

m2
<∞.

Thus by the Borel-Cantelli lemma, Tk(n)/k(n)−E(Tk(n)/k(n)) converges to 0 a.s.. Since
EYk → µ = EX1 by the dominated convergence theorem (also by the monotone conver-
gence theorem, since we assume X1 is non-negative,) we have E(Tk(n)/k(n)) → µ, and
then we prove that the subsequence {Tk(n)} converges to µ.

To extend the convergence from the subsequence to the whole sequence, we note that
for k(n) ≤ m < k(n+ 1), by the non-negativity of Ym, we have

k(n)

k(n+ 1)

Tk(n)

k(n)
=

Tk(n)

k(n+ 1)
≤ Tm

m
≤
Tk(n+1)

k(n)
=
k(n+ 1)

k(n)
≤ Tm

m
≤

Tk(n+1)

k(n) + 1
.

Using the property that k(n+ 1)/k(n)→ α as n→∞, we derive that

1

α
µ ≤ lim inf

m→∞

Tm
m
≤ lim sup

m→∞

Tm
m
≤ αµ.

Since α > 1 can be arbitrarily close to 1, we derive the desired almost sure convergence
for Tm/m.
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5 Weak convergence

We have learnt the convergence in probability and the almost sure convergence. Al-
though they are defined as Xn → X where X is a random variable, in previous appli-
cations we took X to be a constant number. The constant “random” variable is the
only random variable that can be determined by its distribution function. Other ran-
dom variables cannot. For example, in the simplest case that the probability space is
(Ω = (head, tail),F = {∅,Ω, {head}, {tail}}, P (head) = P (tail) = 1/2), the random
variables X and X ′, defined as

X(ω) =

{
1 if ω = head,

0 if ω = tail,
X ′(ω) =

{
0 if ω = head,

1 if ω = tail.

Both have the distribution function

F (x) =


0 if x < 0,

1/2 if 0 ≤ x ≤ 1,

1 if x ≥ 0,

and they are both Bernoulli random variables. Actually, in many cases we do not need the
information of the random variable other than its distribution function. (X and X ′ are
equally useful in practice.) Recall that for random variable whose distribution functions
are exactly the same, like X and X ′ above, we say they are equal in distribution. But
how to understand the statement that two random variables are approximately equal in
distribution? More importantly, how to describe that a sequence of random variables
Xn converge to X in distribution? One obvious way to describe the convergence in
distribution is by the convergence of their distribution functions. As an example, we let
Xn be the random variables on the {head, tail} probability space just described, and let

Xn =

{
1 if ω = head,

1/n if ω = tail.

Then Xn converges to X a.s. and then in probability. It would be unreasonable if {Xn}
fails to converge to X in probability. But the distribution function of Xn is

Fn(x) =


0 if x < 1/n,

1/2 if 1/n ≤ x ≤ 1,

1 if x ≥ 0.

Although the graph of Fn approaches that of F in an obvious way, we have that if we
measure the distance between Fn and F by the maximal norm,

‖Fn − F‖∞ ≥ |Fn(0)− F (0)| = 1/2.

So in this sense, {Fn} does not converge to F .

Definition 6. A sequence of random variables Xn, whose distribution functions are Fn,
converges to a random variable X, whose distribution function is F , if Fn(x)→ F (x) at
all continuous points of F . In this case, we also say the sequence of distirbution functions
{Fn} converges to F .
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We denote Xn ⇒ X (Fn ⇒ F respectively) if Xn → X (Fn → F respectively) in
distribution.

The different between this definition and the heuristic understanding of the conver-
gence in distribution is not as huge as it seems to be.

Lemma 39. A non-decreasing function f : R → R can be discontinuous at countably
many points at most.

Proof. At any point x that f is not continuous, we have ax := limy↑x f(y) < limy↓x f(y) =:
bx, and these intervals (ax, bx) for all discontinuous points are disjoint. There can be at
most countably many disjoint open intervals on the real line, since each such interval
contains a rational number, and then the number of disjoint open intervals is no more
than the number of rational numbers. Thus the number of discontinuous points of f is
at most countable.

Remark 4. The convergence in distribution is also called weak convergence. The term
weak has two meanings. One is intuitive: It is weaker than the convergence in probability,
and then weaker than the almost sure convergence. The other meaning is that it is
related to the weak* convergence in functional analysis. In the following theorem, if we
interpret the bounded continuous functions as linear functionals, then the convergence of
the sequence of random variables is the weak* convergence in the Banach space that we
have not defined yet.

Theorem 40. If random variables {Xn} converge to X in probability, then they converge
to X weakly.

Proof. Let F (x) be the distribution function of X, and x be a continuous point of F ,
that is, for all ε > 0, there is δ > 0 such that 0 ≤ F (x + δ) − F (x) < ε and 0 ≤
F (x)−F (x− δ) < ε. Then since Xn → X in probability, there exists N such that for all
n > N , P (|Xn −X| > δ) < ε. Then for n > N

|Fn(x)− F (x)| ≤ P (Xn ≤ x,X > x) + P (Xn > x,X ≤ x)

≤ P (Xn ≤ x,X > x+ δ) + P (x ≤ X ≤ x+ δ)

+ P (Xn > x,X ≤ x− δ) + P (x− δ < X ≤ x)

≤ ε+ ε+ ε+ ε = 4ε,

and we prove the desired convergence.

A direct consequence of this result is that if {Xn} → X a.s., then Xn ⇒ X. We have
the following result which is in a sense the converse of the statement above.

Theorem 41. If distribution functions Fn ⇒ F∞, then there are random variables {Xn}
and X∞ with distribution functions Fn and F , such that Xn → X a.s..

Proof. We construct X∗, ∗ = n or∞, on the same probability space (Ω,F , P ) as follows.
Let Ω = (0, 1), the interval on R, F = Borel sets on (0, 1), and P = λ, the Lebesgue
measure. Let

X∗(x) = sup{y | F∗(y) < x}.
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So X∗(x) is a non-decreasing function, and then it is a Lebesgue measurable function and
a well-defined random variable. On the other hand,

P (X∗ ≤ x) =

∫ 1

0

1X∗(t)≤xdt =

∫ 1

0

1sup{y|F∗(y)<t}≤xdt =

∫ 1

0

1F (x)≥tdt = F (x).

Note that in one step we used the argument “If for all y that F∗(y) < t we have y ≤ x,
then F∗(x) ≥ t”, and it is based on the right-continuity of F∗.

For any t ∈ (0, 1), it is in one of the following three cases:

1. There is a unique x such that F∞(x) = t.

2. t is not in the range of F∞.

3. There are x1 < x2 such that F∞(x1) = F∞(x2) = t.

In Case 1, we have X∞(t) = sup{y | F (y) < t} = x. Also we have that for any ε > 0,
there is δ > 0 such that

F∞(x+ ε) > F∞(x) + δ = t+ δ, F∞(x− ε) < F∞(x)− δ = t− δ.

By Lemma 39, we have that there exist x1 ∈ (x− 2ε, x− ε) and x2 ∈ (x+ ε, x+ 2ε) such
that F∞ is continuous at x1 and x2. Then by the convergence in probability, Fn(x1) →
F∞(x1) < F∞(x)− δ and Fn(x2)→ F∞(x2) > F∞(x) + δ as n→∞. We have that there
exists N such that for all n > N ,

Fn(x1) ≤ F∞(x)− δ = t− δ, Fn(x2) ≥ F∞(x) + δ = t+ δ.

Thus we have that for n > N

Xn(t− δ) ≥ x1 > x− ε, Xn(t+ δ) ≤ x2 < x+ 2ε,

which imply that x − 2ε < Xn(t) < x + 2ε. Since ε is arbitrary, we conclude that
Xn(t)→ X∞(t).

In Case 2, let x = inf{y | F (y) ≥ t}. By the right continuity of F∞, we have that
F (x) = t′ > t and then X∞(t) = x. Again we have that for all ε > 0, there is δ > 0 such
that F (x + ε) > t + δ and F (x − ε) < t − δ. So we repeat the argument for Case 1 and
derive that Xn(t)→ X∞(t).

In Case 3, we cannot show that Xn(t)→ X(t). But in this case, F∞(x) is a constant
on the open interval (x1, x2). Similar to the proof of Lemma 39, we can show that for a
non-decreasing function f , the inverse image f−1(t) can contain an open interval for at
most countably many t. Thus the set of t in Case 3 is at most countable, and these t
does not affect the a.s. convergence of {Xn} to X∞.

As an application of Theorem 41, we can prove the alternative characterization of
weak convergence.

Theorem 42. The sequence of random variables Xn ⇒ X∞ if and only if for every
bounded continuous function g, we have Eg(Xn)→ Eg(X∞).
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Proof. First we prove that the convergence in distribution implies the convergence of
expectation of g(Xn). Recall that Eg(Xn) =

∫
g(x)µn(dx) where µn is the distribution

of the random variable Xn, which is determined by the distribution function Fn of Xn.
So Eg(Xn) (Eg(X∞ respectively) is determined by the distribution function Fn (F∞

respectively). Therefore if Yn
d
= Xn and Y∞

d
= X∞, and we can show that Eg(Yn) →

Eg(Y∞), it implies that Eg(Xn)→ Eg(X∞).
Hence we can take Yn and Y∞ on the same probability space and Yn → Y∞ a.s.,

by Theorem 41. In this special case, the result is a direct consequence of dominated
convergence theorem.

Now prove the other part of the theorem, that is, if Eg(Xn) → Eg(X∞) for all
bounded continuous g, then at any x where F∞ is continuous, Fn(x) → F∞(x). Due to
the continuity of F∞ at x, for all ε > 0, there is δ > 0 such that F∞(x)− ε < F∞(x− δ) ≤
F∞(x) ≤ F∞(x+ δ) < F∞(x) + ε, or equivalently,

F∞(x)− ε < P (X∞ ≤ x− δ) ≤ P (X∞ ≤ x) ≤ P (X∞ ≤ x+ δ) < F (x) + ε.

