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1 Time reversal symmetry and the three Gaussian ensembles:
GUE, GOE and GSE

This section follows mainly [19, Chapter 2]. Another reference is [I3, Chapter 1].

1.1 Three kinds of random matrix models corresponding to physical systems
with different time reversal properties

Idea from physics How to find a random Hermitian operator to model a generic Hamiltonian
operator with discrete spectrum?

In quantum mechanics, the Hamiltonian of a physical system that determines the time-
evolution of the system, is represented by a self-adjoint Hamiltonian operator. If it has only
discrete spectrum (or if we only care about the discrete part of its spectrum), we would like to
use a finitely dimensional Hermitian operator, i.e., an N x N Hermitian matrix, to model it.

We want to model a generic Hamiltonian, and most special properties of a physical sys-
tem can be safely ignored. But one property is too fundamental to ignore: the time-reversal
symmetry. Later it will be clear that the spectra of Hamiltonians of generic physical systems
in different time-reversal invariance classes, and that of generic physical systems without time-
reversal invariance, are quite different in the local behaviour.

First we model the generic Hamiltonian without time-reversal invariance. We would like the
N x N random Hermitian matrix to satisfy the following properties.

1. The probability measure p(H)dH where

dH = [ dRH;;, [] dSHj», (1.1)
i<k i<k

is invariant under the automorphism
H—U'HU (1.2)
where U € U(NN) is any unitary matrix.

2. The probability density function p(H) can be written into the form

p(H)dH = T £ (Hy)dRHy, [ £1) (Hi)dS Hy. (1.3)
i<k j<k

Later we will see that these conditions almost define the Gaussian unitary ensemble (GUE).



Time-reversal operator in quantum mechanics In quantum mechanics, the time-reversal
operator T is antiunitary, i.e., (T, T¢) = (1, ¢). Then T can be decomposed as

T=KC, (1.4)
where C' is the complex conjugation operator such that C1 = 1, and K is a unitary operator,
since B _

(K, Ko) = (T, Tp) = (b, 0) = (1), ). (1.5)
Since applying time-reversal twice one gets the identity transformation, in quantum mechanics
T? = oI, where |a|=1. (1.6)

Equivalently,
(KC)(KC)=K(CK)C =K(KC)C =KK(CC)=KK =al, (1.7)

where we use the identity that for any
CKy =Ky =Ky =KC. (1.8)

Since K is a unitary operator with K K* = K(K)T = I, we have

K=aK)Y & K=aKk". (1.9)
By using it twice
K =a(ak?)" = a’K, (1.10)
we find
a=1 or a=-1, (1.11)

and K is then symmetric or antisymmetric respectively.

Now we see that there are two cases of time-reversal invariant systems corresponding to
symmstric and antisymmetric K, and for some physical reasons we call them even-spin case
and odd-spin case respectively.

Remark 1. The original reference for the discussion of time-reversal operator is [27], but modern
textbooks on quantum field theory, like [26] may be more accessible.

Even-spin case of time-reversal invariant Hamiltonians Suppose H is an Hermitian
operator invariant under time-reversal, then

THT'=H < KCHC'K™'=H (1.12)

Noting that o
(CHC™ ") = C(H() = Hi = Hy, (1.13)

we see that (1.12]) is equivalent to
KHTK™' = H. (1.14)

Since K is a symmetric operator and we assume that it is finitely dimensional, i.e., K is an
N x N matrix, we apply Takagi’s factorization (proved in Appendix |A.1l)) and write it as

K =UDUT (1.15)



where U is unitary and D is a real nonnegative diagonal matrix such that the diagonal elements

of D are the nonnegative square roots of the eigenvalues of K K*. Note that K is also unitary,
so KK* =1 and D = I. Thus (1.15)) implies

K=UUT. (1.16)

Taking a unitary transformation of the representation of the states by U ! such that ¢ — U~ 11,
where U is that in (1.16]), we find that the time-reversal operator T" transforms to

T—U'TU =Y (vUuTC)U = (UTC)U = (CUT)U = C. (1.17)

Thus in the new representation, the operator K becomes the identity matrix. Then the relation
(1.14)) means that H is a symmetric Hermitian matrix, that is, a real symmetric matrix.

To model the generic Hamiltonian in the even-spin case of time-reversal invariance class, we
would like the NV x N random real symmetric matrix to satisfy the following conditions.

1. The probability measure p(H)dH where

dH = [ ] dHjx (1.18)

J<k
is invariant under the automorphism
H— W 'HW (1.19)
where W € O(N) is any real orthogonal matrix.

2. The probability density function p(H) can be written into the form

p(H)dH = [ fir(Hjx)dHjz. (1.20)
i<k

Later we show that these conditions almost define the Gaussian orthogonal ensemble (GOE).

Odd-spin case of time-reversal invariant Hamiltonians We consider K as an antisym-
metric matrix of dimension N. Then by the theorem on the normal form of an antisymmetric
matrix under unitary congruence (proved in Appendix [A.1]), we have

K=UxUT (1.21)

where U € U(N) is a unitary matrix and ¥ is of the form
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a0 (0 ) (0 Ton]  am
N

~\~
n

where o; are all positive numbers. From the unitarity of K, we have N = 2n since K is
nonsingular, and o1 = -+ = g, = 1. Thus
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Similar to the derivation in the even-spin case, taking the unitary transformation of the
representation of the states by U~! where U is that in (1.21]), we have

T—U'TU =U Y (UsUTC)U = %C, (1.24)

and then in the new representation,
K=3. (1.25)
By relation (1.14)), we see that H in the even-spin case satisfies CH'Y~! = H, or equivalently

SHT = HY. (1.26)

People who are familar with classical groups recognise immediately that is similar to the
formula ¥ AT = —¥ A that defines the element of sp(2n), the symplectic Lie algebra. Another
concept related is the unitary symplectic group Sp(n) whose elements are unitary matrices
W € U(N) such that

»=wuwT, (1.27)

Below we analyse ([1.26)) in an elementary way, without appealing to Lie group/algebra.
Since our H and X are both 2n x 2n, we think them as block matrices in 2 x 2 blocks. Each
2 x 2 complex matrix is the complex linear combination of

B (0 N O NP

(2 2) = Jaran-ja- et Jo- o jorae 02

In these notations, we have

in the way

S = esl. (1.30)

It is better to understand 1,eq,eq, e3 as the standard basis of quaternion, usually written as
1,4, 4, k. But we do not use these notations in fear of namespace conflicts. Note that one matrix
representation of the quaternion a 4 bi + ¢j + dk is

—c+di a—bi (1.31)

. . bi di
a+bi+cj+dk— < ato o+ Z) ,
a 2 x 2 complex matrix of a special form. General 2 x 2 complex matrices correspond to a
generalisation of quaternions, called the biquaternions (or complexified quaternions), in the
sense that a, b, ¢, d can be complex numbers in the left-hand side of ((1.31)), where the i along
with j, k are different from the imaginary basis for the complex numbers.

Now we write the biquaternion, i.e., 2 X 2 complex matrix, in the form of
¢=q¢9 +q-e, where q= (q(l), q?, ¢®), e = (e1,e,e3). (1.32)
The quaternion conjugate of q is

a1 +agi by + bt * . di +doi  —by — byt
1+ ¢t dy + doi o —c1 —cot a1+ asgt

) . (1.33)

q = q(o) —q-e, or equivalently (

the complex conjugate of q is (q = (¢, (2, ¢(3))

a1+ asi by + bai * [ di—dai  —c1+ et
c1+cot dy+dot o —by + byt a1 — asi

) ; (1.34)

¢ = W—i— q-e, or equivalently (



the Hermitian conjugate of q is

al—l—agi b1+b2i T_ al—agi cl—CQi
c1+cot dy+ dg’i) o <b1 — byt dy — d2i> ’

(1.35)
Note that ¢ = ¢ if and only if ¢ is represented by a 2 x 2 Hermitian matrix. These three
conjugates satisfies

¢" = ()" =¢® —g-e, orequivalently (

(042)* = @3ai, (0e)" = aias, (ng)' = abal. (1.36)
Expressing
n ajk bj . .
H = (qjk)} =1, where g;;= o d are biquaternions. (1.37)
’ gk 4

We see that the Hermitian property H = H* = HT implies that

Akj bkj) - (ajk Cﬂ“) or equivalentl =q 1.38
<ij dyj bjr djr)’ q Yo ki = Gk (1.38)

On the other hand, if we write H” into 2 x 2 blocks, the (j, k) block is
Qg5 Ckj\ _ . 0 1 dkj _bkj 0 1
(bkj dkj) B (-1 0) <—ij ar; ) \=1 0 (1:39)

(H")jr = (—eagijea). (1.40)
Thus by (1.30)), the time-reversal relation XH” = HY is equivalent to the blockwise identity

and we have

ea(—e2qpie2) = qjxe2 & q; = qjk- (1.41)

The (bi)quaternion matrix g; satisfying (JZj = gj, is said to be self-dual. Thus a finite di-
mensional Hamiltonian that is time-reversal invariant of the odd-spin class has to be of even
dimension, and in the respresentation where T' = XC, it is both Hermitian and self-dual if
written in the biquaternion form.

Note that the self-dual Hermitian property of H implies

(0)

or equivalently, each gj;, = q.g + q](i) + qj(.i) + qj(.i) is a real quanternion in the sense that
() (1) (2) (3) (0)

Uy > Gk, » Ui+ &), are all real numbers. Furthermore we have that (q.z )?,k:O forms a real sym-

metric matrix while (qj(;) );7” w—o forms a real antisymmetric matrix for i = 1,2, 3. It is straightfor-

ward to check that these conditions on (q(o))? pp and (q](;) )7 k—o are equivalent to the self-dual

Hermitian condition. !

One more remark on self-dual Hermitian matrices is that if H is self-dual Hermitian and
W € Sp(n) is an element of the unitary symplectic group, then W—'HW is also self-dual
Hermitian.

The result we obtained above means that we need to study random self-dual Hermitian
matrices along with random real symmetric matrices. We consider the random matrix as follows.



1. The probability measure p(H)dH where

3 .
di = ] da) TT I dd'y, (1.43)

j<k i=1j<k
is invariant under the automorphism

H— W 'HW (1.44)
where W € Sp(n) is any unitary symplectic matrix.

2. The probability density function p(H) can be written into the form

3

p(H)dH = [T £9a)dd' TTTT £% () dd. (1.45)

i<k i=1j<k
Later we will see that these conditions almost define the Gaussian symplectic ensemble (GSE).

1.2 The probability density function of Gaussian orthogonal ensemble (GOE)

The even-spin time-reversal invariant systems are modeled by random real symmetric matrices
satisfying two conditions specified on Page (3l Now we give a concrete description of this random
matrix model which is called the Gaussian orthogonal ensemble (GOE). It will be clear why it
is called “Gaussian”.

Before dealing with the probability measure p(H)dH, we first show that the measure dH
defined in is invariant under the orthogonal similarity transformation . To show
this, we recall the Givens rotation in SO(N)

cosf ... —sinb
G(j, k;0) = ; : : (1.46)

sinf@ ... cos@

where the (4,7), (4,k), (k, ), (k, k) entries constitute a plane rotation matrix and other (i,7)
entries are simply ¢;;. It is well known that any rotation matrix in SO(NV) is the product of
Givens rotations [I4, Section 5.2.3]. On the other hand, the Givens rotation G(j,k;6) is the
product of G(1,2;0) and permutation matrices. For example,

cosf 0 —sinb 1 00 cosf) —sinf O 1 0 0
0 1 0 =0 0 1 sinf cosf O] (0 O 1]. (1.47)
sin@ 0 cos@ 010 0 0 1 0 1 1

Thus G(1, 2; §) and permutation matrices generates the orthogonal group O(/N). Hence we need
only to show that dH is invariant under the conjugations of (a) the permutation matrices, and
(b) G(1,2;6). Condition [(a)]is obvious satisfied, and condition[(b)]is reduced into a 2 x 2 matrix

problem. Let
w v\ _ (cosf sin@\ (x y\ (cosf —sinf
(v w) = < sinf cos 9) <y z> <Sin9 cos 0 > , (1.48)



where

u = xcos’ 0 + 2y cos fsin @ + dsin? 6, (1.49)

v = (z — z)cosfsinf + y(cos® 6 — sin? ), (1.50)

w = xsin? @ — 2y cos sin f + z cos? . (1.51)
Then the Jacobian o )
U, v, W

- 2 =1. 1.52

9(r.v.2 2

We conclude that dH is invariant under the conjugation of G(1,2;60), and prove the claim.

To show p(H)dH is invariant under similarity transformation, we now only need to show
the function p(H) = [[;<; fjx(H;x) is invariant under the conjugation of (a) the permutation
matrices, and (b) G(1,2;6).

Condition @ is equivalent to that

fii(@) = fun (@), (1.53)
fik(@) = fim(2), where 1 <j<k<Nand1<l<m<N. (1.54)

Hence we denote f(z) and g(x) as the probability density functions for diagonal entries and
off-diagonal entries of H respectively.
Condition @ is again reduced to a 2 x 2 matrix problem

fw)g(v) f(w) = f(x)g(y)f(2) (1.55)

where u,v,w depend on z,y, z by (1.49)—(1.51).
Consider the case that § = € is infinitesimal. Then ((1.55)) becomes

fl@+2ye)g9(y + (2 — 2)e) f(z — 2ye) = f(2)g(y) f(2) + O(e?). (1.56)

When f(z)g(y)f(z) # 0, the identity between e coefficients becomes
J(LE L)) s

fx)  f(z2) 9(y)
By separation of variables, we find a constant ¢ such that
1 g'(y)
— = —c, 1.58
2y 9(y) (1:58)
1 () f’(2)>
— = —c. 1.59
e 0T (1:59)
Using separation of variables again to (1.59)), we find a canstant b such that
f'(@)
= —cx + b, 1.60
o (1.60)
f'(@)
= —cz+b. 1.61
(@) -6y

Therefore the probability density functions f and ¢ are solved as

2 c
flz) = Uie_%ce_img’%, (1.62)
2
_ & —ep? 1
o) = [ S, (163



and the density function p(H) can be written in a more compact form as

p(H) = clN exp(Te(~ 5 H? + bH)). (1.64)

After a simple shifting and scaling, we need only to analyse the model where

1 N
p(H) = — exp(—— Tr H?), (1.65)
Cn 4
which is the definition of the Gaussian orthogonal ensemble (GOE). An equivalent definition is
that the diagonal entries are in N(0,2N 1), upper-triangular entries are in N(0, N~1) distribu-
tions, and they are all independent.

Exercises

1. Show that the random Hermitian matrix H satisfying the two conditions on page [1| has
distribution p(H)dH = ﬁ exp(Tr(—$H? + bH))dH. Thus it is essentially equivalent to
the Gaussian unitary ensemble where

1 N
p(H) = —— exp(—— Tr H?). (1.66)
Cn 2
An equivalent way to describe it is that the diagonal entries are real and in N(0, N~1),
upper-triangular entries are complex with both real and imaginary parts in independent
N(0, %N —1) distributions, and they are all independent.

2. Show that the random self-dual Hermitian matrix H satisfying the two conditions on page
@:has distribution p(H)dH = & exp(Tr(—S$H? + bH))dH. Thus it is equivalent to the
aussian symplectic ensemble where

p(H) = —— exp(

= N Tr H?). (1.67)
Cn

2
2 Semicircle law and Stieltjes transform

The standard reference for this section is [5, Chapter 2, especially Section 2.3]. The textbooks
[3, Chapter 2, especially Section 2.4] and [25, Section 2.4] are also good expositions.

2.1 Statement of the theorem

With the help of newly invented computers, numerical study of high-dimensional random ma-
trices became possible in 1950’s. First people were interested in the empirical distribution of
eigenvalues of a large random matrix (especially when they are distributed on the real line).