Now consider the function fδ and gδ that are defined as

fδ(t) =


1 if t ≤ x− δ,
0 if t ≥ x,
t−(x−δ)

δ
if x− δ < t < x,

gδ(t) =


1 if t ≤ x,

0 if t ≥ x+ δ,
t−x
δ

if x < t < x+ δ.

The assumption of the theorem implies that

lim sup
n→∞

Fn(x) = lim sup
n→∞

P (Xn ≤ x) ≥ lim
n→∞

Efδ(Xn) = Efδ(X∞) ≥ P (X∞ ≤ x− δ) > F (x)− ε,

lim inf
n→∞

Fn(x) = lim inf
n→∞

P (Xn ≤ x) ≤ lim
n→∞

Egδ(Xn) = Egδ(X∞) ≤ P (X∞ ≤ x+ δ) > F (x) + ε.

By the arbitrariness of ε, we obtain that Fn(x)→ F∞(x).

The following theorem is another application of Theorem 41. It is called “continuous
mapping” theorem, since it shows that if Xn ⇒ X∞ and g is continuous, then g(Xn) ⇒
g(X∞). The continuous mapping theorem has its counterparts with the “convergence
in distribution” replace by “convergence in probability” and “almost sure convergence”.
The statements and proofs for the other two versions are left to you.

Theorem 43 (Continuous mapping). Let g : R→ R be a measurable function and Dg =
{x | g is discontinuous at x}. If Xn ⇒ X∞ and P (X∞ ∈ Dg) = 0, then g(Xn)⇒ g(X∞).
If in addition g is bounded, then Eg(Xn)→ Eg(X∞).

Proof. Like in the proof of “only if” part of Theorem 42, without loss of generality we
assume that Xn → X∞ a.s.. We denote E1 = {ω | Xn(ω) 6→ X∞(ω)}, and E2 = X−1

∞ (Dg).
Both E1 and E2 are of probability 0, and if ω ∈ Ω \ (E1 ∪ E2), then Xn(ω) → X∞(ω),
and by the continuity of g at X∞(ω) we have g(Xn(ω))→ g(X∞(ω)). Thus we show that
almost surely (except for E1 ∪ E2) g(Xn)→ g(X∞), and so g(Xn)⇒ g(X∞).

The other part of the theorem is straightforward and is left for you.

Next we consider more equivalent forms of the weak convergence condition. They
together are called the portmanteau theorem.
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Theorem 44 (Portmanteau). The following statements are equivalent:

(a) Xn ⇒ X∞.

(b) For all open sets G ⊆ R, lim infn→∞ P (Xn ∈ G) ≥ P (X∞ ∈ G).

(c) For all closed sets K ⊆ R, lim supn→∞ P (Xn ∈ K) ≤ P (X∞ ∈ K).

(d) For all sets A with P (X∞ ∈ ∂A) = 0, limn→∞ P (Xn ∈ A) = P (X∞ ∈ A), where
∂A = Ā \ intA, the sets of points that are in the closure of A but not the interior
of A.

Proof.

(a)⇒ (b) By the same reason as in the proof of Theorem 42, we assume that Xn → X∞
a.s. without loss of generality. Consider the indicator functions

f∗(ω) = 1X∗(ω)∈G, ∗ = n or ∞.

If Xn(ω) → X∞(ω) and X∞(ω) ∈ G, then eventually Xn(ω) ∈ G and then fn(ω) =
f∞(ω) = 1 for large enough n. If Xn(ω)→ X∞(ω) and X∞(ω) /∈ G, then we do not have
Xn(ω)→ X∞(ω) generally, but nevertheless fn(ω) ≥ f∞(ω) = 0 for all n. Hence we have
lim infn→∞ fn(ω) ≥ f∞(ω) a.s., since Xn → X∞ a.s.. By Fatou’s lemma,

lim inf
n→∞

P (Xn ∈ G) = lim inf
n→∞

∫
Ω

fn(ω)dP (ω) ≥
∫

Ω

lim inf
n→∞

fn(ω)dP (ω)

≥
∫

Ω

f∞(ω)dP (ω) = P (X∞ ∈ G).

(b) ⇐ (c) Let G = Kc, and use that P (X∗ ∈ K) = 1−P (X∗ ∈ G) where ∗ = n or ∞.

(b) + (c) ⇒ (d) For any subset A ⊆ R, we have intA ⊆ A ⊆ Ā, intA is open, and Ā
is closed. Then we have

P (X∞ ∈ intA) ≤ lim inf
n→∞

P (Xn ∈ intA) and lim sup
n→∞

P (Xn ∈ Ā) ≤ P (X∞ ∈ Ā).

The difference between P (X∞ ∈ Ā) and P (X∞ ∈ intA) is P (X∞ ∈ ∂A) = 0, so we have
P (X∞ ∈ Ā) = P (X∞ ∈ intA) = P (X∞ ∈ A). Hence

P (X∞ ∈ A) ≤ lim inf
n→∞

P (Xn ∈ intA) ≤ lim inf
n→∞

P (Xn ∈ A)

≤ lim sup
n→∞

P (Xn ∈ A) ≤ lim sup
n→∞

P (Xn ∈ Ā) ≤ P (X∞ ∈ A),

and we have that limn→∞ P (Xn ∈ A) = P (X∞ ∈ A), the desired result.
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(d) ⇒ (a) For any x ∈ R such that F∞ is continuous at x, we take A = (−∞, x] and
then ∂A = {x} and P (X∞ ∈ ∂A) = 0. Thus we have limn→∞ Fn(x) = limn→∞ P (Xn ∈
A) = P (X∞ ∈ A) = F∞(x), and check that Xn ⇒ X∞ by Definition 6.

The weak* topology has an important property, the Banach-Alouglu theorem, such
that the closed ball of the dual space of a normed space is compact. If you find the
terminologies in the statement above arcane, do not worry, we are not going to use it
anywhere in our module, but state the following result in an intelligible way.

Theorem 45 (Helly’s selection). For every sequence Fn of distribution functions, there
is a subsequence, and a right-continuous non-decreasing function F , so that at any point
x where F is continuous, the value of the functions in the subsequence converges to F (x).

Proof. First we construct the subsequence and F , and then we prove that they satisfy
the conditions. Let {r1, r2, . . . } be an ordering of all rational numbers.

1. Let {Fn1(1), Fn1(2), Fn1(3), . . . } be the subsequence of the original sequence {Fn} such
that Fn1(k)(r1) converges, and denote the limit f(r1).

2. Let {Fn2(1), Fn2(2), Fn2(3), . . . } be the subsequence of the sequence {Fn1(k)} such that
Fn2(k)(r2) converges, and denote the limit f(r2).

3. Let {Fn3(1), Fn3(2), Fn3(3), . . . } be the subsequence of the sequence {Fn2(k)} such that
Fn3(k)(r3) converges, and denote the limit f(r3).

4. . . . . . . . . .

At last, we choose the “diagonal” subsequence {Fn1(1), Fn2(2), . . . , Fnk(k), . . . } as the de-
sired subsequence. The limit function F is constructed by f as

F (x) = inf
y∈Q,y≥x

f(y).

It is clear that for all rl, f(rl) ∈ [0, 1], and as a mapping from Q to [0, 1], f is non-
decreasing. So F (x) is well-defined for all x ∈ R, and it is easy to check that F is
non-decreasing and right-continuous, and F (y) = f(y) if y ∈ Q.

Let x be a continuity point of F . For any ε > 0, there are y1, y2 ∈ Q such that
y1 < x, y2 > x, and F (y1) > F (x) − ε, F (y2) < F (x) + ε. If k is large enough, we
have, by the convergence of Fnk(k) to f at rational points, Fnk(k)(y1) < F (x) − ε and
Fnk(k)(y2) < F (x) + ε. Then

Fnk(k)(x) ∈ [Fnk(k)(y1), Fnk(k)(y2)] ⊆ (F (x)− ε, F (x) + ε).

By the arbitrariness of ε, we prove that Fnk(k)(x)→ F (x) as k →∞.

Remark 5. As a caveat, we should stress that the limit function F in Theorem 45 may
not be a distribution function, since it may not satisfy F (−∞) = 0 and F (+∞) = 1. For
an example, let Fn(x) = 0 for x < n and Fn(x) = 1 for x ≥ n. Then no matter what
subsequence we choose, the limit function F is always the constant function F (x) = 0.
We call the convergence in the sense of Theorem 45 the vague convergence, and write

Fnk(k)
v⇒ F.
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Theorem 46. For a sequence of distribution functions Fn, every sub-sequential limit is
the distribution function of a probability measure if and only if the sequence is tight, that
is, for all ε > 0, there is an Mε > 0, such that 1− Fn(Mε) < ε and Fn(−Mε) < ε for all
large enough n.

Proof. If the tightness condition is satisfied, then for any ε > 0, if a subsequence Fnk
v⇒ F ,

then Fnk(Mε) > 1 − ε for all large enough k, and then for any point x > Mε where
F is continuous, (by Lemma 39, such x exists,) we have F (x) = limk→∞ Fnk(x) ≥
lim supk→∞ Fnk(Mε) ≥ 1 − ε, and so F (+∞) ≥ F (x) > 1 − ε. By the arbitrariness
of ε, we conclude that F (+∞) = 1. Similarly, F (−∞) = 0.

On the other hand, if the tightness condition is not satisfied, without loss of generality,
there are {Fnk} and ε > 0 such that Fnk(k) < 1−ε for all k. A subsequence of {Fnk}

v⇒ F ,

and without loss of generality we assume that Fnk
v⇒ F . Then for any x on which F

is continuous, we have F (x) = limk→∞ Fnk(x) ≤ 1 − ε. By Lemma 39, such x is almost
everywhere, and so

F (+∞) = lim sup
x→∞,F is continuous at x

F (x) ≤ 1− ε,

and this subsequence has a vague limit that is not a distribution function.

In the end of this section, we remark that although we use the weak* convergence in
functional analysis as an inspiration of the weak convergence in probability, we have not
defined the exact relation between these two concepts, since we are not going to use this
relation in future.
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6 Characteristic functions

In analysis, a powerful tool is Fourier transform. If we want to consider the property of a
function but cannot do it directly, a natural strategy is to consider its Fourier transform.
For example, given two (square-integrable and continuous) functions f and g, we want
to compute the convolution

f ∗ g(x) =

∫ ∞
−∞

f(y)g(x− y)dy.

Besides the direct computation, the most common method is to compute the Fourier
transforms of f and g

f̌(t) =

∫ ∞
−∞

f(x)eitxdx, ǧ(t) =

∫ ∞
−∞

g(x)eitxdx.

Then use the property that the Fourier transform of the convolution is the product of
the Fourier transforms, that is,

(f ∗ g)∨(t) = f̌(t)ǧ(t),

and take the inverse Fourier transform

f ∗ g(x) = (fg)∨̂= (f̌ ǧ)̂=
1

2π

∫ ∞
−∞

f̌(t)ǧ(t)e−itxdt.

(Here the introduction to Fourier transform is flawed. Usually the transform f → f̌
is called the inverse Fourier transform, and the transform f : f̂ is called the Fourier
transform. Our choice of the prefactors is also not the common one.)

The Fourier transform is applied in probability theory under the name of characteristic
function.

Definition 7. Let X be a random variable, we define its characteristic function by

ϕ(t) = E(eitX) = E(cos(tX)) + iE(sin(tX)).

Suppose the distribution of X is µ, which is a probability measure on R, then

ϕ(g) =

∫
eitxµ(dx).

Since the characteristic function of a random variable is expressed in its distribution, we
can also say the characteristic function is associated to the distribution (function). If X
is a continuous random variable with density function f(x), that is, µ(dx) = f(x)dx, we
have

ϕ(t) =

∫ ∞
−∞

f(x)eitxdx,

the (inverse) Fourier transform of f .
Since eitx is a bounded function in x if t ∈ R, we have that ϕ(t) is well defined for all

real t, and by definition

ϕ(0) = E(e0) = 1, and |ϕ(t)| = |E(eitX)| ≤ E|eitX | = E(1) = 1 for all t.
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Furthermore, we also have that ϕ(t) is a uniformly continuous function in t, since

|ϕ(t+ε)−ϕ(t)| = |E(ei(t+ε)X−eitX)| ≤ E|ei(t+ε)X−eitX | = E|(eiεX−1)eitX | = E|eiεX−1|,

and as ε ↓ 0, eiεX − 1→ 0 a.s., we derive that E|eiεX − 1| → 0 as ε ↓ 0 by the dominated
convergence theorem.

Recall that in an exercise we derived that if independent random variables X, Y have
density functions f, g respectively, then the density function of X + Y is the convolution
of f and g. Inspired by the Fourier transform formula for convolutions, we can state, if
not prove, the following result:

Theorem 47. If X and Y are independent and have characteristic functions ϕ(t) and
ψ(t) respectively, then X + Y has characteristic function ϕ(t)ψ(t).

Proof. By the independence,

E(eit(X+Y )) = E(eitXeitY ) = E(eitX)E(eitY ) = ϕ(t)ψ(t).

One simple example of characteristic function is for a random variable X in Bernoulli
distribution, such that P (X = 0) = P (X = 1) = 1/2. Then ϕ(t) = 1

2
eit·0 + 1

2
eit·1 =

cos(t/2)eit/2. The most important example of characteristic function is for a random
variable in normal distribution N(µ, σ2), where µ is the expectation and σ2 is the variance,
so that the density function is

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

In the simplest case µ = 0 and σ2 = 1, we have

ϕ(t) =
1√
2π

∫ ∞
−∞

e−
x2

2
+itxdx =

1√
2π

∫ ∞
−∞

e−
(x−it)2

2 e−
t2

2 dx = e−
t2

2

(
1√
2π

∫ ∞−it
−∞−it

e−
t2

2 dz

)
.

where the integral of z is on a contour in the complex plane that is parallel to the real axis.
It is a standard fact that the expression in the parenthesis is 1 if t = 0. By a standard
application of the residue theorem in complex analysis, the expression is independent of
t. Thus we conclude that ϕ(t) = e−t

2/2 in this case. In the general case, we can repeat
the argument, but a faster way is to recorganise that if X is in N(0, 1) distribution, then
σX + µ is in N(µ, σ2) distribution (exercise), and then use the following result

E(eit(aX+b)) = eitbE(ei(ta)X).

Hence the characteristic function for σX + µ is eiµte−(σt)2/2 = exp(−σ2

2
t2 + iµt).

Now let’s consider the question: If we know the characteristic function, can we recover
the distribution (function) of the random variable? If we know in advance that the density
function exists, then the (inverse) Fourier transform gives the density function from the
characteristic function. But we know that the density function only exists for continuous
random variables. We have a more complete and more sophisticated result:
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Theorem 48. Let ϕ(t) be the characteristic function of a random variable whose distri-
bution is µ. Then for any a < b,

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt = µ(a, b) +

1

2
µ{a}+

1

2
µ{b}.

We note that the integral domain [−T, T ] cannot be replaced by (−∞,∞) in general,
otherwise the convergence is not guaranteed.

Proof of Theorem 48. We denote

IT =
1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt =

1

2π

∫ T

−T

(∫ b

a

e−itydy

)(∫
R
eitxµ(dx)

)
dt.

Since |e−ityeitx| ≤ 1 and∫ T

−T

∫ b

a

∫
R

1µ(dx)× dy × dt = 2T (b− a) <∞,

we can apply Fubini’s theorem and write

IT =

∫
R
µ(dx)

(
1

2π

∫ b

a

dy

∫ T

−T
dteit(x−y)

)
=

∫
R
µ(dx)

∫ b

a

dy
eiT (x−y) − e−iT (x−y)

2πi(x− y)

=

∫
R
µ(dx)

∫ b

a

dy
sin(T (x− y))

π(x− y)

=

∫
R
µ(dx)(R(T (x− a))−R(T (x− b))),

where

R(x) =

∫ x

0

sin s

πs
ds.

It is a tricky result in calculus that

lim
x→∞

R(x) =

∫ ∞
0

sin s

πs
ds =

1

2
, lim

x→−∞
R(x) = −

∫ ∞
0

sin s

πs
ds = −1

2
.

So as T →∞,

lim
T→∞

R(T (x− a))−R(T (x− b)) =


0 if x < a or x > b,

1 if a < x < b,
1
2

if x = a or x = b.

On the other hand, it is not hard to see that there exists C > 0 such that −C < R(x) < C
for all x, and then |R(T (x−a))−R(T (x− b))| < 2C for all x, T . Thus by the dominated
convergence theorem,

lim
T→∞

IT =

∫
R
µ(dx)(χa<x<b +

1

2
χx=a +

1

2
χx=b) = µ(a, b) +

1

2
µ{a}+

1

2
µ{b}.
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We remark again that the cumbersome notation limT→∞
∫ T
−T cannot be replaced by∫∞

−∞ in Theorem 48. (Actually the former notation is the Cauchy principal value of
that generalises the latter.) But if the characteristic function is integrable, that is,∫∞
−∞|ϕ(t)|dt < ∞, then we can replace the Cauchy principal value simply by

∫∞
−∞. Fur-

thermore, we have the following result.

Theorem 49. If
∫
|ϕ(t)|dt <∞, then µ has bounded continuous density

f(y) =
1

2π

∫ ∞
−∞

e−ityϕ(t)dy.

Proof. First, f(y) is well defined and bounded, since |e−ityϕ(t)| = |ϕ(t)|, and so |f(y)| ≤
1

2π

∫
|ϕ(t)|dt. Next, f(y) is continuous. To see it, we consider

|f(y + h)− f(y)| = 1

2π

∣∣∣∣∫ (e−it(y+h) − e−ity
)
ϕ(t)dt

∣∣∣∣ ≤ 1

2π

∫
|1− e−ith||ϕ(t)|dt.

As h → 0, the factor |1 − e−ith| → 0. Since the integrand on the right-hand side of the
formula above is dominated by |ϕ(t)|, by the dominated convergence theorem, we have
|f(y + h)− f(y)| → 0 as h→ 0.

Next, we have that for all a < b

µ(a, b) +
1

2
µ{a}+

1

2
µ{b} =

1

2π
lim
T→∞

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt

=
1

2π

∫ ∞
−∞

e−ita − e−itb

it
ϕ(t)dt

=
1

2π

∫ ∞
−∞

(∫ b

a

e−itydy

)
ϕ(t)dt

=

∫ b

a

(
1

2π

∫ ∞
−∞

e−ityϕ(t)dt

)
dy

=

∫ b

a

f(y)dy.

It is clear that µ has no pointmass and f(y) is the density function of µ.

The next theorem shows that characteristic functions are useful tool to analyse weak
convergence. Here and later, when we say the weak convergence of distributions, we mean
the weak convergence of the corresponding distribution functions.

Theorem 50. Let µ1, µ2, . . . be distributions, and ϕ1(t), ϕ2(t), . . . be characteristic func-
tions associated to them.

(a) If µn ⇒ µ∞ where µ∞ is a distribution with characteristic function ϕ∞(t), then
ϕn(t)→ ϕ∞(t) pointwise.