Definition 1. Let M be an N x N matrix that has N real eigenvalues )\{V,...,)\%. The
empirical spectral distribution (ESD) is

Y the number of j such that A\Y < z
FM(z) = N I . (2.1)




Define the semicircle law as the probability distribution with density function o(z) and
cumulative distribution function F'(z) given by

x

o(z) = %\/4—9521@@, Fla) —/ o (t)dt. (2.2)

—00
It was observed that if My is the GOE or GUE random matrix, then as N — oo, the random
ESD of My converges weakly, in probability, to the semicircle distribution, FM~ (z) — F(x),
in the sense that for any bounded and continuous function f on R, and any € > 0,

Nhinoop< / F@)dFMN () — / F(@)dF () >e> 0. (2.3)

We are going to prove a more general theorem for the Wigner matriz. Let {Z;;}i1<ic;
and {Y;}1<; be two independent families of independent and identically distributed random
variables. We assume that Y7 is real valued and has zero mean, 7 » is complex valued, has zero
mean, and E(Z; 277 2) = 1, and all moments of Y7 and |Z; 5| are finite. Let Xy be a Hermitian
N x N matrix with entries

Zi it <

.. Js
Xw,y):{@ N (24)

N o =7.

We call such a matrix a Wigner matrix. Note that the GUE random matrix is a special case of
the Wigner matrix, so is the GOE random matrix (where 3712 = 0).

Theorem 1. As N — oo, the ESD of the Wigner matriz X converges weakly, in probability
to the semicircle law: FXN(z) — F(x).

2.2 Preliminaries of Stietjes transform

Let @ be a positive, finite measure on R. The Stieltjes transform of p is an analytic function

on C\ R defined as
dp
S, (2) —/ (2.5)

t—2z
From the Stieltjes transform, we can reconstruct the measure practically.

Theorem 2. For any open interval (a,b) where neither a nor b is an atom of p (i.e., u({a}) =
u({B}) = 0), then

b
w((a,b)) = lim ~ / S5, (A + ic))dA. (2.6)

e—0t T

Proof. First we find a lower bound of %fab IS, (A + ie))dA.

1/b°s (A + i€)d\ = /b 1/00 @) dx
0y a\su bejaA = o \T _OO()\—.I‘)2+€2M$
N ‘ d A
> - -
_/a /(H_\/g T(A—1x)?+ € Hw)
b—e bq €
- L — N
/aﬂ@ (/a T(A—1x)2+ € > Ha) (2.7)
IR A S
> - -
> [ L roaran) e

b—+/€
— / (1 + O(e))dp(z)
a++v/€

= (1+0(e)u((a+ e, b—e)).

9



On the other hand, we have similarly

i/ab IS, (A + i€))dA = /_O; </b imw) dp(z)

_ /{:fd“(iv)+/bi/zd#(x)+/_:\/gdﬂ($) </ab71r(/\;)2+62d()\2>8)

Note that
/bl € I\ <1 for x € (a — \/€,b+ /e),
o TA—1x)2+ ¢ =0() fort<a—+/eort>b+ /e

We find that

b
= [ 98,0+ i) < l(a— VED+VE) + OuR\ (0 - Vab+VE).  (210)

™

Combine ([2.7) and ({2.10]), we finish the proof. O

We need the property of Stieltjes transform that the convergence of measures implies the
convergence of their Stieltjes transforms, and vice versa. To be precise, we state the following
theorem.

Theorem 3. Let u, be a sequence of probability measures.

1. If py, converges weakly to a probability measure p, then Sy, (z) converges to S,(z) for each
z€ C\R.

2. If S, (2) converges to S, for each z € C\ R to a limit S(z), then S(z) is the Stieltjes
transform of a sub-probability measure p (i.e., p(R) < 1) and py, converges vaguely to
(i.e., for any continuous function f on R such that lim;_ 400 f(z) =0, [ fdp, — [ fdu).

3. If the probability measure py, are random and, for each z € C\ R, S, (z) converges in
probability to a deterministic limit S(z) that is the Stieltjes transform of a probablility
measure (i, then u, converges weakly in probability to p.

Proof. [ By definition: g, L\ p implies s i dn(@) dx”—_(?, since Qm‘é—z) is bounded and

27 T—z

continuous in z, if z ¢ R.

By Helly’s selection theorem [9], Section 4.3], a subsequence pi,, vaguely converges to a
sub-probability measure p. Suppose g is not the vague limit of u,, that is, there is a
positive constant € and a function f that is continuous and vanishing at +oo, such that
for a subsequence Fan |f fd/‘Ln;c — [ fdu| > e. Using Helly’s selection theorem again,
a subsequence of [y CONVETges vaguely to p/ # p. On the other hand, since S, (2)
converges, we have S, (z) = S,/(z), and get a contradiction to Theorem

(By Tao [25] Section 4.2]). We show that for each f that is continuous and vanishing at
o0, [ fdun 2 J fdu. Then p, converges vaguely in probability to u. Since we assume
that u is a probability measure, the vague convergence is equivalent to weak convergence.

To show that
1i_>m P <'/fd,un — /fdp‘ > 6) =0, (2.11)

10



we need only to find an f such that

max|f(z) - f(2)| < g (2.12)

zeR

lim P ('/fdun — /fdu‘ > e> = 0. (2.13)

Such an f can be chosen as (see Exercise D

and

~ - 1 - crbr .
= & = —_— h = by. 2.14
f(z) ;cqusx_% ;(x—ak)Q—i-bz where zp = aj + ibg ( )
Then (2.13) becomes
- €
nlgroloP ( ch(sun(zk) — Su(zi)| > 3) =0, (2.15)
which is a consequence of S, (zx) s (k).
O

For an N x N Hermitian matrix X, define the Stieltjes transform of its ESD as

dFX(z) 1L 1
Sx(2) :deX(z):/ x_(z) =Y (2.16)
=1k 7
Note that )
Sx(2) = 3 Tr(X - 2171 (2.17)

For the analysis of Wigner matrix, we state a linear algebraic result for Hermitian matrix.

Lemma 1. Let X be an N x N symmetric matriz, and let x;, denote the k-th column of X with
the entry xg, removed. Let the (N — 1) x (N — 1) matriz X be the minor of X obtained by
removing the k-th column and k-th row. Then for z € C\ R, the (k,k) entry of (X — 2zI)~!

1
X — 21 Yk, k) = . 2.18
( ) ( ) Tpp — 2 — ig(ka — ZIN_l)_lxk ( )
Therefore (2.17) can be written as
1
Sx(2) = = (2.19)

N kzzl Tpp — 2 — }_Cg(ka — ZIN_l)_lxk.

Proof of Lemma [l Without loss of generality, we consider the k& = 1 case. From basis linear
algebra,
det(XLl — ZI) . 1

det(X —2I)  det(X — 2I)/det(X11 — 2I)

(X —20)71(1,1) = (2.20)
Computing det(X;1 — zI) by Laplace’s formula along the first row (211 — 2,%7), and then
divide it by det(X;; — zI), we have
det(X — 2I) N  det(Xpy — 21iq)
e = (711 — 2) Z Tk .
det(XLl — ZI) det(X1 1— ZI)

(2.21)
k=2

11



det(Xk,lf'ZIk,l)

The form of —5r=:=77y~ give us reminiscence of Cramer’s rule, and we have that (-1) IO CRET)
ag, where ao, ..., an are solution to ‘
ag T2,1
(X171 — ZI) = . (222)
an TN
Then ([2.21)) becomes
det(X11 —ZI) T
: — — ) — (X1 — 21 2.23
det(X11 = 1) (T11 = 2) =% - (X1 — 2D)xq, (2.23)
and we prove (2.18) when k = 1. O

2.3 Limiting ESD of truncated Wigner matrices

Before giving the proof of Theorem [1] we consider the truncated version of Wigner matrix.
In this subsection, we assume the random variables Y; and Z;; that define the Wigner matrix
satisfy the follows.

Truncation conditions
1. Y1 =0.

2. The support of Z1; is compact, i.e., there exists C' > 0 such that P(|Z11| > C) = 0.

We prove Theorem [1| under these two conditions.

Here and later, for notational simplicity we write Xy as X if there is no confusion, i.e.,
Sxy(2) is written as Sx(z).

Since the diagonal entries are 0, becomes

S = — . 2.24
x(2) N Z—i-}_(g(ka —z2In_1) 7 Ixg ( )

Two heuristic observation

1. The ESD of Xy is close to the ESD of X, due to the Cauchy interlacing inequality [10,
Section 4.3], [10, Section 1.4]. Suppose eigenvalues of X are {)\év } and those of Xy are

{)\é»v_l}, both in increasing order, then
A AT AT AT < AR S AT SR (2.25)
Thus Sx,,(2) ~ Sx(2).
2. Note that X — zIny_1 is a normal matrix, such that

(Xpn — 2D)*(Xpp — 20) = (X — 21 (Xpp — 20) = X — 2 Xpk — 2Xn + 221

(2.26)
= (Xpr — 2I)( Xy — 2I)".
Then (Xgr — 2Iy_1)"! is also normal. Let )\ngl), - )\%\7:11) be eigenvalues of X, and
denote !
ijw, forj:1,,N—1, (227)
)\j -z

12
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then 21, ..., zy_1 are eigenvalues of (X —2In_1)!. By the property of normal matrices
[16, Section 2.5], there exists a unitary matrix U € U(/N — 1) such that

(Xgr — 2In_1)" ' =U*DU, where D = diag(z1,...,28-1), (2.28)

and
Xt (Xpe — 2zIn—1)"'%xx = ¥} Dyy, where yi = Uxy. (2.29)

In the special case that all components of x;, are in i.i.d. N(0, ) + 1N(0, ) distribution,
then components of yj, are also in i.i.d. N(0, 1) + iN(0, 3) distrlbutlon (exerc1se) In this
special case, by (a stretch of) law of large numbers,

N-1 N-1
_ —_— . 1
i Dyr = Z yE(G)yr(i)z; ~ N Z zj = Sx(2) ~ Sx(2), (2.30)
j=1 J=1
where in the last approximate identity we use the heuristic observation

The idea of the following transformation is then clear: To approximate x{(X we—2In_1) 7%y,

by Sx(z).

Al 1
Sx(2) = & D 24 Sx(2) + (X[ (Xgr — 2zIn-1)71xp, — Sx(2))

k=1 (2.31)
1
= — )
z+ Sx(2) +on(z),
where
1 N €k N
— ’ ith = %}, (Xgr — 2In—1) " 'xp — Sx (2).
Nkz:_1 T S+ k() Ty MR ey = X (X = 2Iv-1) T = Sx(2)
(2.32)
The next task os to show that for any z ¢ C\ R,
on(z) 0. (2.33)
Suppose this is true, then
1 P
S —— =9 0. 2.34
X2+ g = v B (234)
Note that for any z ¢ C\ R, the equation in w
1
w + =0 (2.35)
zZ4+w
has two solutions 5 5
—z+ V2t -4 —z—Vzt—4
wi(z) = ——F——, w2 = ——Ff (2.36)
So for any € > 0
A}im P(Sx(z) € Ne(wi(2)) U Ne(wa(z))) = 1. (2.37)
—00

From the definition of Stieltjes transform, it is clear that JSx(z) has the same sign as Sz.
Therefore Sx(z) = w1 (z), which is the Stieltjes transform of the semicircle law F(z). Verifica-

tion:
1 .
{% 1—22 ifze(-2,2), (238)

lim Qw;(z + i€) = if r € R\ (-2,2)

e—0t
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Then by Theorem [3, we prove Theorem [I] under the two trancation conditions.
To show dn(z) 20, note that for any z in the upper half plane, Sz > 0 and ISx(z) > 0,
and then
|z 4+ Sx(2)| > |9z + ISx(2)] > |z (2.39)

For z in the lower half plane, the result of (2.39) also holds. Therefore if we can show that

gl = 240

then the absolute value of the denominator of each summand of §y(2) is bounded when |ej x|

is small, and then (2.33) is proved.

To estimate |e; x|, we write it as

er,N = ex,N (1) + e, n(2), (2.41)
where
N -1
6&1\7(1) = }_(Z(ka — ZINfl) X — N Ska (Z)
1 (2.42)
= ig(ka — zIN—l) 1Xk - — TI‘(ka — ZIN—l) ,
and
N -1 1 -1 -1
Ek,N(2) = Ska (Z) — Sx(z) = — (TI"(ka — ZIN_l) — TI“(X — ZIN) ) . (2.43)

N N

To estimate €5 v (1), we take short-handed notations
\/ka = (€1, - 7€N71) and (ka — Z]Nfl)fl = B. (2.44)

Note that §; are independent and has the same distribution as Z12, and the §;’s are independent
to B. Further write

N-1

1
er,N (3 sz_:lfjfj_l B(4,7),
ern(1) = exN(3) + €exn(4), where 1 N-1 (2.45)
ek, N (4 §&B(,1)
JJ 1
il

\

By the property of &;, E(§;&; — 1) = 0. Since B(j, j) is independent to &;, we see that each
summand of € y(3) has mean 0, and then E(e; n(3)) = 0.
Now we consider the conditional expectation of |ex n(3)|? when B is fixed.

1
E(lexn(3)]* | B = Bo) = 15

N-1 N-1
N2 Z(éjfj - 1)B(j4,7) Z fjfﬂ -1)B )
Jj=1 7j=1

~/

(2.46)

i

= 1 O (&S ~ 1B,
1

<.
Il

where in the second identity we use the independence of &;’s. We know that E((§;&; — 1)?) =
E((Z12Z12 — 1)?) is a constant, and need to estimate |B(3,)|*.
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Recall the facterisation B = U*DU where U € U(N — 1) and D = diag(#1,...,2nv-1) and
zj are defined in (2.27). Let the j-th column of U be u; that is a unit vector. Then

B(j,7) = u*Du, (2.47)

and
B(j,5)| < ||D|| = 2.4
1BG ) < [ID] = | _max [z] (2.48)

(Recall the operator norm || D[] = max|y—;|Dv]|.) From the definition of z;, it is clear that

1] : ! < (2.49)
zil = = < . .
T AT g 4 (e - AT T IS

Hence B(j,7) is bounded by |3z|71. We conclude that E(|ex v (3)|> | B = By) is bounded by
c¢N~! where ¢ is a positive constant independent to B and k. We further conclude that

E(lexn(3)[) <N, (2.50)

with the same c¢ independent to k.
This result is good, and by E(|ex n(3)|?) we directly find ez n(3) % 0. But this is not
enough, since our goal is to estimate maxj<j<n €k, N, 50 we need

P,

= 0. 2.51

| max e ~N(3)=0 (2.51)

This cannot be proved by the estimate of second moment ([2.50). How to remedy it? Keep
computing higher moments!

E(lex,n(3)[* | B = By)

1 N-1 2 (N2
= WE Z é:]{] )B(5,7) Z §J€J B(j, j)
j=1 J=1

ZE (&&= DHBoG N+ > E((&4 - DHE(GE - 1)) (2.52)

1<j<I<N-1

L. 2 —2 .. L.
x (2Bo(4,7)*Bo(1,1)” +2Bo(3,5) Bo(l,1)* + 8|Bo(4, 4)1*| Bo (4, 5)|?)

c

<m.

and by arguments the same as in the discussion of the second moment, we see that E(|ex v (3)]?) <
cN~1 for a constant independent of k. Then by Chebyshev’s inequality [9, Section 3.2], we find
that for any € > 0,

P(lex,n(3)] > €) = O(N ), (2.53)
and prove by
_ -1
IP(II<I}€a<xN|ek NB) >€e)=0(N). (2.54)

Similarly, we can show that (exercise)

c

et (2.55)

E(ler v (4] <
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for some ¢ independent of k, and then show

P
1A €N (4) = 0. (2.56)

Therefore we conlude from ([2.51)) and (2.56) that max<g<n €x n(1) 0.
Next we need to estimate e y(2). Denote Xy, as the N x N Hermitian matrix with entries
in the k-th column and k-th row 0 and all other entries the same as those of X. The eigenvalues

of X are those of Xk, i.e., )\ngl), A )\%\7:11) and 0. Then
N-1 1 R 1
TI'((ka — ZIN_l)_l) = W = TI'((ka — ZIN)_l) - (257)
j=1 )\j —Z z
and ) )
e n(2) = (Tr((ka — 2IN) 7Y = (X — 2In) 1) — z) : (2.58)

To estimate the Tr(ka —zIN)— TI‘(ka —zIN), we apply the following linear algebraic theorem.