(b) If ϕn(t)→ ϕ∞(t) pointwise, and the limit function ϕ∞(t) is continuous at point 0,
then ϕ∞(t) is the characteristic function for a distribution, say µ∞, and µn ⇒ µ∞.
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Proof. Part (a) is a direct consequence of Theorem 42 where the bounded continuous
function is eitx.

To prove part (b), we denote the distribution function for µn by Fn. By Helly’s
selection theorem, we have that a subsequence {Fnk} converges to a limit F∞ vaguely.
Suppose we have that the sequence {Fn} is tight. Then F∞ is a distribution function,
corresponding to a distribution µ∞, and then Fn ⇒ F∞, or equivalently, µn ⇒ µ∞,
and by part (a) we have that the characteristic function of µ∞ is ϕ∞(t). Although we
have just proved the result for a subsequence {µnk}, the result can be extended to the
sequence {mn}. Suppose not, then there exists a bounded continuous function f and
another subsequence {mmk} such that∣∣∣∣∫ f(x)mmk(dx)−

∫
f(x)m∞(dx)

∣∣∣∣ > ε

for some ε > 0. Using Helly’s selection theorem and the tightness of {Fn}, we have
that a further subsequence {mmk(l)} converge weakly to m′∞ 6= m∞. Then by part (a),
ϕmk(l)(t)→ ϕ′∞(t), the characteristic function of m′∞, and it is different from ϕ∞(t). Then
we derive a contradiction.

Thus the remaining part of the proof is to show that {Fn} is tight, that is, for any
ε > 0, there is an M such that µn(−M,M) > 1− ε, or equivalently, µn(R\ (−M,M)) < ε
for all µn. Actually we only need to prove it for large enough n.

Consider the integral

In(M) =

∫ (
1− sin(M−1x)

M−1x

)
µn(dx).

Since 1− sin(x)/x ≥ 0 for all x, and for |x| ≥ 1, we have 1− sin(x)/x > c > 0 where c is
a positive constant (say 1/10), we derive the inequality

In(M) ≥
∫
R\(−M,M)

(
1− sin(M−1x)

M−1x

)
µn(dx) > cµn(R \ (−M,M)).

On the other hand,

1− sin(M−1x)

M−1x
= 1− eiM

−1x − e−iM−1x

2iM−1x
= 1−M

2

∫ M−1

−M−1

eixtdt =
M

2

∫ M−1

−M−1

(eix·0− eixt)dt,

and then by Fubini’s theorem

In(M) =
M

2

∫
µn(dx)

∫ M−1

−M−1

(eix·0 − eixt)dt

=
M

2

∫ M−1

−M−1

(∫
eix·0µn(dx)−

∫
eixtµn(dx)

)
dt

=
M

2

∫ M−1

−M−1

(ϕn(0)− ϕn(t))dt.

Since we assume that ϕ∞(t) is continuous at 0, for large enough M , we have

M

2

∫ M−1

−M−1

(ϕ∞(0)− ϕ∞(t))dt < c−1ε.
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Then using the pointwise convergence of {ϕn(t) to ϕ∞(t) and the dominated convergence
theorem, for the same M , if n is large enough,

In(M) =
M

2

∫ M−1

−M−1

(ϕn(0)− ϕn(t))dt < c−1ε,

and we conclude that µn(R \ (−M,M)) < ε for such M if n is large enough. Thus we
prove the tightness.

Characteristic functions are handy tools to analyse moments of random variables.
Formally,

ϕ(t) =

∫
eitxµ(dx) =

∫ ∞∑
k=0

tk

k!
xkµ(dx) =

∞∑
k=0

tk

k!

∫
xkµ(dx) = 1 + itEX − t2

2
EX2 + · · · .

But this is only a formal argument. One problem is the change of order of the infinite
sum and integral, which keeps pestering us since we began studying calculus. Another
trouble is that EXk may not always exist. So the following result is non-trivial:

Theorem 51. If EX2 <∞, then the characteristic function ϕ(t) for X satisfies

lim
t→0

1

t2

(
ϕ(t)−

(
1 + itEX − t2

2
EX2

))
= 0.

or in other words, ϕ(t) = 1 + itEX − (t2/2)EX2 + o(t2).

Proof. We need to estimate

1

t2

∣∣∣∣ϕ(t)−
(

1 + itEX − t2

2
EX2

)∣∣∣∣ =
1

t2

∣∣∣∣∫ (eitx − (1 + itx+
(itx)2

2

))
µ(dx)

∣∣∣∣
≤
∫

1

t2
|R(tx)|µ(dx),

where R(y) is the remainder term of the second order Taylor expansion for the function
eiy at 0. By l’Hôpital’s rule, t−2R(tx) → 0 as t → 0 for all x. So if we can show that
there exists an integrable function that dominates t−2R(tx) for all t, then the proof is
done by the dominated convergence theorem. Actually we can take the desired integrable
function as x2. The integrability of x2 is equivalent to EX2 =

∫
x2µ(dx) < ∞, and the

dominance is the consequence of the following lemma.

Lemma 52. For all y ∈ R, |R(y)| ≤ y2.

Proof. First, for |y| ≥ 4, we have

|R(y)| =
∣∣∣∣eiy − (1 + iy +

(iy)2

2

)∣∣∣∣ ≤ |eiy|+1+ |y|+ y2

2
= 2+y+

y2

2
≤ y2

8
+
y2

4
+
y2

2
≤ y2.

Next, for |y| < 4, we recall that the remainder term in Taylor expansion R(y) has the
integral form

|R(y)| =
∣∣∣∣∫ y

0

(eit)′′′

2!
(y − t)2dt

∣∣∣∣ ≤ ±∫ y

0

1

2
(y − t)2dt =

|y|3

6
≤ y2,

where ± is the sign of y. Hence we prove the lemma.
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The converse to Theorem 51 is also true in a certain form. To be precise, we have the
following theorem:

Theorem 53. For a random variable X, EX2 < ∞ under the condition on its charac-
teristic function ϕ(t):

lim inf
h↓0

1

h2
(2− ϕ(h)− ϕ(−h)) < +∞.

Proof. Noting that

1

h2
(2− ϕ(h)− ϕ(−h)) =

∫
1

h2
(2− eihx − e−ihx)µ(dx) =

∫
2− 2 cos(hx)

h2
µ(dx),

and that h−2(2 − 2 cos(hx)) is non-negative and h−2(2 − 2 cos(hx)) → x2 as h ↓ 0, we
have by Fatou’s lemma

EX2 =

∫
x2µ(dx) ≤ lim inf

h↓0

∫
2− 2 cos(hx)

h2
µ(dx) = lim inf

h↓0

1

h2
(2−ϕ(h)−ϕ(−h)) < +∞,

and prove the theorem.
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7 Central limit theorems

The hard work on characteristic functions is rewarded when we find that the proof of the
celebrated central limit theorem is an easy application of the properties of the character-
istic functions.

Theorem 54. Let X1, X2, . . . be i.i.d. with EXi = µ and var(Xi) = σ2 ∈ (0,∞). If
Sn = X1 + · · ·+Xn, then

Sn − nµ
σn1/2

⇒ χ,

where χ has the standard normal distribution N(0, 1).

Proof. By Theorem 50, we only need to show that the characteristic function of (Sn −
nµ)/(σn1/2), which we denoted as ϕn(t), converges pointwise at e−t

2/2, the characteristic
function of χ. We denote Yn = Xn − µ, which are i.i.d. random variables, and denote
their common characteristic function by ϕ(t). Then

ϕn(t) = E

(
exp

(
it
Sn − nµ
σn1/2

))
= E

(
n∏
k=1

exp

(
it

Yk
σn1/2

))
=

n∏
k=1

E

(
exp

(
it

Yk
σn1/2

))
= ϕ

(
t

σn1/2

)n
.

Since Yi has the first moment 0 and second moment σ2, we have, by Theorem 51,

ϕ

(
t

σn1/2

)
= 1− EY 2

2

(
t

σn1/2

)2

+ o

((
t

σn1/2

)2
)

= 1− t2

2n
+ o(n−1).

It is a basic fact in calculus that as x→ +∞, (1 + x−1)x → e, and so for any fixed t, as
n→∞, (1− t2/(2n))n → e−t

2/2. The o(n−1) term in the formula above can be ignored.
For any ε > 0, we have |o(n−1)| < ε/n for large enough n, and then

lim sup
n→∞

(
1− t2

2n
+ o(n−1)

)n
≤ lim sup

n→∞

(
1−

(
t2

2
+ ε

)
1

n

)n
= e−t

2/2eε,

lim inf
n→∞

(
1− t2

2n
+ o(n−1)

)n
≤ lim inf

n→∞

(
1−

(
t2

2
− ε
)

1

n

)n
= e−t

2/2e−ε.

By the arbitrariness of ε, we prove

lim
n→∞

ϕn(t) = ϕ

(
t

σn1/2

)n
= e−t

2/2,

the characteristic function of χ, and finish the proof.

A generalization of the central limit theorem above is the weak convergence to normal
distribution for a triangular array of random variables.

Theorem 55 (Lindeberg-Feller). For each n, let Xn,m (1 ≤ m ≤ n) be independent
random variables with EXn,m = 0. Suppose
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(i)
n∑

m=1

σ2
n,m → σ2 > 0, where σ2

n,m = EX2
n,m.

(ii) For all ε > 0, lim
n→∞

n∑
m=1

σ2
n,m(ε) = 0, where σ2

n,m(ε) = E (|Xn,m|2; |Xn,m| > ε).

Then Sn = Xn,1 + · · ·+Xn,n ⇒ σχ = N(0, σ2) as n→∞.

Remark 6. Before giving the proof, we remark that Condition (ii) implies that as n→∞,
all Xn,m converge to 0 (in distribution/probability). To be precise, we can see that given
any ε, if n is large enough, then σ2

n,m < ε for all m = 1, . . . , n (Exercise). The central
limit theorem is about the collective behaviour of many random variables. If any one of
them is so big that it alone affects the whole in an non-negligible way, then the central
limit theorem does not apply.

Proof. In the ideal case that all random variables Xn,m = Wn,m which are independent
and with normal distribution N(0, σ2

n,m). Then it is obvious that the distribution of
Wn,1 + · · · + Wn,n converges to N(0, σ2) in distribution. To see it, we have that the
characteristic function of Wn,m is exp(−σ2

n,mt
2/2), and the characteristic function of their

sum is exp(−(σ2
n,1 + · · ·+ σ2

n,n)t2/2)→ exp(−σ2t2/2).
To prove the general result, our strategy is to compare the characteristic function of

Xn,1 + · · ·+Xn,n, which we denote as ϕn(t), with that of Wn,1 + · · ·+Wn,n, and show that
the difference is small. Denote the characteristic function of Xn,m by ϕn,m(t), we have

ϕn,m(t)− e−σ2
n,mt

2/2 = E(eitXn,m)− E(eitWn,m)

= E

(
1 + itXn,m −

t2

2
X2
n,m +R(tXn,m)

)
− E

(
1 + itWn,m −

t2

2
W 2
n,m +R(tWn,m)

)
=

(
1 + itEXn,m −

t2

2
EX2

n,m + E(R(tXn,m))

)
−
(

1 + itEWn,m −
t2

2
EW 2

n,m + E(R(tWn,m))

)
= E(R(tXn,m))− E(R(tWn,m)),

where R(x) = eix − (1 + ix − x2/2) is the remainder of the Taylor expansion of eix of
degree 2.

Note that

E(R(tXn,m)) = E(R(tXn,m); |Xn,m| ≤ ε) + E(R(tXn,m); |Xn,m| > ε).

By Lemma 52, we have

|E(R(tXn,m); |Xn,m| ≤ ε)| ≤ E((tXn,n)2; |Xn,m| ≤ ε) = t2σ2
n,m(ε),

and by Lemma 56(a) below,

|E(R(tXn,m); |Xn,m| > ε)| ≤ E(|tXn,m|3; |Xn,m| > ε) ≤ E(t3εX2
n,m; |Xn,m| > ε)

≤ t3εE(X2
n,m) = t3εσ2

n,m.
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On the other hand, by Lemma 56(b) below,

|E(R(tWn,m))| = |e−σ2
n,mt

2/2 − (1− σ2
n,mt

2/2)| ≤ (σ2
n,mt

2/2)2 =
t4

4
σ4
n,m.

If n is large enough, as discussed in Remark 6, we have σ2
n,m < ε, and then

|ϕn,m(t)− e−σ2
n,mt

2/2| < An,m,

where

An,m = t2σ2
n,m(ε) + t3εσ2

n,m +
t4

4
σ4
n,m ≤ t2σ2

n,m(ε) +

(
t3 +

t4

4

)
εσ2

n,m.

It is easy to see that

lim
n→∞

n∑
m=1

An,m =

(
t3 +

t4

4

)
εσ2.

Then we have ∣∣∣∣ ϕn,m(t)

e−σ
2
n,mt

2/2
− 1

∣∣∣∣ ≤ eσ
2
n,mt

2/2An,m ≤ eεt
2/2An,m,

and with

n∑
m=1

log(1− eεt2/2An,m) ≤ log

(
ϕn(t)

e−(σ2
n,1+···+σ2

n,n)t2/2

)
=

n∑
m=1

log

(
ϕn,m(t)

e−σ
2
n,mt

2/2

)
≥

n∑
m=1

log(1 + eεt
2/2An,m).

By Lemma 56(c), for ε small enough, we have

log(1 + eεt
2/2An,m) ≤ eεt

2/2An,m, log(1− eεt2/2An,m) ≥ −2eεt
2/2An,m.

So

lim sup
n→∞

log

(
ϕn(t)

e−(σ2
n,1+···+σ2

n,n)t2/2

)
≤ lim sup

n→∞

∑
eεt

2/2An,m = eεt
2/2

(
t3 +

t4

4

)
εσ2,

lim inf
n→∞

log

(
ϕn(t)

e−(σ2
n,1+···+σ2

n,n)t2/2

)
≤ lim sup

n→∞

∑
eεt

2/2An,m = −2eεt
2/2

(
t3 +

t4

4

)
εσ2.

Since ε is arbitrary, we can conclude that

lim
n→∞

log

(
ϕn(t)

e−(σ2
n,1+···+σ2

n,n)t2/2

)
= 1,

and then conclude that limn→∞ ϕn(t)→ e−σ
2t2/2. Thus we prove that theorem.

The technical results we need in the proof of Theorem 55 is collected in the following
lemma.

Lemma 56. (a) |R(y)| ≤ |y|3 for all y ∈ R, where R(y) is the same as in Lemma 52.
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(b) |e−x − (1− x)| ≤ x2 for all x ≥ 0.

(c)

log(1 + x)

{
≤ x for x ≥ 0,

≥ 2x for x ∈ (−1/2, 0).

We only prove part (a) The other two parts are easier and are left for exercise.

Proof of Lemma 56(a). Similar to the proof of Lemma 52, we have

|R(y)| =
∣∣∣∣∫ y

0

(eit)′′′

2!
(y − t)2dt

∣∣∣∣ ≤ ±∫ y

0

1

2
(y − t)2dt =

|y|3

6
,

where ± is the sign of y. Hence we prove the lemma.
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8 Poisson convergence

We consider a weak convergence result analogous to the central limit theorem, which is
the “law of rare events” where we sum up many discrete random variables which are
closed to 0 individually. The weak limit of the sum is the Poisson distribution.

Definition 8. A random variable X is in Poisson distribution with mean λ (denoted as
Poisson(λ)), if the values of X are non-negative and

P (X = k) = e−λ
λk

k!
.

It is not hard to find that the characteristic function of X = Poisson(λ) is exp(λ(eit−
1)).

Theorem 57. For each n, let Xn,m (1 ≤ m ≤ n) be independent Bernoulli random
variables with P (Xn,m = 1) = pn,m and P (Xn,m = 0) = 1− pn,m. Suppose

1.
n∑

m=1

pn,m → λ ∈ (0,∞).

2. max
1≤m≤n

pn,m → 0.

Then the sum Sn := Xn,1 + · · ·+Xn,n ⇒ Poisson(λ).

Proof. We only need to show that the characteristic function of Sn, which is

ϕn(t) =
n∏

m=1

(
(1− pn,m)eit·0 + pn,me

it·1) =
n∏

m=1

(
(1− pn,m(1− eit·0)

)
converges to exp(λ(eit − 1)) for all t. Since the characteristic functions are all complex,
we consider the absolute value and the argument separately. We need to show that the
log of the absolute value of ϕn(t),

log

(
n∏

m=1

∣∣(1− pn,m(1− eit·0)
∣∣) =

1

2

n∑
m=1

log (1− 2(1− cos t)pn,m(1− pn,m))

converge to log|exp(λ(eit − 1))| = −λ(1− cos t), and the argument of ϕn(t),

n∑
m=1

arctan
pn,m sin t

1− pn,m(1− cos t)

converges to λ sin t.
For the limit of absolute value, we apply the estimate

|log(1 + x)− x| ≤ x2 for x ∈ (−1/2, 1/2),
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a result similar to Lemma 56(c). If pn,m are close to 0, then∣∣∣∣∣
(

n∑
m=1

log (1− 2(1− cos t)pn,m(1− pn,m))

)
−

(
n∑

m=1

−2(1− cos t)pn,m(1− pn,m)

)∣∣∣∣∣
≤

n∑
m=1

4(1− cos t)p2
n,m(1− pn,m)2

≤ 4(1− cos t)

(
max

1≤m≤n
pn,m

) n∑
m=1

pn,m,

and we have that it vanishes as n→∞. Thus

lim
n→∞

1

2

n∑
m=1

log (1− 2(1− cos t)pn,m(1− pn,m))

= lim
n→∞

n∑
m=1

−(1− cos t)pn,m(1− pn,m)

= − (1− cos t)
(

lim
n→∞

∑
pn,m − lim

n→∞

∑
p2
n,m

)
= − (1− cos t)(λ− 0),

and we prove the convergence of absolute values.
On the other hand, we have

|arctan(x)− x| ≤ x2 for all x ∈ R.

So ∣∣∣∣∣
(

n∑
m=1

arctan
pn,m sin t

1− pn,m(1− cos t)

)
−

(
n∑

m=1

pn,m sin t

1− pn,m(1− cos t)

)∣∣∣∣∣
≤ sin2 t

n∑
m=1

p2
n,m

(1− pn,m(1− cos t))2

≤ sin2 t

(
max

1≤m≤n
pn,m

) n∑
m=1

pn,m
(1− (max1≤m≤n pn,m) (1− cos t))2

,

and it vanishes as n→∞. We then have

lim
n→∞

n∑
m=1

arctan
pn,m sin t

1− pn,m(1− cos t)
= lim

n→∞

n∑
m=1

pn,m sin t

1− pn,m(1− cos t)
.

Since

lim sup
n→∞

n∑
m=1

pn,m sin t

1− pn,m(1− cos t)
≤ lim sup

n→∞

n∑
m=1

pn,m sin t = λ sin t,

lim inf
n→∞

n∑
m=1

pn,m sin t

1− pn,m(1− cos t)
≤ lim inf

n→∞

n∑
m=1

pn,m sin t

1− (max1≤m≤n pn,m) (1− cos t)
= λ sin t,

we get the desired convergence of the argument.
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The basic form of Poisson convergence, which is only for Bernoulli random variables,
has a direct generalization.