Theorem 4 (Hoffman-Wielandt). Let A, B be N x N Hermitian matrices, with eigenvalues
MSAN < <A and AP < AP < < A\EL Then

N
S = AP < To((A* - BY)(A - B)). (2.59)

j=1
The proof of Theoremis given in Appendix Here we note that For any A = (ajk)?kzlv
Tr(A*A) = Z?,k:ﬂajk’z- Denoting the eigenvalues of X, as A; < --- < Ay and the eigenvalues

of X as )\gN) <. < )\g\jfv), we have

X -1 ¢ -1 al 1 1
Tr(( Xk — 2In)" ") — Tr((Xgx — 2IN) )‘ = Z ()\. — - NG )
=1 J i T2

N (N)
BY —)\]]
< Z J
= N
=y =AY - 2]
A (2.60)
N
< |gz‘2 ZP\J _AJ‘
j=1
1 1
N ESINGS ()
2
Sl DI A B DO
Jj=1 j=1
1
VN ()
SRR DT =l
j=1
By Hoffman-Wielandt theorem,
N N
S = AP <23 TIX (LR < 202, (2.61)
J=1 j=1
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where C' is the upper bound of Zj5. Thus we find that e, n(2) converges to 0 surely. Now we
finish the proof of Theorem [I| under the two trancation conditions.

2.4 Limiting ESD for general Wigner matrices

In this subsection, we show that the semicircle law proved for trancated Wigner matrices also
holds for general Wigner matrices.

Restore the truncation on diagonal entries First, let X be the trancated Wigner matrix
considered in last subsection, and Xy be the Wigner matrix that satisfies Condition [2 I but not
Condition |1 I for truncated Wigner matrix. Namely, the diagonal entries of Xy are given by i.i.d.
random variables N~/2Y; where ¥; has mean 0 and every moment finite, and the off-diagonal
entries of X are the same as those of Xp. Then a direct application of the Hoffman-Wielandt
theorem shows that

N N
Z’)\E /\(N ‘2 < Ti( (XN XN)(XN Xn)) Z Y“Q, (2.62)

where )\EN) and ;\EN) are eigenvalues of X and XN respectively, and are sorted in increasing
orders.

By the law of large numbers, we see that + ZZ]\; |Yi]? converges to E(|Y;1]?) almost surely
(and also in probability). Since we are interested in the weak, inprobability convergence of the
random ESD measures, we apply the following theorem.

Theorem 5 ([9, Exercise 9 in Section 4.4]). Let u, be a sequence of probability measures with
cumulative functions Fy(x) = ffoo ldpy,. Then p, converges weakly to a probability measure
if and only if p(F,, F) — 0, where F' is the cumulative distribution function of p and p is the
Lévy distance

p(F,G)=1inf{e | F(x —¢) —e < G(z) < F(xz +¢€) + € for all x}. (2.63)

The proof of this theorem is an exercise. Note that if p(F, G) > €, without loss of generality,
we can assume F'(zg —€) — e > G(z) for an zp € R and then

/OO F(z) — Gl)|de > /m Fz) — Ga)dz > &, (2.64)

—00 0—€

Geometrically, it means that we can put a square with size € between the graphs of F'(z) and
G(x). ~ i
Now we consider p(FXN, FXN) where FXN and FXN are the ESDs of Xy and Xy.

1
- [e%S) B N B N ~ 2
p(FXN’FXN)Z S/ |FXN —FXN\d:c _ %Z|/\§N) _ )\gN)‘ < 1N (ZO‘EN) _ )\Z(N))z) 7
> i=1 v i=1
(2.65)

where we use the Cauchy-Schwarz inequality. Now it is clear that p((F Xn | XN ) & 0 (actually
the convergence is almost sure). We know as well that p((FX¥, F) & 0 from the result in
last subsection, where F' is the ESD of the semicircle law. Hence p((F XN F ) B0, ie., F Xw
converges weakly, in probability to the seimicircle law, and we prove Theorem I for Xy Whose
off-diagonal entries are truncated but diaagonal entries are general.
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Restore the truncation on off-diagonal entries Now we consider the general Wigner
matrix, and denote it as Xy for fear of namespace conflict. Then the diagonal and off-diagonal
entries of X N are given by Y; and Z;; by (2.4) with Xy substituted by X N- We compare X N
with X ~ analysed above. To make them related below we define X ~ by X N as

Xn(iyi) = Xn(iyi), fori=1,...,N, (2.66)
Xn(i,7) = Xn(i, j) — LN\ R w (i) |<C ~ E(Xn(i,j) — L/Nigyigy<c)s for1<i<j<N,
(2.67)

where C' is a large but finite number independent of N.
Using the Hoffman-Wielandt theorem again (now XEN)

order), we have

are eigenvalues of X in increasing

2 A
Z!A AP = T(XE - XR)Ey - X)) = & D) 1ZuP (269)
1<i<j<N

where
Zij = Zijliz,5c — E(Zij12,550)- (2.69)

The expectation E(Z;;1)z,~c) depends on C, and we denote is as €(C). It is not difficult to
see (exercise) that

lim ¢(C) =0. (2.70)
C—o0o
By the law of large numbers,
N A ~
Z AN X2 2o, (2.71)

For any € > 0, there is a C such that ¢(C) < €2/4. Then implies that
lim P (1 ZN]X(.N) —AW2 62) = 0. (2.72)
N—oo N P ! ! 4
Analogous to , we have
.. o ) A LN 3
p(FXN, XN < / P P = EMEN) - A < (N > - AEN)>2> ,

and by (2.72)),

lim P (p(FXN,FXN) > g) —0. (2.74)

N—oo

On the other hand, the weak, inprobability convergence of the ESD of Xy implies (via Theorem

)

lim P (p(FX,F) > 5) =0, (2.75)
N—o0 2
Thus R
lim P (p(FXN, F) > e) —0. (2.76)
N—o0

By Theorem |5| and the arbitrariness of €, we see that the ESD of XN converges weakly, in
probability to the semicircle law. Finally we prove Theorem [1]in the general case.
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Exercises
1. Let f(x) be a continuous function on R and lim; 4 f(z) = 0.
(a) Define
1 J
= — = f(t)dt. 2.
i) =+ [ =gl (2.77)

T
Prove that as 6 — 0, fs(x) converges uniformly to f(x).

(b) By result show the existence of the function f(z) that is in the form of (2.14)
and satisfies ([2.12)).

2. Prove Theorem [

3 Local properties of the distribution of eigenvalues in GUE

In this section we focus on random matrices in Gaussian Unitary Ensemble (GUE), or GUE
matrix for short. The definition of GUE matrix is given in Exercise I}, and it is a special case of
the Wigner matrix defined by where Y7 has distribution N(0,1) and Zj5 has distribution
N(0, ) +iN(0, 3).

GUE matrix is a very special Wigner matrix in the sense that it is invariant under unitary
conjugation, while all other Wigner matrices, except for those equivalent to the GUE matrix
up to scaling and translation, are not. See Exercise Some powerful techniques involving
orthogonal polynomials can be applied to GUE matrix so that we can analyse the local properties
of the distributions of its eigenvalues, expecially the asymptotic behaviours as N — oco. Many
of these properties can be generalised to Wigner matrices with RYj2 and $Yio in identical
distribution, but the proofs are much more difficult.

3.1 Joint distribution of eigenvalues of a GUE matrix

In this subsection we prove the following theorem:

Theorem 6. Let H = Hy be the N x N random matriz in GUE. The distribution of its
etgenvalues Ay, ..., AN s

N

1 2 N2
P(Al,...,)\N):C—NA()\) Z-le ‘ (3.1)
where A(N) = [1<;cj<n(Aj — Ni) is the Vandermonde determinant and C is a constant; or
equivalently, if we assume A1,..., AN are in increasing order,
1 AN 2
P()\l,...,)\N) = ﬁA(A>2H67Ai 1/\1§"'§/\N7 (32)
N i=1

where Cly, = (N)~1Cy.

Note that the distribution of A1, ..., Ay is a marginal distribution of X. Recall the standard
method to compute the marginal distribution function from the joint distribution function:

P(z) = /P(w,y)dy. (3.3)

The question is: What is y?
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The idea of the proof of Theorem [6]is that
H =UDU*, where D =diag(\i,...,\n), U= (ui;);_; € UN). (3.4)

We show that except for a measure zero part of the probability space of H, which can be
assumed to be RY 2, the decomposition above is unique and U is parametrised smoothly by
N(N —1) variables, say 61, .. .,0nv_1), and then obtain the marginal distribution of A1,..., Ax
by integrating out the variables 61,...,0y(v_1). However, we only know that the probability
distribution function of X = (hij):-':j:l, given in coordinates h;; (1 < i < N), Rhj, and Shyy
(1<j<Ek<N)is

N
N N o
P(hiia%hjk,%hjk) = er_g”“?i H —e‘N(%hﬂ"“)Qe—N(dhﬂC)Q
i=1 VT 1<j<k<N
N2
—2% <N> CeEmr (3.5)
T
N2 N
:271;] <N> ’ Heig)‘?
T

To obtain the probability distribution function of H in coordinates A1,...,An,01,...,0§(n_1),
we need

O, AN O, O (v—1))

PO, AN, 61,....0 — P(hi;, Rhix, Sh; : .
(Moo A 15 O vy (hai, R, Shix) O(hii, Rhji, Shij) (3:6)
where the Jacobian
Ohi; Ohi;
O, - AN O, Oy 90k G0k
e A Ot ONOD) o and B = det | D0 PR (3.7)
(hii, Rhjr, Shi) OShy  OShy,
T a0,

is the determinant of an N? x N2 matrix, whose six blocks are of size N x N, N(N —1)/2x N,
N x N(N —1) and N(N —1)/2 x N(N —1). The computation of the Jacobian in (3.6)) turns
out to be the trickiest step.

To prove the “bad” part has zero probability, we need an apparently obvious result.

Lemma 2. Given any nonzero polynomial from R™ to R, its zero set has Lebesgue measure
zero.

The proof is left as an exercise. Below we identify the (real) linear space of N x N Hermitian
matrices as RV” with coordinates hiis Rh i, Shjg, in order to apply the lemma above.

Lemma 3. In the space of N x N Hermitian matrices, the set of matrices with repeated eigen-
values has Lebesgue measure zero.

Proof. The discriminant of an N x N matrix H = (hij)f'?]jﬂ is defined as [[;<; p<n (A — Aj)?
where Aq,..., Ay are eigenvalues of H. Actually it is the discriminant of the characteristic
polynomial of H. We need the property that the discriminant of H is a polynomial in h;; ([22,
Exercise 19 in Section 2]) and hence a polynomial in hg;, Rhjj, Shji, and the zero set of the
discriminant consists of matrices with repeated eigenvalues. A direct application of Lemma
finishes the proof. O
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Suppose H is an N x N Hermitian matrix with distinct eigenvalues, then in the decompo-

sition (3.4)),
U= (ul,...,uN), (38)

where uy, are eigenvectors such that Hu, = Agug. All uy are linear independent, and they are
unique up to a factor e%. Then if one U in decomposition has all its entries nonzero,
then all possible U, given that the eigenvalues of H are distinct, consist of nonzero entries. For
H that satisfies 1. all eigenvalues are distinct, and 2. in one (and hence all) U, all entries are
nonzero, it has a good decomposition

H = Udiag(A,...,An)U", where A\ <--- <Ay and wuj; €eRyforj=1,...,N. (3.9)

The following lemma shows that we need only to consider Hermitian matrices with good
decomposition.

Lemma 4. In the space of N x N Hermitian matrices, the set
{H | in at least one decomposition H = UDU™, U has a zero entry} (3.10)

has Lebesgue measure zero.

Proof. Based on last lemma, we need to consider only the Hermitian matrices with distinct
eigenvalues.

For each k = 1,..., N, we find a condition that u; has all components nonzero. Note that
A := H — )\, is a matrix with corank 1. Hence its adjoint matrix A*Y (whose (i, ) entry is
(—1)"*7 det(Aj;) where Aj; is the (N — 1) x (N — 1) matrix by removing the i-th row and j-th
column of A) is a nonzero matrix, and AA4*J = 0. It means that each column of A*Y is a
multiple of ug. Hence if for all j = 1,..., N, A3i(j, j) = det(H;; — AxI) are nonzero, then all
components of uy are nonzero.

Therefore, if for all j,k =1,...,N, det(H;; — A\g) # 0, then all entries of U are nonzero.
Or equivalently, for all j = 1,..., N, the resultant of H;; and H, which means the resultant
of the characteristic polynomials of the pair of matrices, does not vanish, then all entries of U
are nonzero. Because of the fact that the resultant of A and B can be written as a polynomial
in entries of A and B (exercise, which you can solve in a similar way as in [22, Exercise 19 in
Section 2] for resultant), we prove this lemma by Lemma and the conclusion that all Hermitian
matrices in the set considered are zeros of a polynomial in hg;, Rh i, Shji. U

Among the good Hermitian matrices, we define the very good Hermitian matrices as those
whose U in decomposition has all its minors nonzero. Similarly, we call a unitary matrix
U € U(N) very good if all its minors are non zero, that is, for each k = 1,..., N, and for any
pair of I,J C {1,...,k} with |I| = |J|, det(uij)icrjes # 0. We define T' : U(N)*& := {U €
U(N) | U is very good} — CN(N=1)/2

U21 UN1 U32 UN2 UN N-1
TU) = (-2, AL s o . (3.11)
U11 Uir U222 U22 UN—-1,N—-1

Lemma 5. T is injective with smooth inverse, and CNN=1/2\T(U(N)8) has Lebesgue measure
zero.

Proof. We define for each £k = 1,..., N the mapping Ty, whose domain is the array of mutu-
ally orthogonal vectors (vy, ..., vg), with v;(i) = 1, all components nonzero, and for any pair of
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I,J C{1,...,k} with |I| = |J|, det(v;(4))ics jes # 0, and whose value is in CN~D+N=2)F-+(N=k),

such that
Te(Viy.o o, vie) = (vi(2),.. ., vi(N),va(3),...,va(N),...,vi(k + 1),...,vi(N)). (3.12)

Note that T is equivalent to 7. Given U = (uy,...,uy) € U(N)® and let v; = u;/uy,
then T (vi,...,vy) = T(U); on the other hand, given (vi,...,vy) in the domain of Ty,

U= (vi/llvill,-..;vi/lvil]) is in U(N)'®, and T(U) = T (v, ..., VN).
T, is obviously injective, and its range is all points in C¥~! with all coordinates nonzero.
Furthermore Tl_l(zl, coozn-1) = (1,21, .. an—1) T

To show that T5 is injective, we only need to show that given any pair of vectors (v1,ve) in
the domain of Ty, if vi(1) = 1,v1(2),...,vi(N),va(2) = 1,v2(3),...,va(N) are fixed (by the
value of T5(v1,Vv2)), then vo(1) is unique. This is clear, since by the orthogonality, vi(1)va(1)+
Z;V:Z vi(j)va(j) =0 and vi(1) = 1, va(1) is uniquely solved. We have

___ N
T{l(zél),...,zﬁ),z?),...,zj(\%)):((1,251),...,,2% +ZZ]1 (2) ,17232)’”_’ ](3)) ).
7j=3

(3.13)

To show T}, is injective for k = 3,..., N, given that T} is injective, it suffices to show

that given (vi,...,vg) in the domain of Ty, we can recover vi(1),...,vig(k — 1) from the

other components of v and the components of vi,...,vg_1. By the orthogonality, the k — 1
components satisfied k — 1 linear equations

N
vi(Dve(D) 4 +vilk = vk —1) = =Y vi(j)va(),
=k
(3.14)
Vi—1(D)ve(l) + -+ vg_1(k — 1)vi(k ka 1(7)ve(d

By the condition that det(vi(]))” 1 # 0, we find that vi(1),...,vi(k — 1) are uniquely de-
termined. By induction, we find that T is injective. Although we are not going to write the

explicit formula of Tx!, inductively we find that it is smooth like T{l in (3.13]).
(1) (1)

On the other hand, we set up the necessary and sufficient conditions on (2, ,..., 25", ...,
z§2), e z](\?), R z](VN_l)) that it is in the range of Ty.

(1) All of them are nonzero.

)

(2) va(1) as shown in (3.13)) is nonzero.

(k) (where k runs from 3 to N repeatedly)

(k1) vg(1),...,vg(k —1) solved by (3.14]) are nonzero.

(k2) All det(v;(j))ier,jes are nonzero, for I,J C 1,...,k and |I| = |J|, where v;(j) = zj(.i)
if j <id;vi(j) =11if j <i; v4(j) is solved in step (2) or (il) if j < 4.

The points that do not satisfy all of the conditions are in the union of zero sets of polynomials

in %z](-i) and %z](-i), so they are of Lebesgue measure zero. O

The following lemma shows that most Hermitian matrices are very good.

22



Lemma 6. The N x N Hermitian matrices that are not very good have Lebesgue measure zero.

Proof. For k = 2,..., N, we consider the Hermitian matrices H such that in at least one
of its decomposition H = UDU* as in , U has a zero k-minor, i.e., there is a pair of
I,J CA{l,...,N} with [I| = |J| = k and the minor Ur; = det(u;j)icr,jes of U is zero. If we can
show for each k the set of such Hermitian matrices have Lebesgue measure zero, the lemma is
proven. We note that the k = 1 case of the result is exactly Lemma

Below we prove the k = 2 case. For any N x N matrix X, we define the N(N — 1)/2 x
N(N —1)/2 matrix

Tiy g1 Lirge

(3.15)

N X = (X15)1cq1,...N}, where Xp; =

|I]=|J|=2 Liz g1 Lig,jo

Although the order of I = (i1,1i2) is not important, we may take the lexicographic order.
It is obvious that A2Iy = In(n—1)/2- It is also not difficult to see that for any X,

A2 X* = (N2X)* (3.16)

So if H is Hermitian, then A?H is also Hermitian, and if U € U(N), then A2U € U(N (N —1)/2).
A not so easy result is that

A2 (XY) = (A2X)(A%Y). (3.17)

To see it, we note that

(XY), - |G G

wi)0032) T XY )0 (XY )iy

N N
Dkt Tin kYkgy Di=1 Tir 1Yo
Zk:l Lig,kYk,j1 Zl:l Lig, 1YL, 52

»)

=1 Il=

Liy kYk,j1 - Lii 1Yl52
Lig,kYk,j1  Liag,lYl,ja

(]

—_

(3.18)
Tiy kYkgr T Tig JYj1 Tiy kYk,jo T Tig 1YL jo
Tig kYk,jr T TigYlj1  Tig kYk,jo T Tig 1Yl jo

N =

=
>

11=1

N

wil 7k le al
xiZ K xi27l

Y1 Yk,jo
yl?jl yl7j2

M= 1=

N =

k

- X(Zl712)(k7l)}/(k7l)7(]17‘72)
1<k<I<N

Hence we have for a Hermitian matrix H = UDU™* as in (3.4)),
A2 H = (AN*U)(A*D)(N?U)* (3.19)

is also a decomposition in the form of . Note that U has vanishing 2-minor is equivalent
to that A2U has vanishing entries. As shown in the proof of Lemma , A2U has zero entries
only if the enties of A2H satisfies a polynomial equation, which implies that the entries of H
satisfies a polynomial equation. Thus by Lemma , such H have Lebesgue measure zero.

The k = 3,..., N cases are left for exercise. The method is similar to the kK = 2 case, but
we need the Cauchy-Binet formula [16, Section 0.8.7] in place of (3.18]). Thus we prove the
lemma. O
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Now we are ready to prove Theorem [0l Since Hermitian matrices that are not very good
has Lebesgue measure zero, they have zero probability as the density function is given by .
Thus we need only to consider the very good Hermitian matrices such that they have the
unique decomposition and the unitary matrix U is determined uniquely and smoothly
as U = T 1(z), where z = (zél), - ,z](\}), ce zéz), .. 21(3), - ,z](VN_l)). To parametrise U in
real parameters, we define 01,...,0yy_1) as 02,1 = R(the k-th component of z) and oy =
$(the k-th component of z). Then we write U = T~ 1(6y,. .., On(N=1))-

Proof of Theorem [0 For each 6y where k =1,..., N(N — 1), we consider B—U Since U*U = 1,
we have

ou* oU
* . 2
89kU+U 89k =0 (3.20)
Denote 8U oU*
(k) . 7* Y
S =U 60k 26, 0 (3.21)

we have that S*) is anti-Hermitian, i.e., (S®)* = —S®). By differentiation on the identity
H = Udiag(A1,...,An)U*, we have

OH oU ou*
diag(A1,..., A * diag(A1,...,AN)—— .22
89k (99k lag( 1 3 N)U + U lag( 1 P N) 60k; ) (3 )
and then
OH ouU oU*
U*—U =U*"—diag(A,..., A diag(Aq,..., A U
89k 80 la‘g( 1, 5 N)+ la‘g( 1, 3 N) 89k (323)
= 5% diag(Aq, ..., An) — diag( A1, ..., An)S®).
In terms of entries,
N
OH (k)
Umjunl = | U-U | = (N — ;)85 3.24
Similarly, for any k =1,..., N,
N
OH OH
—_— Uiy = | U =——U 05101k - 3.25
mzn;l(mk)mn“ i ( N, >j T (3:29)
Note that we use h;;, Rhji, Shj as coordinates of H, and
‘mhm" + zadhm" if m < n,
OH o o
P = a’zm if m =n, where u stands for 0 or \j. (3.26)
K ORhom _ ;0Shom i
Op 7 BT IIrm >n,

. Oh:; ORh:;; O0Shj; oh
From (3.26)), we see that if we arrange o on o on @s a vector and o as another
vector, both of dimension N2, there is a linear transformation, expressed by an N2 x N? matrix

V1, such that
Ohii
o
jl Ohmn
Vil | = (W) : (3.27)
OShy
op
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Although we do not write down V; explicitly, it is clear that det(V}) # 0 is a constant. Similarly,
from (3.24) and ([3.25)), we find a linear transformation, expressed by an N? x N? matrix Vs,
such that
mn J— k: mn J—

Vo (%) = (e =2)s)) s Ve (%= ) = (du0u) (3.28)
Note that V5 depends on u;; and hence depends on 6 but not A\;. Also V5 is unitary (exercise)
and so det(V2) # 0.

Recall the matrix H in (3.7)). We have
VaVoH = (5jk5zk (A — )\j)S](-f)) ; (3.29)

where then index k runs to the right and the index (jl) runs to the bottom. Note that each
factor (A\; — ;) appears in one row on the right-hand side of (3.29)), (3.29) implies

det(V2) det(Vy)det(H) =[] (A — A;)*det(S), (3.30)
1<j<I<N

where entries of S are given by 0, 1 and S (f) Note that S](f) are expressed in 0, and so is det S.

J
Therefore

det(H) = [ (N—=X)f(01, . 0n-1), (3.31)
1<j<I<N

and by (33), (3:8) and (3:7), we have

N2 N
N 2 N
P()‘la-"7AN5017"')0N(N71)):275 <]7\:> [[677)\22 H (AI_AJ)Qf(el)ueN(Nfl))
i=1 1<j<I<N
(3.32)
After intergration with respect to 61, ...,0yNv_1), we derive , and then is equivalent.
O

3.2 Cumulative probability distribution of the largest eigenvalue in GUE

We have derived the joint probability density function of the eigenvalues in the N x N GUE in
Theorem [0l The next question is: What is the distribution of the largest eigenvalue, especially
as N — oo?

The semicircle law suggests that as N — oo, the largest eigenvalue is at /2. But it is only
a speculation. Actually it is true for all Wigner matrices considered in Section 2l We prove it
for GUE and furthermore derive the limiting distribution of the largest eigenvalue after scaling.

Write
2

1.1
1 Al )\N
POw AN = 5| : e2 M, (3.33)
: - =1
A=A

It is clear that if p;(z) and g;(z) are polynomials of degree j and the leading coefficients nonzero,
then

po(A) . po(Aw) qo(A) - qo(An)
) A ) A v
P()\l,---,)\N):CL, pl(. 1) pl('N) Q1(' 1) QI('N) ot
N : : : i
pv—1(M1) oo o O av—1(N) o a1 (O 1
(3.34)

The following identity was discovered by Andréief in 1886 [4]:
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Theorem 7. Let fi(x),...

/ et i) detlgi(a)) iy do -+ dog = nl det ( /R ﬁ(z)gj(x)dx)

Proof. By the Leibniz formula

/n det(fi(x))ij=1

s fn(x) and g1(z), ..

.y gn(z) be L? functions on R, then

n
1,j=1

for determinants,

det(gi(:cj))zjzldxl cooday,

fi(z1) fil@n)| 5
_ Z (_1)sgn(0)/ H y(xj)dzy - - dy,
7E€Sn ' fn(21) fn(@n)] 7=
f1(21)g01) (1) f1(Zn) 9o (n)(Tn)
— Z(_1)sgn<a>/ : : dxy -+ day,
7E€Sn " fa(@1) g (21) fn(fvn)ga(n)(ﬂin)
Jr f1(21) g0 1y (1) d2 Jr [1(#0) 9o (n) (20)dn
— Z (_1)Sgn(0) : :
7€5n Jr fa(@1)go(1)(21)day Jr fn(xn)ga(n)(xn)dx”
= _1)%81(9) ge ( () 9o (T d:E)n
3 1o [ @303 (2) .
= % oy de [ g (eas)
oESn ij=1
=n! Z det </ fi(x)g;(x dac) .
oc€Sh ,j=1

(3.35)

(3.36)

O]

We want to consider the probability P(Amax = maxi<j<ny(A;j) < a) for any a € R. It is equal

to

IP’()\1<a,...

1 _
= C”/N det(pi—1(xj)e

( [ pa@aita)

,)\N<a)

N 2
1%

N!
Cfl det

6_%1’21(_00@) (x)dw)

N, 2

L(_oo0) ()11 det(gim1 (z5)e” 5L (_og o (25))i =y day - -

N

3,j=1

To eliminate the annoying constant C', we note that let a = +o0, (3.37) becomes

N
1= Cfl det

and then

P(Amax < a) =

N

([ pH(x)qjl(x)e—de)i’jl

det (fR Pi—1(x)qj—1 (ac)e_%‘l”2 | (x)dm)

det (pri—l(x)qj—l(x)eingdx)N

N

ij=1

ij=1

26

~dxn

(3.37)

(3.38)

(3.39)



To simplify (3.39)), we assume ¢;(x) = p;(z), and let them be the orthogonal polynomials such
that

/pi(:v)pj(x)e_gﬁdw = 0y;. (3.40)
R
Then (3.39) becomes

N

P(Amax < a) = det ( /R p,-_l(g;)qj_l(g;)e’59621(00@)(3;)@) . (3.41)

i.j=1

Below we will see that the orthogonality can bring us more advantages.
Now let A : L2(R) +— (2(N) and B : *(N) — L%*(R) be the operators defined by the kernels

N 2 N 2

A(s,i) =pi—1(s)e" 2%, B(j,s) =qj—1(s)e” 1%, 4,5=1,...,N, (3.42)

such that for any f(s) € L2(R), A(f) € £2(N) is

</Asl /AsN > (3.43)

and for any k = (ki1,...,kn)" € £2(N), B(k) € L*(R) is

N
= k;B(j,s). (3.44)
j=1

Then AB is a linear transformation from £2(IV) to itself, represented by the N x N matrix

(i,7) /A s,1)B(7, s)ds, (3.45)
and BA is a linear transformation from L?(R) to itself, represented by the kernel
N
BA(s,t) =Y B;(s)4;(t). (3.46)
j=1

Similarly, we define Ay : L*(R) — ¢?(N) and By : (>(N) — L*(R) by

A_(s,i) = A(‘S?i)l(—oo,a)(s)’ At (si) = A(Svi)l(a,oo)(s)’
B—(j7 S) B(]7 S)l(foo,a)(s)? B+(j7 S) = B(]a S)l(a,oo)(s)‘

Then A_B_ : (>(N) — (*>(N) and B_A_ : L?*(R) > L?(R) are represented by the matrices

(3.47)

SBd) = | A B (5)ds (3.48)
and the kernel
N
B_A_(s,t) = 1(_c0,0)(5) (Z Bj(S)Aj(t)) (oo, (D), (3.49)
j=1

and AL B, and By A, are represented anlogously.
Noting that
A_B_+A,B; =AB =1, (3.50)
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the probability P(Apmax < a) becomes
P(Amax < a) = det(A_B_) = det([ — A+B+). (351)

A heuristic idea to simplify is to use the identity det(A_B_) = det(B_A_) and
transform the determiant of a large matrix into the determinant of an integral operator. This
approach does not work, since det(XY') = det(Y X) holds only if X and Y are square matrices,
which is not true in our case. (A and B can be regarded as N x oo and oo x N matrices
respectively.) Nevertheless, a similar identity that does not require squareness saves us:

Theorem 8. Let X and Y be m X n and n X m maltrices respectively. Then
det(Ipxm + XY) = det(Ixn + Y X). (3.52)
Proof. Exercise. Hint: Cauchy-Binet formula. O

The theorem above serves as an inspiration for us. The real technical tool is

Theorem 9. Let X be a linear transformation from L*(R) to £2(n) and Y be a linear trans-
formation from £?(n) to L*(R). Then

det(I + XY) = det(1 + Y X), (3.53)

where on the left-hand side the determinant is the usual one for n X n matrices, and on the
right-hand side the determinant os the Fredholm determinant for trace class operators.

Before giving the proof of the theorem, we need to explain what a Fredholm determinant is.
The abstract definition for general trace class operators is given in the appendix, and a special
definition below suffices for us.

Definition 2. Let K be an integral operator on R either with a piecewise continuous and
rapidly decreasing kernel or of finte rank. Then the Fredholm determinant of 1 4+ K is

= 1
det(l1+ K) =1+ Z ] / det(K (w4, 7))} j=ydzy - - - dp. (3.54)

The convergence of the series in (3.54) can be verified directly when K (z,y) is rapidly
decreasing, i.e., as max(|z|, |y|) — oo, |K(z,y)| — 0 faster than any power function. It will be
shown that if K is of rank m < oo, i.e., K = > ", fi(x)gi(y), then the series terminates after
m terms.

Proof of Theorem[9 Expressing X and Y like we did for A and B in (3.42), we have

det(14+YX) = det (1 + zn:Y(l, s) X (t, l))

=1
= 1+Zk!/Rk det (ZY(l,a:i)X(xj,l)> dxy -+ - dxy
B - ij=1

=1

+Zk' Z /det (U, 20) X (25, 13))8 1y day - - day

k=1""1,.. ,lk 1

— +Zk' Z det( Y(li,x)X(x,lj)dx>k

1 ij=1
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Note that in the last step we use the fact that the series terminates when k > n. The reason
is that if I1,...,[; are not distinct, then the integral of det(Y (/;, ;) X (x;, lj))i-fj:l vanishes due
to identical rows.

On the other hand, we have

det(I + XY) =
1+ fR ) (1,s)ds [z X Y (2,s)d . Jg X (5,1)Y (n, s)ds
et g X Y (1,s)ds 1—i—fR (s, )Y(Q,s)ds Jr X (5,2)Y(n, s)ds
e X Y (1,s)ds Jz X (s, an(Z, sds ... 1+ 5 X(s,.n)Y(n, s)ds

(3.56)

To compare this determinant with the Fredholm determinant expressed in (3.55)), we use the
following expansion of determinant. Let M = (mij)z’»szl be an n X n matrix and ¢ be a variable,
then

1+ tmiq tmig c. tmln
tmoq 1+tmoy ... tmoy,
det(I +tM) = . . . (3.57)
tmnp1 1+tmye ... 14+tmg,
is a degree n polynomial in t. Computing its coefficient of each t* (k= 0,...,n), we have

n
det(I+tM)=1+3¢* 3 det(my,)¥;y
k=1 1<li<--<lp<n (3.58)

n

—1+Ztk1 Z detmll 2]1

Iyl =1
Let t =1 and M = XY, we have
k
det(I + XY) _1+Z Z det (/X (2,1;) (lj,x)d:):> : (3.59)
k=1""l1,..lx=1 ,j=1

Comparing (3.59)) with (3.55)), we prove the theorem. d

Now applying Theorem [9] to (8.51]), we have (see (3.42)), (3.47) and (3.49) and note that
Pj = qj)

N
N
P()‘max < a) = det(l - B+A+) =det | 1 - 1(a7oo)(s) ZpJ'(s)pj(t)e_z(sz-i_t?) 1(a,oo) (t)

(3.60)
To further simplify (3.60]), we use a property of orthogonal polynomials.