Theorem 58. Let Xn,m, 1 ≤ m ≤ n be independent non-negative integer valued random
variables, with P (Xn,m = 1) = pn,m and P (Xn,m ≥ 2) = εn,m, such that

1.
n∑

m=1

pn,m → λ ∈ (0,∞).

2. max
1≤m≤n

pn,m → 0.

3.
n∑

m=1

εn,m → 0.

Then the sum Sn := Xn,1 + · · ·+Xn,n ⇒ Poisson(λ).

Proof. Let X ′n,m = Xn,m1Xn,m=1. Then Theorem 57 implies that S ′n := Xn,1+· · ·+Xn,n ⇒
Poisson(λ). On the other hand, Sn − S ′n → 0 in probability, since

P (Sn 6= S ′n) ≤
n∑

m=1

P (Xn,m 6= X ′n,m) =
n∑

m=1

εn,m.

By the “converging together lemma” (an exercise), we finish the proof.

The next theorem is a corollary of the theorem above, and it shows how the Poisson
distribution occurs in applications.

Theorem 59. Suppose random positive points x1 < x2 < · · · , which are called “arrivals”,
are placed on (0,∞), and let N(s, t) be the number of arrivals in the interval (s, t] if
0 ≤ s < t. Suppose the following assumptions hold:

1. The number of arrivals in disjoint intervals are independent.

2. The distribution of N(s, t) only depends on t− s.

3. P (N(0, h) = 1) = λh+ o(h) as h ↓ 0.

4. P (N(0, h) ≥ 2) = o(h) as h ↓ 0.

Then N(0, t) = Poisson(λt) for all t > 0.

Proof. Note that N(0, t) = limn→∞
∑n

m=1 Xn,m where Xn,m = N((m − 1)/n,m/n), and
apply Theorem 58.

We can interpret the theorem by a real life example. Let xk be the time that the k-th
customer comes to a bank after the opening time t = 0 (so explained the term “arrival”),
then we assume the ideal conditions:

1. In non-overlapping different time intervals, the numbers of incoming customers are
independent.
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2. The number of incoming customers in any time interval from s to t depends only
on t− s.

3. At any infinitesimal time, the rate for a customer to come is λ.

4. The case that more than one customers come together is practically impossible.

Then the distribution of the number of customers in total time t is Poisson(λt).
Inspired by the bank customer example, we define the following Poisson process.

Definition 9. A family of random variables Nt, t ≥ 0, satisfies

(a) If 0 = t0 < t1 < · · · < tn, then N(tk)−N(tk−1) (1 ≤ k ≤ n) are independent.

(b) N(t)−N(s) = Poisson(λ(t− s)).
Then {Nt} is called a Poisson process with rate λ.

We claim that Nt can be defined as follows. Let ξ1, ξ2, . . . be i.i.d. positive random
variables with exponential distribution with rate λ, that is, P (ξi > t) = e−λt. Let
Tn = ξ1 + · · · + ξn and define Nt = sup{n | Tn ≤ t}. Then {Nt} satisfies the two
requirements for a Poisson process with rate λ.

Below we check the two conditions for {Nt} constructed above. Since this is a topic
covered by MA3236, we do not give all the calculational details. First compute the density
of Tn as

fTn(s) =
λnsn−1

(n− 1)!
e−λs.

So
P (Nt = 0) = P (T1 > t) = e−λt

and for n ≥ 1

P (Nt = n) = P (Tn ≤ t)− P (Tn+1 ≤ t) =

∫ t

0

fTn(s)− fTn+1(s)ds = e−λt
(λt)n

n!
.

We then verify Condition (b) with s = 0. Below we show Condition (a). After that,
Condition (b) follows. To see it, we note that if X = N(t) − N(s) is independent to
Y = N(s), and we have Y = Poisson(s) and X + Y = Poisson(t), we can compute that
X = Poisson(t− s) (exercise).

To check the independence condition (a), we compute the conditional probability that
for u ≥ t > 0

P (Tn+1 > u | Nt = n) =
P (Tn+1 > u, Tn ≤ n)

P (Nt = n)
= e−λ(u−t).

This computation shows that if we denote ξ′1 = TN(t)+1− t, then ξ′1 is independent of N(t)
and its distribution is the same as ξi: exponential distribution with rate λ. Similarly, if
we denote ξ′k = TN(t)+k−TN(t)+k−1 for k ≥ 2, we have that all the ξ′1, ξ

′
2, . . . are i.i.d. with

exponential distribution with rate λ, and they are independent of N(t).
Since ξ′1, ξ

′
2, . . . have the same distribution as ξ1, ξ2, . . . , with t = t1, we have that

the distributions of N(t2) − N(t1), N(t3) − N(t2), . . . , N(tn) − N(tn−1) have the same
distribution as N(t2− t1)−N(0), N(t3− t1)−N(t2− t1), . . . , N(tn− t1)−N(tn−1− t1),
and they are independent by inductive assumption. Also since all the N(tk) − N(tk−1)
(k ≥ 2) are derived from ξ′1, ξ

′
2, . . . , they are independent to N(t1) = N(t1)−N(t0).
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9 Stable laws

Now we consider the complement of the central limit theorem, in the following sense: Let
X1, X2, . . . be i.i.d. random variables with EX2

i = ∞. Then the central limit theorem
cannot hold, but we may ask whether a non-degenerate weak limit (Sn = bn)/an exists,
where Sn = X1 + · · · + Xn as usual, and an, bn are properly chosen real numbers? (We
say non-degenerate, because it is easy to let the weak limit to be 0 if we let an →∞ fast
enough.)

Our first example is the sum of i.i.d. random variables X1, X2, . . . in Cauchy distri-
bution, that is,

F (x) := P (Xi ≤ x) =
1

π

∫ x

−∞

dy

1 + y2
=

arctanx

π
+ 1/2.

We have that the characteristic function of Xi is

ϕ(t) =

∫ ∞
−∞

eity

π(1 + y2)
dy = exp(−|t|).

Then the characteristic function of Sn is exp(−n|t|), and we have that Sn/n has Cauchy
distribution. Hence in this example, we may take an = n and bn = 0, and the limit is the
Cauchy distribution.

Here we see that the Cauchy distribution has a special property that it is a stable law.

Definition 10. A distribution µ is called a stable law if for any n and X1, . . . , Xn are
i.i.d. random variables with distribution µ, there exist an and bn such that (Sn − bn)/an
also has distribution µ, where Sn = X1 + · · · + Xn and an, bn are properly chosen real
numbers.

It is clear that normal distributions are also stable laws. Actually stable laws are
closely related to the central limit theorem and its infinite variance counterpart. Below
we prove the following general result:

Theorem 60. Suppose X1, X2, . . . are i.i.d. random variables with a distribution that
satisfies

(i) lim
x→+∞

P (Xi > x)

P (|Xi| > x)
= θ ∈ [0, 1].

(ii) P (|Xi| > x) = x−αL(x) for all x > 0, where α ∈ (0, 2), and L(x) is a slow varying
function, such that lim

x→+∞
L(tx)/L(x)→ 1 for all t > 0.

Then with Sn = X1 +· · ·+Xn, an = inf{x | P (|Xi| > 0) ≤ n−1} and bn = nE(Xi1|Xi|≤an),
we have that (Sn − bn)/an ⇒ Y where Y has a non-degenerate distribution.

Before giving the proof, we clarify some definitions that are not very straightforward.
First, the slow varying condition implies that if L(x) grows, then it grows very slow, and
if L(x) vanishes, then it vanishes very slow, in the sense that given ε > 0, x−ε < L(x) < xε
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for all large enough x. To see it, we assume that for all x > M , L(2x)/L(x) < 2ε/2. Then
we take c = infx∈(M,2M ] L(x) and C = supx∈(M,2M ] L(x), and have inductively

2
−ε
2
kc < inf

x∈(2kM,2k+1M ]
L(x) ≤ sup

x∈(2kM,2k+1M ]

L(x) < 2
ε
2
kC.

Thus for large enough x, x−εL(x) < xε. Similarly, we can show that for any ε > 0, there
exist M,C, c > 0 such that for all y > x > M ,

c
(y
x

)−ε
<
L(y)

L(x)
< C

(y
x

)ε
.

The proof is left as an exercise.
The slow growth property of L(x) implies that an → ∞ faster than

√
n. To see

it, we note that for large enough x, L(x) > xα/2−1, and then P (|Xi| > x) > x−α/2−1.
We conclude that if n is large enough, then P (|Xi| > n1/(α/2+1) > n−1, and then an ≤
n1/(α/2+1).

By the definition of an, we can derive that P (|Xi| > an) ≤ n−1, but do not have that
the equal sign holds, unless the distribution function is continuous at ±an. But we have
the limiting result

nP (|Xi| > an)→ 1 as n→∞.
To check it, we argue by contradiction, and assume that for any ε > 0, there is a sub-
sequence {n(k)} such that P (|Xi| > an(k)) ≤ (1 − ε)n(k)−1. On the other hand, by the
definition of an, we have that P (|Xi| > (1−ε)1/(2α)an(k)) > n(k)−1. Equivalently, we have

a−αn(k)L(an(k)) ≤ (1− ε)n−1 and (1− ε)−1/2a−αn(k)L((1− ε)an(k)) > n−1.

It implies the inequality
L((1− ε)an(k))

L(an(k))
> (1− ε)−1/2.

Since an(k) →∞, it contradicts the slow varying condition.

Proof of Theorem 60. For any ε > 0, we define the triangular arrays of random variables
X̄n,m(ε) and X̂n,m(ε), where 1 ≤ m ≤ n, as

X̄n,m(ε) = Xm1|Xm|≤εan , X̂n,m(ε) = Xm1|Xm|>εan ,

µ̄n(ε) = EX̄n,1(ε), µ̂n(ε) = E(X̂n,1(ε); |X̂n,1| ≤ an) = E(Xm1εan<Xm≤an),

and then let

S̄n(ε) =
n∑

m=1

X̄n,m(ε), Ŝn(ε) =
n∑

m=1

X̂n,m(ε).

It is clear that Sn = S̄n(ε) + Ŝn(ε), and we also have

Sn − bn
an

=
S̄n(ε)− nµ̄n(ε)

an
+
Ŝn(ε)− nµ̂n(ε)

an
.

We will show that (S̄n(ε)− nµ̄n(ε))/an is small (comparable to ε), and then compute the
weak limit of (Ŝn(ε)− nµ̂n(ε))/an.
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We estimate the var(S̄n(ε) as follows. First,

var(S̄n(ε)) = n var(X̄n,m(ε)) ≤ nE(X̄2
n,m(ε)).

Suppose µ̄ is the distribution of |Xi| and F̄ is the distribution function. Also suppose
that

L(x)

L(y)
< C

(
x

y

)α/2−1

, or equivalently,
1− F̄ (x)

1− F̄ (y)
< C

(
x

y

)−1−α/2

for x > M and t > 1.

We have

nEX̄2
n,m(ε) = n

∫ εan

0

x2µ̄(dx) = n

∫ M

0

x2µ̄(dx)+n

∫ εan

M

x2µ̄(dx) ≤ nM2+n

∫ εan

M

x2µ̄(dx).

On the other hand,

n

∫ εan

M

x2µ̄(dx) = n

∫ εan

M

(∫ ∞
0

2t · 1t≤xdt
)
µ̄(dx)

= n

∫ ∞
0

2t

(∫ εan

M

1t≤xµ̄(dx)

)
dt

= n

∫ M

0

2t(F̄ (εan)− F̄ (C))dt+ n

∫ εan

M

2t(F̄ (εan)− F (t))dt

≤ n

∫ M

0

2tdt+

∫ εan

M

2tn(1− F̄ (t))dt

≤ nM2 + 2

∫ εan

M

n(1− F̄ (an))Ct

(
t

an

)−1−α/2

dt.

Since we have that n(1− F (an)) = nP (|Xi| > an)→ 1 and∫ εan

M

t

(
t

an

)−1−α/2

dt ≤
∫ εan

0

t

(
t

an

)−1−α/2

dt = a2
n

∫ ε

0

y−α/2dy =
ε1−α/2

1− α/2
a2
n,

we conclude that

lim sup
n→∞

var(S̄n(ε)) ≤ 2nM2 +
ε1−α/2

1− α/2
a2
n.

Finally, since an ≤ n1/(α/2+1), we have

lim sup
n→∞

E((S̄n(ε)− µ̄n(ε))/an) = lim sup
n→∞

var(S̄n(ε)/an) ≤ ε1−α/2

1− α/2
.

Now we consider the distribution of Ŝn/an. Note that since nP (|Xi| > an) → n,
we have that for all t > 0, nP (|Xi| > tan) → t−α, by condition (ii), and furthermore,
nP (Xi > tan)→ θt−α and nP (Xi < −tan)→ (1− θ)t−α, as n→∞.

Then for any X̂n,m(ε), we have nP (X̂n,m(ε) 6= 0)→ ε−α. So by the Poisson convergence
result, we have that the number of nonzero Xn,m(ε) with m = 1, . . . , n has the Poisson
distribution with mean ε−α as the limit as n→∞. To be precise,

pk(n) := P (k out of n X̂n,m(ε) are nonzero)→ e−ε
−α ε−αk

k!
, as n→∞.
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Under the condition that k out of n X̂n,m(ε) are nonzero, these k nonzero ones are i.i.d.,
and they have the same distribution as i.i.d. random variables Yn,1(ε), . . . , Yn,k(ε) such
that

lim
n→∞

P (Yn,1(ε)/an > t) = θt−α/ε−α, lim
n→∞

P (Yn,1(ε)/an < −t) = (1− θ)t−α/ε−α,

or equivalently, their limiting distribution of Yn,1(ε)/an) is given by the density function

f(x) =


θαεαt−α−1 if t ≥ ε,

(1− θ)αεα(−t)−α−1 if t ≤ −ε,
0 otherwise.

So we have that the characteristic function ϕn(t; ε) of Ŝn(ε)/an is expressed as

ϕn(x; s) = E

(
n∏

m=1

eitX̂n,m(ε)

)
=

n∑
k=1

pk(n)E
(
eitYn,1(ε)

)k
.

By the limit of pk(n) as n→∞, and the limit

lim
n→∞

E
(
eitYn,1(ε)

)
=

∫ ∞
f(x)dx+

∫ −ε
−∞

f(x)dx

= αεα
∫ ∞
ε

(cos(tx) + i(2θ − 1) sin(tx))x−α−1dx,

we have that

lim
n→∞

ϕn(t; ε) = e−ε
−α

∞∑
k=0

e−αk

k!

(
αεα

∫ ∞
ε

(cos(tx) + i(2θ − 1) sin(tx))x−α−1dx

)k
= e−ε

−α
exp

(
α

∫ ∞
ε

(cos(tx) + i(2θ − 1) sin(tx))x−α−1dx

)
= exp

(
α

∫ ∞
ε

(cos(tx)− 1 + i(2θ − 1) sin(tx))x−α−1dx

)
.

At last we consider the characteristic function of (Ŝn(ε)− nµ̂n(ε))/an. We have

nµ̂n(ε)

an
= nE (X1/an; ε < |X1|/an ≤ 1)

= nP (|Xi| > εan)E (Yn,1(ε)/an; ε < |Yn,1(ε)|/an ≤ 1) ,

and then the limit

lim
n→∞

nµ̂n(ε)

an
= α

∫ 1

ε

(2θ − 1)x · x−α−1dx.

Although further simplification is possible, the form above is the most suitable one for
our purpose, because then we have that the limit of the characteristic function of (Ŝn(ε)−
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nµ̂n(ε))/an is

lim
n→∞

ϕn(t; ε)eitnµ̂n(ε)/an = exp

(
α

∫ ∞
ε

(cos(tx)− 1)x−α−1dx

)
× exp

(
α

∫ ∞
1

i(2θ − 1) sin(tx))x−α−1dx

)
× exp

(
α

∫ 1

ε

i(2θ − 1)(sin(tx)− tx)x−α−1dx

)
.

We note that all the three terms are well defined, and the first and third terms have well
defined limits as ε ↓ 0.

As ε becomes small, we have that (S̄n(ε)− µ̄n(ε))/an has a very small second moment
as n is large, and the weak limit of (Ŝn(ε)− nµ̂n(ε))/an exists and has the characteristic
function close to

ϕ(t) = exp

(
α

∫ ∞
0

(cos(tx)− 1)x−α−1dx

)
exp

(
α

∫ ∞
1

i(2θ − 1) sin(tx))x−α−1dx

)
× exp

(
α

∫ 1

0

i(2θ − 1)(sin(tx)− tx)x−α−1dx

)
.

It is not hard to see that by letting ε ↓ 0 the sum of them, (Sn− bn)/an, has a weak limit
whose characteristic function is ϕ(t).

From the proof, we see that the limiting behaviour of the sum Sn is determined largely
by a few large random variable Xm, whose values are bigger than εan. This is different
from the central limit theorem where the a few largest random variables do not affect the
limiting distribution. Also, Poisson distribution occurs in the argument when we deal
with the rare and big random variables.

You may wonder: What is the relation between the theorem and the concept “stable
laws”? Actually, the limiting distributions in Theorem 60 are stable laws, and these
distributions, together with normal distributions, exhaust stable laws. But we may not
have time to discuss more on it.
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10 Convergence of random series

In this semester, we studied the laws of large numbers, central limit theorem, and some
related results. All the results are in this form: A series, or a triangular array, of random
variables, converges to a limit (in some sense), and we can compute the limit. But it
is normal in mathematics that the existence of a limit is already a challenge, while it is
exceptional that the limit can be computed explicitly.

The last topic of our module is convergence theorems of random series, while the
computation of the limit is no longer our main interest.

First we introduce an important and rather abstract result, Kolmogorov’s 0-1 law. It
depends on measure theory in a subtle way.

Let X1, X2, . . . be a sequence of random variables on the probability space (Ω,F , P ).
Recall that σ(Xi) is a σ-algebra on Ω, consisting of the subsets X−1

i (B) where B ∈ B is
a Borel set on R. For several Xn1 , Xn2 , . . . , Xnk , we define the σ-algebra σ(Xn1 , . . . , Xnk)
as the σ-algebra generated by all X−1

ni
(B), B ∈ B. The definition is valid if k =∞, and

we denote F ′n = σ(Xn, Xn+1, . . . ). It is clear that F ′n ⊆ F ′m if n > m. Then we define

T =
∞⋂
n=1

F ′n.

To understand the meaning of T , we think each σ(Xn) as the information carried by Xn

and interpret n as time. Then F ′n is the information related to time ≥ n, and T is the
information in remote future. To make sense of the definitions, we consider the following
examples.

Example 2. 1. Let Bn be a Borel set on R for each n, and then A = {Xn ∈ Bn i. o.}
is a subset of Ω. We have

A = {ω ∈ Ω | Xn(ω) ∈ Bn for infinitely many n} =
∞⋂
n=1

∞⋃
k=n

{Xk ∈ Bk}

=
∞⋂
n=m

∞⋃
k=n

{Xk ∈ Bk} for all m

∈ F ′m for all m.

Therefore A ∈ T .

2. Let Sn = X1 + · · · + Xn, and then B = {limn→∞ Sn exists} is a subset of Ω. We
have

B = {ω ∈ Ω |
∞∑
n=1

Xn(ω) converges}

= {ω ∈ Ω |
∞∑
n=m

Xn(ω) converges} for all m

∈ F ′m for all m.