Theorem 10. Let p,(x) be orthogonal polynomials with respect to a measure p such that

/Rpi(x)pj(a;)du(x) = 0;j- (3.61)
Denote the constants

i = [ @due) b= [ apaepa()duta), (3.62)
R R
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Then

bnpn 1(x) + anpp(x) + bn—lpn—l €T an > 1,
bop1(x) + agpo(x) if n=0.
Proof. Without loss of generality, we assume n > 0 and
xpn(x) = copo(x) + c1p1(z) + -+ - + cnr1pnt1 (). (3.64)
Then for any j <n + 1,
n+1
[ ap@ms@nte) = 3 e [ plens@)duta) =< (3.65)
i=0
For j < n —1, we have
¢ = /an(:c)(xpj(x))d;z(x) =0, (3.66)
since xp;(x) is a polynomial of degree j + 1 < n, and p,(x) is orthogonal to all polynomials of
degree less than n. Similarly we find ¢,—1 = b,—1, ¢, = a,, and ¢pq1 = by,. O
Then we have the celebrated Christoffel-Darboux formula.
Theorem 11. Let p,(x), an, b, be defined as in Theorem . Then
n—1
P T )Pn— — Pn—1\T)Pn
i=0 =Y
Proof. Take the difference between the two formulas
n—1
z Y pi(z)pily) =
i=0
aopo(z)po(y)  +bopo(x)p1(y)
+bopo(z)p1(y) +aip1(x)pi(y) +bipi(z)p2(y)
+bopo(z)p1(y) +aip1(z)pi(y)
+an—1pn—1(w)pn—1(y)
Fon—1pn(x)pn-1(y) , (3.68)

n—1
Y Zpi(x)pi(y) =
i=0

aopo(z)po(y)  +bopo(x)p1(y)
+bopo(x)p1(y) +aipi(z)pi(y) +bipi(x)p2(y)

+bopo(z)p1(y)  +aip1(x)p1(y)

+an-1Pn—1(2)Pn-1(y) +bn—1Pn(z)pn—-1(y) ,

(3.69)
and divide both sides by = — y. O
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The orthogonal polynomial associated to GUE turns out to be quite special: They are
Hermite polynomials up to scaling. The standard reference book of Hermite polynomial is [23],
while Wikipedia, is also a reliable source. Hermite polynomials (as used by probabilists) are
defined by the formula

2 dn 22

H,(z) = (-1)"eT e T (3.70)

H,(z) is a monic polynomial of degree n, and satisfies the orthogonality

/ H,, -7 da: = V21mn!mn. (3.71)

We also have (for n > 1)
xHy(x) = Hyy1(z) + nHp—q(2). (3.72)

It is straightforward to verify that if we define

pul) = (1) Ho (VN ), (3.73)
(2m)’

pn(x) satisfies the orthogonality condition (3.40)), and

n —|— 1 I'n
xpn pn+1 pn l ) (374)

The conclusion of this subsection is:

Theorem 12. In the N x N GUE random matriz, the distribution of the largest eigenvalue is
given by the cumulative distribution function

P()\max < a) - det(l - 1(a,oo) (I’)KN(QC‘, y)l(a,oo) (y))a (375)
o (2)e™ 1 oy (e 1" — pra(x)e T pr()e
xX)e — e — —1lx)e e
Kn(z,y) = PN pPN-1\Y - _];N 1 PNy , (3.76)

and py(x) is expressed in Hermite polynomials by (3.73)) and (3.70]).

3.3 Limiting distribution of the largest eigenvalue in GUE

In this subsection we do asymptotic analysis, and assume N, the dimension of the GUE, to be
sufficiently large.
Hermite polynomial H,(z) has a contour integral formula

n! et

where the contour encloses the origin.
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Proof. Since exp(xt — t2/2) is an analytic function in ¢, the Cauchy integral formula implies,
with the help of the change of variable u = x — t,

2

t
n! el T dn 2
j(I{ dt = ett==

omi P prry o
— e I deop
dtn =0 (3.78)
12 n u2
=ez (=1)" % 7 .
1?2 dn I2
—e2 (— n__ e 2 = Hn
er (=)t Te ()
O

Thus our py(z) and py_1(z) have contour integral formulas, with the change of variable
2= N1/,

2 2 2

2 z z
py(z)e 17 = % ) eN(x:le‘l)dz, py_1(z)e T = % ) eN(mZZ; A (3.79)
where I' is a contour enclosing 0 and
Cn = # (3.80)
N272(2m)%
Note that by Stirling’s formula, as N — oo,
Cn =VNe 2 (1+O(NY). (3.81)
Next we apply the steepest-descent method to estimate pN(ac)e*N””Q/2 and p]\r_l(nv)e*]\/”“g/2

for z = 2+ O(N -2/ 3). The strategy of the steepest-descent method can be explained briefly
as below: To estimate the contour integral

?{ ") g(2)dz, (3.82)
C

where h(z) and g(z) are “usual” analytic functions and n is a large parameter, we take the steps
1. Find the critical points 21, ..., 2z, where h/(z;) =0 fori=1,...,m.

2. Deform the contour C such that it passes through one or more critical points and Rh(z)
attains its global maximum A, .y, on those critical points, say z1,...,2; on the contour.

3. Estimate

7{ e"#) g(2)dz (3.83)
C\Ns(z1)U--UNs (2k)

where Nj(z;) is the neighbourhood of z; with radius 0, and show that the integral is of
the order O(exp(nhmax — ne)), where € depends on § and h(z).

4. Evaluate for each z1,..., 2
7{ ") g(2)dz (3.84)
CNNs(2:)

and find that the integral equals C; N ™% g(z;) exp(nhmax)(1+0(1)) where o; and C; depend
on the local behavior of h(z) at z;.
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5. Take the sum of the parts of the contour integral evaluated in steps [3] and 4] The integral
over C'\ Ng(z1) U ---U Ns(zx) ie negligible since the exponential function part vanishes
faster than the power function parts as N — co.

In practice, sometimes we modify some steps.
To apply the steepest-descent method to pN(x)e*N“2/2 and p]\;_l(ac)e*]\h"?/2 in (3.85)), we
write

P (e = @ Jq{ eN(zZ?éilogk%)ld% py_1(z)e” 17 = @ j{ N(@z—2 —logz—20) 1
2mi Jp z 2mi Jp
(3.85)
First we evaluate py(z). We have
2 2
h(z) = zz - % —logz — %a 9(2) = 2L (3.86)

According to (3.75) and the suggestion of the semicircle law, we need to consider x > a where
a is around 2. We start by the special case x = 2. Hence

1

h(2)=2—2— = (3.87)
and h'(z) has a double zero z = 1, such that
1
h(l) = 3 R'(1)=h"(1)=0, K"(2)=-2<0. (3.88)

To find the correct shape of I, we first consider the contour I'P™ that differs from I" only locally
around 1. See Figure[I]

I'; is the line segment from iv/3 to 1,

[y is the line segment from 1 to —iv/3,
'’ =T,UI'xul's, where (389)
I'5 is the semicircle with center 0, radius v/3

from —iv/3 to iv/3 counterclockwise.

We show that Rh(z) attains its global maximum on I'P*® at 1 by explicit computation. For
z € Ty, we write z = (1 —t) + i\/3t where ¢ € [0,1]. Then

Rh(z) =2(1 —t) — %(1 — 2t — 2t%) —log /(1 — )2 +3t2 — 1 (3.90)

and for ¢ € (0,1)
d 83 — 8t 8A(t—1)

ZRh(z) = = 91
) = T e T G e (3:91)

Hence Rh(z) decreases as z moves from 1 to V3i along I'y. Since I'y is symmetric to I'y about
the real axis and h(z) is a real analytic function, Rh(z) decreases as z moves from 1 to —iv/3
along T'y. For z € T'3, denote z = v/3(cos @ + isin ) where € [7/2,37/2]. Then for z € T'3

Rh(z) = % —3cos?0 + 2v3cosh —log V3
1

:§+1—(1—\/§cose)2—log\f3 (3.92)
< % —log V3 < Rh(1).
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A\/gi
Iy
Iy [—V3 1

_\/32'

Figure 1: The shape of I'P*®. It differs from Figure 2: The shapes of I and ' around
I" only locally around 1. 0. For I'™® the contour extents to infinity,
and for I it extends to N/30¢%27/3 T hag
the same shape as ' N5, (1) up to scaling.

\J

Thus I'P* satisfies the requirement of the steepest-descent contour in Step 2} T is defined by
deforming TP such that the two points 1 + N~1/3¢%27/3 are joint by a vertical line segment
instead of a polygonal chain through 1. See Figure [2] for this local part of I' maginified.

By Taylor expansion around 1,

L 1)3
h(z) = h(1) + B ()=~ 1P+ O((z ~ 1) = 5 - (z—1)

Consider 5 = N=3/19, The two points 1 + dxet2™/3 are on T, and

1 1 9 6

h(1 4 dye2m/3) = 5~ 3N T HONTE) (3.94)
and then )
Rh(1 4 one>™%) < o - eN~T0 (3.95)
for an € > 0. From the construction of I'; we can verify that
1 _9
Rh(z) < 5 eN™10 (3.96)

for all z € I' \ N5, (1). Hence

% Nh(z) ( )dZ
M\Ns (1)

;4 NG=NTI) g2z
M\Ns (1)

1
o b ST -
Tt JT\Ns (1)

where C' depends on the behavior of g(z) on I'.
On the other hand, on I'N N5, (1), we take the change of variable z = 1+ N~Y3 and have

“’\ =1
— —

IN

(3.97)

9
— 2 1 -2 1
— 10 = — 10 =
e eN 62N 06 eN 62N

w3 -1
J - O(N"5) _

T Fe

—e —e %<1+0( ), (3.98)
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where we use the estimate that for z € N, (1), (z — 1)* = O(N~5/%). Thus

1 1 w3
— eNE) g(2)dz = N™3—— f 6%6_7(1 + (’)(N_%))dw
2711 T'NN; 2mi r
N (1)
1 w?
—NFarow s g T OF
211 Jpeo

= N"3e2 (14 O(N"5)) Ai(0).

Here the contours I’ and I'° are described in Figure [2, and we use the Airy function to denote
the integral in (3.99)). The Airy function is a special function with many applications. See [I]
for its various properties. The general formula of the Airy function is, in its contour integral

formula,
1

3
Ai(z) = 5 7? e~ T Ty, (3.100)
It is easy to see that the integrand in , although defined on an infinite contour, converges
for all x € C.

Now we consider more generally © = 2 + N~2/3¢ where £ is in a compact subset of C.
Although we are interested mostly in real value of z, it is harmless and actualy useful to
consider complex x. Then

22 _2 _2 1. 4.5
h(z):22—5—10g2_1+N 3§z — N 35_ZN &%, (3.101)

and for z € N3, (1), after the change of variable z = 1 + N~/3w, we have like (3.98)

w3
eNh() = o7 e T (1 4 O(N5)). (3.102)
Thus like ((3.99))
1 Nh(z) -1 N -1 1 fwf3+£w
— e g(2)dz=N"3e2(1+O(N3))=— ¢ e 5 ~“g(l)dw
271'7, FmNﬁN(l) 27TZ I‘oo (3103)
= N7ag(1)e (1+ O(N75)) Ai(g).

On the other hand, since the ingegrand is only slightly changed, the estimate of the integral
over I'\ N;, (1), which is not as sensitive as the integral near the critical point, barely changes,

and we still have like (3.97))

9

1 _
< Ce N 10¢

7{ eV g(2)dz
211 F\NSN(l)

The detail is left to the reader.

The asymptotics (3.103)) and the estimate (3.104)), together with the asymptotics (3.81)),
imply that as N — oo, for z = 2+ N~2/3¢ and € is in a compact subset of R,

w2

(3.104)

[

pn(x)e” 17 = N6 (1+ O(N~5) Ai(€). (3.105)

As x — 400, the Airy function Ai(z) — 0 exponentially. Actually

e :

a 2\/mx

3
x2

win

Ai(z)

, as T — +oo. (3.106)

=
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It suggests that the asymptotic formula for py(z)e™V @*/4 can be extrapolated so show that it
vanishes exponentially as x increases. However, we need always to be cautious to do extrapola-
tion. Below we give an expenential decay result, which is not the optimal one, but suffices for
our purpose.

We distinguish h(z) with different parameters z, and write

22 _2 _2 1 a4
he(z) = h(2)| _, -3¢ =22— 5 —logz+ N 3¢z —1—- N3¢ — N 5€2, (3.107)

Then we have for all £ € Ry and all z € T’
_2 1.2 1€
R(he(z) —ho(z)) = N3 [ Rz —1— ZN 3¢ ) < =N 5 (3.108)

where we use that Rz <1 — N~1/3/2 for all z € I". Thus

|eNhe®)| < efgleNho(zn (3.109)

for all z € I.
Recall the computation of py (z)e N="/4 for z = 2, especially (3.97) and (3.99). We sce that
we can use almost the same computation to derive that

N
2

/\eNhO(z)Hg(z)Hdz] < CON-3e¥, (3.110)
T

where C'= O(1) is a positive constant. Hence (3.85) and (3.109) imply

3 1 N
2

g L [ eNhe(z) On &,
o ¢ = —
em2iv-3¢ S 3 /F‘e l9(2)]|dz] = S SON e

o=

N7s(14+O(N),

(3.111)
where the O(N 1) term comes from the Stirling formula of Cy and is independent of £. We
conclude that as x = 2 + N=3¢ and &> 0, ;U]\/(ac)e_N”:Q/4 decays exponentially with respect to
&. A slight stretch of the computation shows that the exponential decay holds if £ is complex,
with its imaginary part bounded.

Now we have asymptotics of py(z) . The method can be applied to py_1(z)
verbatim, since the only difference between their contour integral formulas is from the g(z)
factor, but all our derivation does not use any specific property of g(z). Similar to , we
have that for z = 2+ N~2/3¢ and € is in a compact subset of C

e~ Na?/4 e~ Na?/4

pr—1(@)e” T = N (1+ O(N~3) Ai(€), (3.112)

and we also have the exponential decay property as & — +o0o. However, if we substitute formulas

(3.105) and (3.112) into (3.76]), we get no meaningful result.

The situation can be saved in a simple way. Write

N, _N _N, _N
Kay(ag) = PXE) =pyo1@)e” S pyoay)e Y — py-a(@)e” T (py(y) = pr-a(y)e T
) T — y Y
(3.113)
and express
(pn(z) —101\7_1(3;))@*%’32 = @ ]{ N E) g(2)dz, (3.114)
2mi Jr
where ) )
h(z) =xz — % —logz — %, g(z) =21 - 1. (3.115)



The estimation of the integral over I'\ Nj, (1) can be done similarly to (3.97)), and the same
result can be obtained. But since the saddle point 1 is a zero of g(z), the integral over I'NNsy (1)

need to be modified a little. With the change of variable z = 1 + N~/3w, we have similar to

(3.99) and (3.103)
1 1 3
Sy NME) g(2)dz = N_%T ?{ e%e_T+§w(—N_%w)(1 + O(N_é))dw
T FONEN(l) ™ Jr
2 N ]. u;3
= —-N3e2(14+0 j{ e” 5 H%dw
( (N ))2m oo (3.116)
2 N d 1 w3
= —Nse2(1 A
o <27m7{ 5 dw)
= — N75e (1+O(N79)) AV (9),
and then N ) )
(o (@) — Py (2))e™ T2 = —N"H(1 + O(N~$)) AT (€). (3.117)
Furthermore we know that it decays exponentially with respect to £ as £ — +oo.
We define the kernel function
A AT() ~ AV AiD) o,
KAiry(€7 77) = 5 -7 ’ (3118)
Ai'(n)? — A" (n) Ai(n) if £ = 1.

Note that K(&,n) is analytic in both £ and 7. The asymptotics (3.105), (3.112)), (3.117) and
the identity (3.113)) immdiately give as that as © = 2+ N~2/3¢ and y = 2+ N~2/3p, where £, 7
are in a compact subset of R and £ # 7,

lim N™ 3KN(£L‘ y) = Kairy (&, 7). (3.119)

N—o0

By a little complex analysis, we can generalise it to the & = 7 case. For any 7, we consider

S=n+e’, and zg=2+&. (3.120)
Then the Cauchy integral formula implies that
2m 9 1 2m
lim N7 3K = i N7s3K do = — Kpiry (£9,m)d0 = Kairy(n, ).
m SKn(y,y) e s KN (z9,y) or J, A v (&9,m) Airy (1, 7)

(3.121)

Now we have the pointwise convergence that N=2/3Kx(x,y) — Kairy (&, 7). We also know

that as £,7 — oo, |[N"2/3Kx(z,y)| vanishes uniformly. Then by argument in functional
analysis, we have that if a = 2+ N~2/3T, then

1\}E>noo det(l - 1(a,oo) (SL‘)KN(LU7 y)]-(a,oo) (y)) = FTW(T) = det(l - 1(T,oo) (f)KAiry(fa 77)1(T,oo) (77))
(3.122)
Here the Frw is the cumulative distribution function of the celebrated Tracy-Widom distri-

bution. Finally we have the result for the limiting distribution of the largest eigenvalue in
GUE:

Theorem 13. As the dimension N — oo, the largest eigenvalue Apmax in GUE is almost surely

at 2, and its fluctuation is of order N=2/3 given by the Tracy-Widom distribution that
lim P(Amax < 2+ N723T) = Frw(T). (3.123)
N—o0

We are not going to give the proof of this theorem, unless we have enough time left in the
end of this semester.
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Exercise

1. Complete the proof of Lemma, @ for the k = 3,..., N case. (Hint: Cauchy-Binet formula
is an important linear algebraic identity that you can learn from http://en.wikipedia.
org/wiki/CauchyBinet_formula, for example.

2. The Laguerre polynomials (see [23] and http://en.wikipedia.org/wiki/Laguerre_polynomials)

xt

(04) 1 el-t

where a > —1 is a parameter, and the contour encloses 0 but not 1.

Find an asymptotic formula involving Airy function of e~/ 2L£L0) (x) for z = 4dn + 2 +
2(2n/3)Y/3t where n — oo and t is in a compact subset of R.

4 Limiting distribution of the largest eigenvalue in Gaussian [
ensemble

We have derived the Tracy-Widom distribution for the limiting distribution of the largest eigen-
value in the GUE random matrices. For Gaussian orthogonal ensemble (GOE) and Gaussian
symplectic ensemble (GSE), similar results hold, but the derivation becomes more sophisticated.
Although the limiting distribution of the largest eigenvalues is a problem in probability, the so-
lution for GUE as shown in Section [3| and these for GOE and GSE rely on the exploit of the
symmetry of the models and analytical techniques not commonly seen in probability literature.
For people inclining to study probability, we present a unified solution for the limiting distribu-
tion of the largest eigenvalue in GUE, GOE and GSE. The drawback of this approach is that
the result is stated in a rather abstract way.

This section follows closely to [3, Section 4.5]. Another good reference is the Ph.D. thesis
of Alex Bloemendal [8]. The interested readers are refered to the original paper by Ramirez,
Rider and Virdg [20] that contains more results about the § ensembles.

Remark 2. In this section, the terms “Gaussian unitary ensemble” and “Gaussian orthogonal
ensemble” are defined slightly different from those in Section For GUE, we define it as a
random Hermitian matrix such that the diagonal entries are real and in N(0, 1), upper-triangular
entries are complex with both real and imaginary parts in independent N(0, %) distributions,
and they are all independent. So it is the GUE in Section [2| scaled up by N. The GOE (as well
as GSE) is redefined by the same scaling.

4.1 Tridiagonal matrix models and the Gaussian $ ensemble

We are going to define a tridiagonal random matrix model that has a parameter g > 0, such
that the distribution of the eigenvalues in the tridiagonal random matrix model with 5 =1,2.4
is identical to that of the eigenvalues in GOE, GUE and GSE respectively. Thus we call this
tridiagonal random matrix model Gaussian B ensemble (GBE). The limiting distributions of
the largest eigenvalue in GOE, GUE and GSE become those of the largest eigenvalue in the
GpE for the corresponding f3.

First we recall the x; distribution that is a positive continuous probability distribution given
by the density function

fi(x) = Wlmm)(@, (4.1)


http://en.wikipedia.org/wiki/Cauchy–Binet_formula
http://en.wikipedia.org/wiki/Cauchy–Binet_formula
http://en.wikipedia.org/wiki/Laguerre_polynomials
https://tspace.library.utoronto.ca/bitstream/1807/31693/3/Bloemendal_Alex_201111_PhD_Thesis.pdf

where the real parameter ¢ > 0. When ¢ is an integer, x; distribution is related to the normal
distribution in the way that if Xy,..., X} are i.i.d. random variables in distribution N(0, 1),
then

t 3
(Z X?) ~ xt(). (4.2)
i=1

If ¢ is an integer, then it is a direct consequence of (4.2) and the central limit theorem that as
t — 00

2(xe(z) — V1) % N(0, 1). (4.3)

A straightforward computation confirms that holds for real ¢.

We define the Gaussian 8 ensemble as follows. Let &1,&,...,Y1,Y2, ... be independent
random variables such that & ~ N(0,1) and Y; ~ §;3. For any dimension N, the N dimensional
symmetric matrix Hy in GSE is given by

hij =0 if |Z —]| > 1, (4.4)
hii = \/2/BE:, (4.5)
hiis1 = hiv1: = Yn_i/\/B- (4.6)

Then we have

Theorem 14. For any 5 and N, let Ay,..., Ay be the eigenvalues of Hy. Then the joint
probability density function of A\1,..., Ay is
1
Ps(M, .. ) = —— AP TZA (4.7)
Cn s
When § = 2, Theorem [14] shows that the GSE has the same spectral property as GUE. In
Exercise [I] we will see that the GSE with § = 1 has the same spectral property as GOE. The
relation between GSE with § = 4 and GSE is analogous, but the proof is a little too complicated
to be an exercise.

Proof of Theorem (14| for B = 2. First we show the eqivalence between the distribution of eigen-
values of GSE with 8 = 2 and GUE, and prove the theorem for § = 2. For any N, let the
N x N random Hermitian matrix Xy = (:J:Z»j)f?;-:l be a GUE random matrix, such that

11\1(0,'1) 1 N(0,3) +iN(0,3) ... N(O,%)—H:N(O,%)
P N(o,i)ﬂN(o,i) N((?,l) N(o,i)ﬂN(o,ﬁ) 43)
N(O,%)%z‘N(o,%) N(O,%)—HN(O,%) N(d,1)

where all the upper diagonal entries are independent. Since any unitary similarity trans-
formation does not change the spectrum of a matrix, we define a random unitary operator
U(1) € U(N — 1) that depends on Xy such that

1. Let x; = (w21, 231,...,2n1)7. Then

U()x = [xifler = ([xa], 0., 0)T. (4.9)

2. U(1)x = x if x is orthogonal to x; and e;.
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This unitary transformation is the Householder transformation [16, Section 2.2.4]

uu®

Uull)=1- ZW, where u =x; — [|x1]|e;1. (4.10)
u

Then we define the unitary matrix U(1) € U(N) by

U(l) =ILx1 ®U(1), orequivalently U(1)= <é U(()1)> . (4.11)
Then
x11 ||| 0 ... 0
- I
U)Xyo@a)t=|[ 0 : (4.12)
: Xn-1
0

where X_1 is a random matrix defined as
Xy =U0)(Xn)nU@) ™, (4.13)

where (Xy)11 is the (N — 1) dimensional matrix obtained by removing the first row and first
column of Xy.
Note that x1; ~ N(0,1) and

N 2
1
[x1]| = (;(mﬂ)? + (%$i2)2> ~ 5 (4.14)

since both Rz;; and Sz;; are in N(0, 1) distribution for i # j. Thus U(1)XnyU(1)~" agrees with
the tridiagonal matrix Hy in the first column and the first row.

(Xn)11 is a random Hermitian matrix different from the (N — 1) dimensional GUE only
by scaling. Thus by Exercise [I| in Section [1}, its distribution is invariant under unitary simi-
larity transformation. Note that the result in the exercise is valid when the unitary similarity
transformation is fixed. Here U(1) is random, but by its construction, U(1) depends only on
entries of Xy that are not in (Xuy)11, so U(1) is independent of (Xy)11, and then the result
of the exercise still holds. Also we have that Xy_; is independent of U(1), and if we write
Xn_1 = (:%U)f\;_zll, all Z;; are independent of 11 and ||x1]|.

Let U(2) € U(N — 2) be a Householder transformation sending x2 = (Z21, 31, ..., Zn-11)"
into ||xz|/e; and keeping vectors orthogonal to xp and e; invariant. Then denoting U(2) =
Irxo @ U(2), we have

T11 HX1H 0 0 0
x1l] @11 [Jx2| 0 0
o el
URQU1)XNU() T U2) " = 0 0 , (4.15)
: : Xn_2
0 0

which agrees with Hy in the first two columns and the first two rows, where Xy_o is defined
analogously to Xy_;. Repeat the construction N — 1 times, we have finally that U (N —
- UQUMXyUQ)'U(©2) - U(N — 1)1 is the tridiagonal random matrix Hy that has
the same spectral property as Xy ]
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Now we prove the general case. Denote the N x N tridiagonal matrix

ap by
bl al bQ
JN: b2 . (4.16)
an—2 byn_1
by-1 an-1
Without loss of generality, we assume that b1,...,by_1 are all strictly positive. Suppose A; >
-+« > Ay are eigenvalues of Jy and vy, ..., vy are corresponding eigenvectors. Note that if A\;’s

are distinct, then v;’s are fixed up to a scalar multiple.

Lemma 7. The eigenvalues A1, ..., \y are distinct. Furthermore, writing v; = (v;(1),...,v;(N))T,
we have v;(1) # 0.

Proof. The identity Jyv; = \;v; is expressed as

ag — )\z b1 7)1(1)
b1 ar— N b v;(2)
b =0, (4.17)
anN—_2 — A by_1 Ui(N - 1)
by -1 an—1— A vi(N)

or componentwise

( (ao — )\i)vi(l) + blvi(2) = 0,
blvi(l) + (al — )\i)vi(2) + bgvi(S) = O,

(4.18)
bN_Q'Ui(N — 2) + (CLN_Q — )\z)’U@(N — 1) + bN_l’Ui(N) =0,
bN_l’UZ'(N — 1) + (CLN_l — )\1)’01(]\7) =0.

If v;(1) = 0, then iteratively we find all components to be zero, and then the vector is a zero

vector. For any nonzero v;(1), iteratively we can uniquely solve v;(2),...,v;(IN) by the first,
.+, (N —1)-th equations in (4.18)). Then the eigenspace associated to \; is 1-dimensional, and
AL, ..., AN are distinct. O

Converse to Lemma |Z|7 we have

Lemma 8. Given a diagonal matrix
D = diag(A1,...An) where A1 > --- > An. (4.19)

and a unit row vector u = (uy,...,uy) such that all its components are strictly positive and
Zi]\il uf =1, there exists a tridiagonal matriz Jy expressed as in such that by, ..., by_1
are strictly positive, and

Jy =0DO™! (4.20)

where O = (oij)%-:l € O(N) with the first row o1; = u;.
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Proof. We relate tridiagonal matrices with orthogonal polynomials. Given a measure p on R,
let po(z),p1(x),... be orthogonal polynomials of degree 0,1,... such that

[ pi@i@)dntz) = 5. (4.21)
Then the three term-recurrence formula is (assuming a_; = 0)

xpn(l‘) = bnpn+1(33) + anpn($) + bnflpnfl(x), (4'22)

or equivalently (note that the a;,b; in (4.22)) and (4.23) are not consistent with those in (4.16))

po(w) ap by po()
p1() by a1 b p1()
| | = b . (4.23)
: 2 . . :

Truncate the N x N upper left block of the operator on the right-hand side of , we get a
tridiagonal matrix. Note that b; > 0 if we choose all the orthogonal polynomials p;(z) to have
positive leading coefficient.

Suppose p is a measure on R supported on N points A1, ..., Ay, such that

N
w(x) = Zcid)\i (x), (4.24)
i=1

where we assume c¢; # 0. Then the space L?(u) is an N dimensional space. Obviously L?(j)
is spanned by {1,,(),...,1xy(7)}, and it is also spanned by {1,z,...,2V"1} by the La-
grange interpolation formula. Given that the orthogonal polynomials po(x),...,py—1(z) exist,
(the existence of the orthogonal polynomials can be proved and is left as an exercise), then

{po(z),...,pn—1(x)} is also a basis.
Furthermore, the basis

1 e inp 1 - Ak
Bi={-1Ly@™ ="~ ] T-5tli=1,...,N)} (4.25)
¢ ¢ i — Ak
k=1,...,N ki
is an orthonormal basis of L?(p) for which the multiplication operator x has the matrix repre-
sentation D in (4.19)), while the basis

By = {pi1(z)|i=1,...,N} (4.26)

is another orthogonal basis of L?(u) for which the multiplication operator  has the matrix
representation Jy in (4.16)).
The identity Jy = ODO~! means that

po() ¢ 'y, (@)
: =0 : ; (4.27)
pN-1(7) cj\,ll,\N (x)
and especially
_1
al ’ a.e. in 1 1
ZC? = po(z) “ =" 011 =15, () + -+ orn—1i, (2). (4.28)
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This identity is satisfied when ¢; = 01;. Thus we conclude that the matrix constructed from
the three-term recurrence relation for the orthogonal polynomials p;(x) defined by (4.21) with
1 given by

N

i=1
and the property that b, > 0 are satisfied if we require all p;(z) to have positive leading
coefficients. O

Lemmas|[7] and [§ define a bijection between the space of tridiagonal matrices Hy with strictly
positive b; as denoted in (4.16)) and the space of (D, u) where the diagonal matrix D and the
unit vector u satisfy the conditions in Lemma [8 We denote this map from Hy to (D, u) as

F:AyxSY 5 RY x (0,00)V 71, (4.30)
where
Ay ={(z1,...,zx) €ERY |21 > - > apn}, (4.31)
SN = {(z1,...,2n-1) € (0,00)N 1] 0 < Nfz? <1}, (4.32)
i=1
and
F(Ai,... AN ut, ... uny—1) = (ag, .. .,an—1;b1,...,bn—1). (4.33)

Obviously F' is differentiable, and we have

Lemma 9. The Jacobian of F is

a(ao,...,CLN_l;bl,...,bN_l) A()\)
= —. 4.34
8(}\1,...,)\N§U1,...,UN71) CHﬁ\;—llb‘;V—]—l ( 3 )

The proof of Lemma [J relies on the following technical result

Lemma 10. Any element in the set of N x N Hermitian matrices, except for those in a subset
of Lebesque measure 0 (or equivalently, probability 0 in GUE), can be written uniquely as

X =07'Do, (4.35)

where D = diag(A1,...,An) and A\; < Aa < -+ < Ay, and O = (Oij)fyjzl € O(N) such that
011,021, - - .,0N1 are all strictly positive.