Therefore B ∈ T .

52



3. Continued from last example, let C = {lim supn→∞ Sn > 0}. C is not in T in
general, and even C /∈ F ′2 in general. (In special cases, like X1 = X2 = · · · ,
C ∈ T .) Because even if we know the values of X2, X3, . . . , we still cannot tell if
lim supn→∞ Sn > 0, without the knowledge of the value of X1.

Now we can state Kolmogorov’s 0-1 law, and it implies that Sn = X1 + · · · + Xn

converges a.s., or diverges a.s..

Theorem 61 (Kolmogorov’s 0-1 law). If X1, X2, . . . are independent, and A ∈ T , then
P (A) = 0 or 1.

Before giving the proof, we review the concept of independence. We say two collections
A and B of measurable sets, which may be σ-algebras or may not, are independent, if

P (A ∩B) = P (A)P (B), for all A ∈ A and B ∈ B.

If Y1, . . . , Ym, Z1, . . . , Zn are independent random variables, we have σ(Yi) and σ(Zj)
are independent, by definition. We also have that σ(Y1, . . . , Ym) and σ(Z1, . . . , Zn) are
independent. To check it, we can start with the definition, but a faster way is to apply
Theorem 18. Since σ(Y1)∪· · ·∪σ(Ym) and σ(Z1)∪· · ·∪σ(Zn) are independent, and both
of them are “π-systems”, we conclude that σ(σ(Y1) ∪ · · · ∪ σ(Ym)) = σ(Y1, . . . , Ym) and
σ(σ(Z1) ∪ · · · ∪ σ(Zn)) = σ(Z1, . . . , Zn) are independent, by Theorem 18.

Proof of Theorem 61. We show that A is independent to itself. Then P (A) = P (A∪A) =
P (A)P (A), and we conclude that P (A) = 0 or 1.

First, we show that for any n, Hn = σ(X1, X2, . . . , Xn) and F ′n+1 = σ(Xn+1, Xn+2, . . . )
are independent. It is already known thatHn and σ(Xn+1, . . . , Xn+k) are independent, for
all k. ThusHn and

⋃∞
k=1 σ(Xn+1, . . . , Xn+k) are independent. Since

⋃∞
k=1 σ(Xn+1, . . . , Xn+k)

is a π-system, and σ(
⋃∞
k=1 σ(Xn+1, . . . , Xn+k)) = F ′n+1, we get the desired result by The-

orem 18.
Next, we show that F ′1 = σ(X1, X2, . . . ) and T are independent. To see it, we first

note that for all n, Hn and T are independent, since T ⊆ F ′n+1. Then
⋃∞
n=1Hn and T

are independent. Since
⋃∞
n=1Hn is a π-system, and it generates F ′1, we derive the result

by Theorem 18.
Then since A ∈ F ′1 and A ∈ T , we prove the theorem.

Below we derive some method to tell if {Sn} converges a.s.. A basic technical result
is the following lemma.

Lemma 62 (Kolmogorov’s maximal inequality). Suppose X1, X2, . . . , Xn are independent
with EXi = 0 and var(Xi) <∞. If Sk = X1 + . . .+Xk, then

P

(
max

1≤k≤n
|Sk| ≥ x

)
≤ x−2 var(Sn).

Proof. We divide the event max1≤k≤n|Sk| ≥ x into disjoint subevents

Ak = {|Sk| ≥ x, but |Sj| < x for all j < k}, for all k = 1, . . . , n.
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Consider the inequality

var(Sn) = ES2
n ≥

n∑
k=1

∫
Ak

S2
ndP

=
n∑
k=1

∫
Ak

S2
k + 2Sk(Sn − Sk) + (Sn − Sk)2dP

≥
n∑
k=1

∫
Ak

S2
kdP + 2

∫
Ak

Sk(Sn − Sk)dP

=

(
n∑
k=1

∫
Ak

S2
kdP

)
+ 2

(
n∑
k=1

∫
Ω

Sk1Ak(Sn − Sk)dP

)
.

Here Sn − Sk is a random variable, and it is a function of Xk+1, . . . , Xn: Sn = Xk+1 +
· · · + Xn. On the other hand, Sk1Ak is also a random variable, and it is a function of
X1, . . . , Xk:

Sk1Ak(ω) = (X1(ω) + · · ·+Xk(ω))1|X1(ω)+···+Xk(ω)|≥x but |X1(ω)+···+Xj(ω)|<x for all j < k.

So the random variables Sn − Sk and Sk1Ak are independent, and then∫
Ω

Sk1Ak(Sn−Sk)dP = E((Sk1Ak)(Sn−Sk)) = E(Sk1Ak)E(Sn−Sk) = E(Sk1Ak) · 0 = 0.

Thus we conclude that

x2P

(
max

1≤k≤n
|Sk| ≥ x

)
=

n∑
k=1

x2P (Ak) ≤
n∑
k=1

∫
Ak

S2
kdP ≤ var(Sn),

and prove the inequality.

Remark 7. Kolmogorov’s maximal inequality can be easily extended to the infinite
random variable case, that is, for X1, X2, . . . with EXi = 0 and

∑∞
i=1 var(Xi) = C <∞,

P
(
∞

max
k=1
|Sk| ≥ x

)
≤ x−2C.

As an application of Kolmogorov’s maximal inequality, we prove the following result:

Theorem 63 (Kolmogorov’s two-series). Suppose X1, X2, . . . are independent with EXn =
0. If

∑∞
n=1 var(Xn) <∞, then with probability 1, {Sn} converges, where Sn = X1 + · · ·+

Xn.

Proof. To show the almost sure convergence, it suffices to show that for any ε > 0, there
is a set A such that P (A) ≥ 1 − ε, and there are m1,m2, . . . such that for all ω ∈ A,
|Sn − Smk | ≤ 2−k if n > mk.

Given ε > 0, we define mk as

mk = min{n ∈ Z+ |
∞∑
j=n

var(Xj) ≤ 2−3kε}.
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Then by the infinite extension of Kolmogorov’s maximal inequality,

P

(
∞

max
n=mk+1

|Sn − Smk | ≥ 2−k
)
≤ 22k

∞∑
j=mk

var(Xj) ≤ 2−kε.

Let the events Bk = {max∞n=mk+1|Sn − Smk | ≥ 2−k}, and A = Ω \ (B1 ∪ B2 ∪ · · · ). We
check that this set A satisfies the requirement.

Next we prove a similar result, for general random variables.

Theorem 64 (Kolmogorov’s three-series). Let X1, X2, . . . be independent. In order that∑∞
n=1Xn converges a.s., it is sufficient that for some A > 0, all the following conditions

hold, where Yi = Xi1|Xi|≤A:

(i)
∞∑
n=1

P (|Xn| > A) <∞.

(ii)
∞∑
n=1

EYn converges.

(iii)
∞∑
n=1

var(Yn) <∞.

Conversely, if
∑∞

n=1Xn converges a.s., then for all A > 0, the three conditions above
hold.

Proof. First we prove the sufficiency. Let Zi = Yi − EYi. By Kolmogorov’s two-
series theorem and Condition (iii),

∑∞
n=1 Zn(ω) converges a.s.. Then by Condition (ii)∑∞

n=1 Yn(ω) =
∑∞

n=1(Zn(ω) +EYi) converges wherever
∑∞

n=1 Zn(ω) does. At last, Borel-
Cantelli lemma and Condition (i) imply that {Xn 6= Yn i. o.} is of probability 0. Thus we
prove that

∑∞
n=1Xn(ω) converges a.s..

Next we prove the necessity. Suppose
∑∞

n=1Xn converges a.s.. If
∑∞

n=1Xn(ω) con-
verges, then for all but finitely many n, |Xn(ω)| < A for all A > 0, and hence {|Xn| >
A i. o.} has probability 0. But if condition (i) does not hold for some A > 0, we have that
P ({|Xn| > A i. o.}) = 1 by the second Borel-Cantelli lemma, and we derive a contradic-
tion.

Now we admit that Condition (i) holds, but assume that Condition (iii) fails. Then
we define the triangular array of random variables Wn,m (1 ≤ m ≤ n)

Wn,m =
1√
Cn

(Yn − EYn), where Cn =
n∑
i=1

var(Xi).

Then we can check that Wn,m satisfies the assumptions for the Lindeberg–Fellor cen-
tral limit theorem, and we have that

∑n
m=1 Wn,m ⇒ N(0, 1), and the characteristic

function of
∑n

m=1Wn,m converges pointwise to e−t
2/2. Now consider C

−1/2
n

∑n
m=1 Ym =

(
∑n

m=1 Wn,m) +
∑n

m=1EYm. The characteristic function of his random variable is the
characteristic function of

∑n
m=1Wn,m times exp(it

∑n
m=1 EYm), so we have that the ab-

solute value of the characteristic function of C
−1/2
n

∑n
m=1 Ym converges to e−t

2/2 pointwise.
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But, if
∑n

m=1 Xm converges a.s., we have that
∑n

m Ym converges a.s. too, by the Borel-

Cantelli lemma, and we call the limit S ′∞. Since C
−1/2
n → 0 as n → ∞, we have that

C
−1/2
n

∑n
m=1 Ym converges to 0 a.s.. Thus we conclude that the (absolute value of) the

characteristic function of C
−1/2
n

∑n
m=1 Ym converges to 1 pointwise. Thus we derive a

contradiction.
So we need to admit both Conditions (i) and (iii), for all A > 0. At last we show

that if both Conditions (i) and (iii) hold, then Condition (ii) holds too. To see it, we
use the result that

∑∞
n=1 Yn converges a.s., and by Kolmogorov’s two series theorem

and Condition (iii), we have that
∑∞

n=1(Yn − EYn) converges a.s.. So their difference,∑∞
n=1EYn converges (a.s.).
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