We are not going to prove this lemma, since its proof is parallel to those of Lemmas
and [Bl in Section Bl

Proof of Lemma[9 By Exercise[I we have that given an N x N random real symmetric matrix
Xp in GOE (as defined in this section), by the tridiagonalisation procedure we get a random
tridiagonal matrix whose distribution is exactly the same as Hy with 8 = 1. The tridiagonal
procedure is (analogous to the proof of Theorem (14| for 8 = 2)

Xy = O(N -1)---0(2)0(1)XyO0(1)t0@2)~L---O(N = 1)71, (4.36)
where
O(k) = (IO’“ o?m) and  O(k) € O(N — k). (4.37)
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Suppose Xy has the unique decomposition ([4.35)), then the tridiagonalisation procedure be-
comes

O~ 'DO - O07'DO, where O = (6;5);;—; = 00(1) '+ O(N —1)"". (4.38)

We observe that the first column of O is identical to that of O. Therefore by Lemma |8 we
conclude that the tridiagonalisation procedure transforms real symmetric matrices Xy (except
for those in a measure 0 subset) whose unique decomposition has eigenvalues Ay, ..., Ay
and first column of O as 0;1 = w3 (i = 1,..., N) to the tridiagonal matrix Jy denoted in
such that

ao,...,aN,l;bl,...,bN,l:F()\l,...,)\N;ul,...,uN,l). (439)
Suppose we have the marginal distribution of Ay,..., Anx;u1,...,un—_1, then by the bijectiv-
ity results in Lemmas [7] and [§] the distribution of ay,...,an—1;b1,...,by_1 is
d0(ao,-..,an—1;b1,...,bnN_1)
P(ag,...,an_1;b1,...,bn_1) = P(A\1,..., AN; UL, ..., UN_ .
(ao N N 1) ( ! i v 6()\1,..-,>\N;’LL1,...,UN_1)
(4.40)

We take a special choice of X such that X is in the GOE distribution. Then we have the
marginal distribution
e iiN (4.41)

P()\l,...,/\N;ul,...,uN_l): A()\)

=

=1

where C does not depend on \; or u;. (The proof is similar to the arguments in Section
and we are not going to give any detail. On the other hand, we have by Exercise [I] that

N-1 N-1

1 1.2 132 N
P(ag,...,an—-1;b1,...,by—1) = ol e 1% H e 2bﬂb§V =1 (4.42)
i=0 j=1
Noting that
N-1  ON-1 N
H eflazg H ei§b? = efiTr(‘]JZV) = Heii)\%’ (443)

i=0 j=1
we derive ([I34) from ([40), (EAT) and ([T12). O

For the proof of Theorem [14] we need another technical result

Lemma 11. With notations the same as in Lemma@, we have

N-1 ) N
I16Y 7 =am]]w. (4.44)
j=1 i=1

Proof. Let e; = (1,0,0,...,0)". We have

JNe1 = (ao,bl,O,...,O), (4.45)
J]2Ve1 = (CL% + b1bg, agb1 + b1ay, b1ba,. .. ,O), (446)
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Then

1« = . *
0 b1 * . * N—1
_ N—j
det(er, Jyer, J3er,...,JN te) =10 0 bib * =I]5' 7 (47
o T : j=1
0 0 0 ... bby---by-1
On the other hand, using the decomposition Jy = O~'DO where D = diag(\1, ..., A\y) and \;
are increasing, and the first column of O is given by u = (ug,...,uy)’, we have
det(el,JNel,JJZVel,...,J]]\\,[_lel) = det(O"1D0e; O_lDlOel,...,O_lDN_lOel)

(¢
= det(O~Y(D°0ey, D'Oey, ..., DV "10ey))
(O~

= det(O7 1) det(Du, D'u,..., DN 1u))
U] AU1 )\i\f—lul
U1 )\gul )\év_lul (4.48)
p— :t .
U] ANUL ... A%ilul
N
= £ AN []w
i=1
The sign ambiguity can be solved since A()) is positive. Then we prove (4.44)). ]

Proof of Theorem 1 for 8 > 0. The results in Lemmas [9] and [T1] together imply that
N-1
dag,...,an_1;b1,....bn-1) 1= b

= : 4.49
OAL, - Ansun, - un—1) [TV (A9

For the N dimensional random tridiagonal matrix Hpy defined in the beginning of this subsec-
tion, in probability 1 the entries of h; ;11 = hit1, are strictly positive, so we identify it with
Jn in and use ag,...,an—_1;b1,...,by_1 to denote its nontrivial entries. From the distri-
bution of ag,...,an_1;b1,...,bny_1 and the Jacobian , we compute the joint probability
density of A\1,..., An;uUt,...,uN_1 @S

d(ag,...,an—1;b1,...,by_1)
P(A,...,AN; 1)=P _1;b1,...,bNy—
( 1 sy AN UL, y UN 1) (CLQ, y AN—1; 01, s OUN 1) a()\l, )\N;Ul,--.,uNfl)
No1o N ' B2HN 1b
=0 j=1 iy Ui
smem, HN 1b6(N 7)
=Ce e A—
Hz:lui
N N p-1
:CA(/\)ﬂl_Ie_g)‘z2 (Huz> .
i=1 i=1
(4.50)

Integrating out wuq,...,un_1, we obtain the distribution of Ay, ..., Ay as in Theorem ]
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4.2 Limiting distribution of the largest eigenvalue in Gaussian  ensemble

Before the statement of the result on the limiting distribution of the largest eigenvalue of Hy,
we give a heuristic argument to motivate the theorem and its proof. From our result for the
largest eigenvalue in GUE that is equivalent to the special case of Hy with 5 = 2, we conjecture
that the largest eigenvalue is around 2v/N with fluctuation O(N—1/%). Write

Hy = N&(Hy — 2V/NI)
2 1 1
_ONF ¢ \/%Néfl LNSYy

L N% 3 2 N& 1 i
| BN Vi BNGe BNEYe
%N%YN_Q _9N% ¢ \/%Négg

—2N§+\/%N%gl NoyN -1+ % N6
Ni VN =T+ Nig] 72N3+\FN6§2 NiVN =2+ L Nig,
l 2 1 . )
N6/ N —|—\/LN6£2 —2N3+\/g]\76£3 ..

(4.51)

where & = /2(Yn_; — /(N —4)3), and from we have that the distribution of £/ is close
to N(0,1) if ¢ is not close to V.

The matrix Hy acts on N-dimensional vector (fi, fo, .., fn)T. Define a function f(z) on
[0, N2/3] such that

fx)=f; for xe[(i—1)N"3,iN"3). (4.52)
The function f(z) is not continuous, let alone differentiable. But we assume that f(z) is a
“discretised” continuous, or even smooth, function with step length N ~1/3. One way to think
of it is to let f(z) be a smooth function, and f(x) = f((i — 1)N~'/3) where i is the smallest

possible number such that {N~1/3 > z. Then heuristically (as commonly used in numerical
analysis of smooth functions)

fir1— fim N~ 3f(
fir1 =2fi+ fisi = N_gf (iN

73), (4.53)
“5) N5 f/((i — 1)N"8) ~ N ™5 f"(iN"3). (4.54)

w\»—A w\»-A
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For i = xN'/3 where = € (0, 00), the vector identity

: L N Dy ConZo 2yl
i fz _ (NsvVN Z+1+7m§z—l)flfl—t( 2N +\/;N §i)fi
1 N&
: +(NsvVN —i+ — Tﬁfé)fz—s—l

,_.

Ni(fict+ fi+ fir1) + (NoV/N =i+ 1 — N3)f;_ 1+(N6\/ i~ N3)fi
= 1
(m&, 1fl 1+\/>§zfl £zfl+1>

(4.55)
can be approximated, by the identities

NovN—i+1-Nin— (4.56)

and fi—1 =~ fi & fit1, as
A ~ 1@ = of@0) + s (St bt sathn) @ @450)

Note that as N — oo,
1

\ff“ NeR f

We relate this factor in normal distribution to Brownian motion B,. It is well known that B,

—& 4 N(0,1). (4.58)

is not differentiable. But if we consider the discretised derivative of B, with step length N—1/3,
we have

B 1-B; L

NS O NEN(0,1). (4.59)

N~3
Thus we can write (4.57)) as
Hy(f)(x) = Hp(f)(), (4.60)
where the stochastic differential operator
d? ,

Remark 3. When we approximate Nl/ﬁ(%ﬁ&_l + %gi \fflﬂ) y B!, we violate the martin-
gale property of By, that is, B, and B’ e N-1/3 should be independent. To solve this discrepency,
we aproximate N/6¢; by B, (1) and approximate N1/6¢; by B, (2) where B,(1) and B,(2) are
independent Brownian motions. Then N/ 6(2%/555_1 + %&' + 2%/551’ +1) is approximated by
2—\1/§Bx_N_1/3(2)’ + %Bx(l)’ + ﬁBx@)’, and this is in some sense close to a Brownian motion.

The next question is, how to make sense of the stochastic differential operator (that is

sometimes called Stochastic Airy operator). The B! term does not make sense, but it makes
sense in distribution: If h(z) is a function such that it has compact support and h'(z) exists
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and is continuous, then for any continuous but not necessarily differentiable function f, we can
talk about its derivative in the sense that

/f/(x)h(ﬂs)d:c: —/f($)h/(x)da:. (4.62)

We use this idea, together with that the path of B, is continuous, to rigorously define Hg.
For any f,g € C§°(0,00), i.e., smooth functions of compact support in (0, 00), we define the
inner product

(f9)e = /0 " f@)g (@)da + /0 T+ o) fla)g(a)de, (4.63)

and then define £* as the Hilbert space that is the completion of C§°(0,00) with respect to
the inner product (-,-)s, and denote || f|l« = (f, f)« for the norm of f € £*. Readers familiar
with Sobolev spaces can see immediately the similarity between our £* and H& (0, 00), which is
defined as the Hilbert space obtained as the completion of smooth functions of compact support
in (0,00) with respect to the inner product

()i 00y = /0 " Pla)g @)z + /0 " f(@)g(x)d. (4.64)

The norm || f| g1(0,00) is also defined similar to [|f||.. Below we give some basic properties of
the space L*.

Lemma 12. The point set of L* can be realised as a subset of Hélder %-contz’nuous functions

on (0,00). Then for any f € L* € CO’%(O,OO), we have f(0) := lim,_,0« f(z) = 0 and for all
z>1

(z + 1)1 ()] < V2||f]. (4.65)

Proof. Comparing (-, ). with (-,) g1(9,cc), We see that any f € L£* satisfies ||f||g10,00) < [If|l«
and then £* can be embedded into H{ (0, 0o) naturally. It is a standard result that H{ (0, 00) can
be embedded into CO’%(O, 00) [2, Theorem 4.12, Part II]. Hence we have the embedding result
from L* to the space of Holder %—continuous functions. Furthermore, the Sobolev embedding
theorem also imply that on any finite closed interval I = [a,b] € [0, 00), there is a constant C'
depending on b — a only such that

B fw1) = fla)
17lgos gy = max(lf @D+ max, = Zm—"

b !
<c< / f(:r)2+f’(w)2dw> < Ol flly 000 < Iflle. (4.66)

Let f e L* C CO’%(O, oo) and f = limy, o fr, where f,, € C§°(0,00). Since f,(0) = 0, we have
f(0) = 0 by the convergence in Holder norm . Below we prove the inequality (4.65). By
the convergence in Hélder norm, we only need to consider f € C§°(0,00). To prove (4.65)), We
show that for f € C§°(0, 00),

1
o 2
F(@)?* < Al fllz2 @00 | 220,00, Where [l 12(p,00) = (/ ¢(t)2dt> for ¢ = f, f'.

(4.67)
Suppose (4.67)) does not hold for f, without loss of generality we assume that there is = > 0
such that f(z) > 0 and f(z)? > ANl 22 (2,000 1f 122 (2,00)- Then in the set Ay ={y: 0 <y—z <
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if(ﬂﬂ)z/\\f’lliz(xm)}, because

) )
) - f(@)] = /<t>dt'<(/ f’(t)th> =< ey, (468)

we have

$0) 2 5) = V=S sty 2 1) = 5t O ey = ), (469

and get the contradiction that

1 21 fa)?
> [ 020> (3/@) i i Wl 470

Then we prove (4.65)) by combining (4.67) with the inequality

112 > / T+ 0 f(0)2dt + / * potar

> (@ + DI 122000 + 17132000 (4.71)
> 2Vr + 1HfHL2(x,oo)”f/HLz(m,oo)
OJ

Due to the embedding property of L£* into C’O’%[O, o0), we assume all elements of L* as
continuous functions.

Lemma 13. Let {f,} be a bounded sequence in L*, then we can choose a subsequence { fy,} C
{fn} and a f € L* and have

1. L? convergence: fn, — f in L?(0,0).

2. Weak L? convergence in derivative: f,’Lk — f weakly in L*(0,00), that is, for any h €
L2(0,OO), < ; h>2 — <f/7h>2-

ng’
3. Locally uniform convergence: On any compact subset of (0,00), fn, — f uniformly.
4. Weak L* convergence: f,, — f weakly in L*, that is, for any h € L*, (fn,,h)« = (f, h)«.

Proof. Property[4is direct consequence of the Banach-Alaoglu theorem. Noting that the bound-
edness of || f||« implies the boundedness of || f’||2, we find property [2| to be the sequence of the
Banach-Alaoglu theorem as well. By the inequality , the boundedness in £* norm implies
the uniform boundedness and equicontinuous over a compact interval, so property [3| is proved
by the Arzeld-Ascoli theorem. Property [3] immediately implies that given any C' > 0, a subse-
quence {f,, } converges in L?(0,C) if we consider these functions on (0,C). The condition that
JoS (1 + ) fn(2)?da < || f||? is bounded implies that the result holds when C' = co. The detail
is left as an exercise. ]

We call a pair (f, ) € L* xR an eigenvector-eigenvalue pair of Hpg, if || fll2 := || |l 2(0,00) = 1
and Hgf = Af in the sense of Schwarz distribution, i.e., for any test function ¢(z) € C5°(0, c0),

o 1! 2 !
A / ayotaris = [f (@) = ofa) + = BLf )| oo (4.72)
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or equivalently

> /! 2 / 2 !
/ f(x)p(z)dx = /0 f(z) [(b (x) —zp(x) — ﬁBxgb ()| — ﬁf (x)Byp(z)dx. (4.73)

Now we can state the main result in this section

Theorem 15. Fix § > 0. Let /\% > )\%71 > .- be eigenvalues of Hy. We consider any
keZs.

1. For almost any Brownian motion path B,, Hg has well defined largest, second largest,
, k-th largest eigenvalues A1, ..., A\ and all of them are simple eigenvalues.

2. The random wvector N1/6( - 2V/N, .. ka1 — 2v/N) converges in distribution to
(M, Ak) as N — oo.

To prove part [1| of Theorem , we introduce a bilinear form on £* associated with Hg.
Suppose f,g € C5°(0,00) C L* are smooth functions, we inteprete Hgg as a distribution, and
define

o), = — /O " (Hag) () (2)de

- [ (g"<m>—xg< 0+ Ble)) do

N - (4.74)
_ / (2)g (2)dz + /0 oo + 2= | Ba(f@)g(a)d
— (0.~ g+ [ Bl @ata) + @)y (@)

Since (-, -)m, is symmetric, we only need to consider the (f, f)n,, since (f, g)u, = %((f—i—g, [+

g>H5 - <f _gvf _g>H5)

To extend the definition of (f, f)m, to f € L*, we need to make the integral fooo B.f(x)f'(z)dz
meaningful. It is not a problem if we consider the integral on a compact interval [0, C]. Since
f'(z) € L?(0,00), VI + zf(z) € L?(0,00) and B, is bounded on [0, C],

C 1
/0 Bof (@) f'(@)dz| < ||(1+2)" 2 Byl oo 0.0y IVT + 2 (@) | 20,00 1 (@) ]2 0.
< sup [(142) 2B, ||[V1+af(@)|o] (@) (4.75)
0<z<C

_1
< sup |(142) 72 Byl| f(2)]2.
0<z<C

But as C' — o0, almost surely

sup |(1+ x)_%B,A = 00. (4.76)

0<z<0

So the well-definedness of (f, f>HB is not obvious. It is an interesting question whether a
straightforward definition

/0 " Bf (@) (a)de = Jim / B.f(x (4.77)

leads to a satisfactory definition of (f, f >HB such that it is almost surely a bounded operator.
Below we are going to take an indirect way to solve the problem.
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Consider the smoothed Brownian motion
B x+1
B, :/ Bdt. (4.78)
x
Then B, is differentiable with B; = Byt1 — B;. Denoting

Qu =B, =Byi1— By, and R, =B, — By, (4.79)

for f € C§°(0,00), we have

| Bt @i = ["Bot@f @i+ [ 8- B)s@)f @

(4.80)
-1 / Quf(2)%dz + / R () f'(2)da.
Inspired by this transform, we define for all f € L*
(s Fres = IF12 = 1£13 - / Quf(w)dz + = / Rof(2)f (2)da (4.81)

Below we show that this definition is valid.

Lemma 14. Given any € > 0, almost surely for all paths of B, there exists a constant C1,
depending on 3, € and the path, such that

2 sup ————= Q| E, and 4 Sup ————— | sl (4.82)
VB O+ 2 VB Gt vE
Proof. For each k € Z,, we define
Zk = OIEaX ’Bk+t Bk’ (483)
Then we have
|R.| < max |B, — By
r<y<z+1
max (|By — B|y)| + |By — B|a1),
< max revslel (4.84)
LxJ-&-rlr?;;m-H(‘Bx = Bla|| + [Blat1) = Bla)| + [By — Blzj+1l)

<2210+ 2z

Similarly we also have |Q.| < 2Z|,; + Z|;)4+1. Note that Z; are independently and identically
distributed. The distribution of Zy can be explicitly computed, but the following estimate
suffices for us. The distribution of M; = supy<,<; Bs is the same as |B;| by the reflection
principle [IT, Example 8.4.1]. Then for t = 1 and « > 0,

2 0 2
P(M >a::/ e 2dt=2—-2%(x). 4.85
an>n=— [ (@) (4.85)
By the symmetry of By about 0, for any = > 0

P(Zy > ) < 2P(My > z) = 4(1 — B(z)). (4.86)
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Then for each k € Z4, if x > 3,

P22 + Zis1 > ©) < P(Z, > ) + P(Zis1 > )

3

< 8(1 - 5 \ﬁ/ (4.87)

\/7/ t6_7dt \/82?

OO

Thus for any € > 0,

> P<2Zk+Zk+1>\{F\/E> <14+1+-- +1+— E L (4.88)
\—v—’
k=0 L's1 k L+1

where L is the smallest number such that \/Bke/4 > 3. By the Borel-Cantelli lemma [9, Section
4.2], [11, Section 2.3|, we have that in probability 1 there are only finitely many k € Z such
that

27 + Zpy1 > ‘{F\/%. (4.89)

For any path of B, such that (4.89) holds for only finitely many k, there exists a Cy such that
forall k € Z4

272k + Zpy1 > \ZB(Cl + \/E) (4.90)
Thus for all z € (0, c0)
4 - 4 27 x| T A x
| e (4.91)
VBCHVE " VB Ot
and we prove the lemma [I4] for R,. The proof for @, is identical. O

Lemma 15. The quadratic form (-, '>H5 defined in (4.81)) extends to a continuous symmetric
bilinear form on L*x L* almost surely for all paths of By, such that there exists constants Ca, C}
depending on the path and

1
§||f||2 Ol fII3 < {f, Fruy < Gl fI1%. (4.92)

Proof. We need to consider only (f, f)u, for f € L£*. The first two terms on the right-hand
side of are well defined, so we only need to consider the last two terms. Suppose for the
path of B, there exists C] to make the inequality hold with € = %. (The paths that are
qualified are in probability 1.) Then

Ooi 2.’B X
/0 Q)

1 oo
<3 | @+ Vo

< % </000(1 + ) f2(z)dz + Cy /OOO f2(x)dx> (4.93)

Lociz L Crype
8HfH + 3 1£112;

A
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where we use the inequality 1+ = > /x, and

o0 4 y
A TgRel @) (@)

AMKH+¢@ﬂwf@Mx

1
< Z
!

IN

[ ViFss@r @ o [ @

IN

(/000(1 + :c)f(x)zd:r> ’ (f’(:c)Zd:z:)% + (f(a:)qu:)% (f’(ac)de)%] (4.94)
A1 + Call el A1

r 2

72+ (5 + Lis1g)|

_3 2 012 2
= S + L0718,

IN

IN
N N [ Ny

where we use the Cauchy-Schwarz inequality. Summing up all terms together, we see that the
(fs fu, is well defined by as long as C exists, and Cq,C} in are determined by
Cyas Oy =14 (C1 +C?)/8 and Ch = 3/2 + (C1 + C%)/8, where in the calculation of C% we use
that [| f[l2 < [|.f[]- O

Lemma 16. In probability 1, the infimum

Ay=  inf , 4.95
0= el (990w (4.95)

exists, and is achieved at some f € L*. Furthermore, (f,—Ao) is an eigenvector-eigenvalue pair
for Hg with —Ag = Ag.

Proof. We consider a path of B, such that Cy, C in Lemma (15| exist. The set of these paths is
of probability 1.
By the result of Lemma [15] we see that for all f € £* with ||f]]2 = 1,

1 1 1
(f, Fres > §Hf||§ ~ Col| 13 = (5 - Co)lIf1I5 = 5~ C2 (4.96)

Thus the infimum on the right-hand side of (4.95)) exists.
Let {fn} C L* be a sequence such that

[fall2 =1 and (fr, fa)u, = Ao (4.97)

lim
n—oo

Then || fn ||« are bounded, since by Lemma |15 again,

SITIZ < (F. Fouay + CollFIB = {7, P + o (1.95)

Below we denote ||fp]l«+ < K. Using the result of Lemma E we see that by passing to a
subsequence if necessary, there exists f € £* that is the limit of {f,} in the sense of (1) L?, (2)
weak L2 in derivative, (3) locally uniform and (4) weak £*. But the desired convergence in the
sense of L* still need to be proved. Some direct consequences of the convergence results above
are:
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e Due to the L? convergence,

[fll2 = lim [ full2 = 1. (4.99)
n—oo
e Due to the weak L£* convergence,
£l < Timinf [ £, ][« < K. (4.100)
n—oo

By inequality (4.82) in Lemma in probability 1 there exists a constant C3 depending
only on the path of B, such that

2 € 4 €
—Q:<=(142x), and —=R, < f\/l + x. 4.101
Ve <ttt \/B 4100
Then for all g € £*, by arguments similar to those in and -, we have

— 007 $2.7J ooi i ’m X
/03 Qg +/03 W?Rggm ) (2)d

<5 ([T aa@ra+| [ Vitagt e (4.102)
<5 (lgll2 + llgl12) = gl

' © 9 © Y , B
nlggo—/o \/Bmen( z) dw+/0 ﬁRxfn(w)fn(x)dw—
- 2 2 - i X ! x)ax
_ /0 2 Quf(x)da + /0 R (@) @)z, (4.103)

VB
since for any € > 0 and C5 determined by , by L? convergence,
. C3 C3 9 )
nh_)nolo ; szfn( z)2dr = ﬁQxf(x) dzx, (4.104)
by L? convergence and weak L? convergence in derivative,
‘ C3 , Cs 4
Jm [ fR So@) i@y = | f R (@) f/(2)da, (4.105)

and by the boundedness |||, [|f»|| < K together with (4.102), for n large enough

<_ OOO \ZfQ"”f"( z) deF/OOO %Rxfn(x)f;(x)d$>
(7 Bauswraes [T Rt s wis)

Cs

< /003 \/QBQxfn(:n)Qd:r— 0 }Qxf(fcfdff
4 /0 “ jBR Ful) () dar — /0 - ;BR f(@)f'(2)de (4109
L /C °° jBQm Fo()2de + /C °° jBszn@)f;(w)dm
i _/: ;BQxf(x)de—l—/ozo jBRxf(w)f’(w)dw

<et+et+eK +eK =¢2+2K).
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Substituting the limit formulas (4.99)), (4.100|) and (4.103)) into the definition formula (4.81)) for
<f7 f>Hﬁ7 We write

o 2 . 2 . @ 2 2 @ 4 /
(. fom, < timintl 12 - i 113+t (= [ Z0up@Pin s [ Ruf@) @i
= hnlgitgﬂfmfnmﬁ = Ao.
(4.107)

Thus we prove the first part of the lemma.
To prove the second part, we consider any ¢ € C§°(0,00) and € an arbitrary small real

number. Then )

If + €oll2

is a function in £* with || f%€||2 = 1. Since we assume that f solves the minimisation problem

, we have
0 < (o, f¢€>H —{f, fin,

foe= (f +e€9) (4.108)

_ bre U e by 2\ 4
—/0 (oY (a 2d +/0 (f (2)?)d
_ 2 / QulfP (@) — f(2)?)da + = / (P (F2) (@) — F(o) ' (2))da
:26|:—f, Hﬁ/ f(@)p(x)dx
X l X X l /I X X ,CL' X 62
/ F(@)8(a) + 2 (@)0la) = —=Qul @)ola) + —(1'(@)0@) + F(e)o/ () +Z<O;.)
Nl

By the standard argument for variational problem, noting that (f, f)m,; = Ao and the relation
(4.79) between @, R, and B,, we have

Ao /0 f(@)d(x)da
_ /O f(x) [as"(x) ~rh(a) - jBqub'(x)} - ;B(Rxf'(l“)qb(m) — Quf(@)¢!(x))da
- | " b [¢"<x> ~ wola) - jBBmx)} - @B (£110)

2 > / D D/ D /
- / f'(2)Bad(z) + f(2)Boo(x) + F(x) Beo(x) da

= [T 1w [0 - o) - ZB.60)] - s Bt

VB VB

Then (f(z),—Ao) is an eigenvector-eigenvalue pair of Hg.
At last we show that —Ag = Ag, i.e., —Ag is the largest eigenvalue of Hg. Suppose (g, )
is an eigenvector-eigenvalue pair. Since g € L*, there is a sequence ¢, — ¢ in L* where

{¢n} C C§°(0,00). By the definition ([£.72)), ([1.73), for all ¢,
3 [ @@ = [T 0@ (4.111)
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or equivalently,

Mg, dn)2 = —(g, dn)u,- (4.112)

By Lemma we can take the limit on both sides of (4.112]) and get
Mg, 9)2 = —(9, 9)H, (4.113)
or equivalently, by ||gll2 =1, (9,9)m,; = —A. Thus A < —Ag, and we finish the proof. O

We have considered A\g = —Ag, the largest eigenvalue of Hg. Now define
Ho =span of {f € L™ | || flla =1 and (f, f)m, = Ao}, (4.114)

and consider the minimisation problem

(f, Pag- (4.115)

1= inf
FeLx || fll2=1,feHo

By the same arguments as the proof of Lemma there exists an f that achieves the minimi-

sation problem, (f,Ag) is an eigenvector-eigenvalue pair of Hg, and Ay = —A;. Recursively we
can find Ao, Ag, .. ..
At last, we show that the eigenvalues of Hg are all simple.

Lemma 17. For each path of By and A\ € R where Hgf = Af has a nontrivial solution f € L*,
the solution space is one-dimensional.

Proof. Write the identity (Hg — A\)f =0 as

2

/O (@) {w(;p) (24 N)o(z) — I @)B.o(a)dz =0, (4.116)

%Bm’(x)] -

or equivalently,

o ! * _i T l v ! /:I: T
/ [—f<x>+ [ nswi- 2w+ 2 Btf<t>dt}¢<>d7 (4.117)

for all ¢ € C5°(0,00). The identity (4.117) holds for all ¢ if and only if the formula in the
bracket is a constant. Using the identity

/ (t+ 0 fB)dt = 5 (x + A)Q/ f(t)dt — / S+ N2F(t)dt, (4.118)
0 0 0
we express the condition that the formula in the bracket in (4.117)) as
2
VB
To show that the solution space of the integral equation (4.119)) is one-dimensional, we only
need to show that for C' = 0, (4.119) has only the trivial solution f(x) = 0. The (4.119) shows

that f’(z) is continuous (if it is the solution to Hgf = Af). For any T' > 0, there is an upper

bound C’ for 3((z + )2 — (t + A)?) — %(Bz — By) with z,t € [0,T]. Thus for all z € [0, 7],

ra=c+ [ <1<<x+x>2— (t+ 02

5 (B, — Bt)) F(t)dt. (4.119)

ol | et (4.120)

This is an integral form of Gronwell inequality [6], and it implies that f’(z) = 0 for all z € [0, T7.
Since T is arbitrary, it shows that f'(z) =0 for z > 0. O
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Below we prove part [2]of Theorem[I5] Recall that Hy is a tridiagonal matrix whose diagonal
entries h” are in normal distribution and off-diagonal entries h; ;1 are in x distribution, as

defined in and ( . Define

E‘H

|z

:CN3J
yni(z) = N6 = é\/>zfgz, (4.121)

LxN |[zN3 |

yna(@) =2N75 S (VN —hie1) = N5~ > (/BN — Yy_y) (4.122)

i=1 =1

-
||
—

%\w

Lemma 18. There exists a probability space supporting the processes yni(z),yn2(x) for all
N € Z, and two independent Brownian motion By(1), B;(2) such that with respect to the
Skorokhod topology [12, Section3.5] on Dg[0, c0),

2
yn1 = \/ng(l), Ynz = \/ZBJC@) + % (4.123)

Sketch of the proof. The convergence of yn 1 to Brownian motion is Donsker’s theorem, and the
convergence of yy 2 can be proved similarly, since each term in the summation (4.122)) converges
in distribution to normal distribution as N — oco. O

As N — oo, yn,1(x) converges to a Brownian motion and yy2(x) converges to a Brownian
motion with a drift. We separate the Brownian motion part and the drift part as

yn2(2) = Yn2(2) + Y2 (@), (4.124)
where
acNSJ mN3
I 2( Z M Nl Z %is (4.125)
and 5 )
1 1
= N"5—(/BN —EYn_i), 7 =N"s—=(EYy_; — Yn_i). (4.126)

VB VB

We can compute /SN —EYN_; explicitly, but for our purpose we are satisfied with the inequality

1
— K < ZS——HQ 4.127
N TETEUN (4.127)

for some constant . Like the estimate in Lemma[T4] we have that for any € > 0 there is a tight
sequence of random variables ky . such that

sup |Yni(t) —Yni(x)| < ez + ke, sup |Yno(t) — Yyao(z)| < e + ke (4.128)
e<t<z+1 e<t<z+1

We define a norm |-|| . on the space of N-dimensional vector RY, such that (denoting
vny1 =0)

N N
HUH?V,* = Z(N%@H-l — ;) 2N7% + Z 1+N~ 32 2]\7’%. (4.129)
i=1 i=1

We identify an N-dimensional vector as a step function on [0, N 2/ 3] as in ([4.52)), and then
||| v« is a norm defined on the space of the step functions that we denote by LY:2. This norm
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gives a symmetric bilinear form (-,-)n . on LY as the norm |[|-||. gives (,-,). on £*. We note
that as N — oo, ||-|| v« converges to |-||« in some sense. Also LY+? can be viewed as a subspace
of L%(0,00), where f(z) € L™? is piecewise constant for z < N?/3 and f(x) = 0 for z > N?/3.
Thus L™? has the natural norm ||-[|2 and inner product (-, ) inherited from L*(0,c0).

From the heuristic argument in the beginning of this subsection, we expect that Hy — Hg
as N — oco. We interpret the convergence in the associated bilinear forms. Analogous to (-, -)g 5

defined by Hg, we consider the bilinear form —(f, ﬁNg>2 for f,g € L2, Since LV2 = RV is
finite dimensional, the bilinear form is clearly well defined. Since Hpy is a symmetric matrix, it
is well known that its top eigenvalues are characterised recursively by

. q
the k-th largest eigenvalue of Hy = max (SHN )2 (4.130)

feLN:2 feigenvectors (f; f>2 ‘
associated to the top k — 1 eigenvalues
Analogous to Lemma we have
Lemma 19. There exists a tight sequence of random variables ¢; = ¢;(N), i = 1,2,3, such that
cl[vll . — e2llvll3 < —(v, Hyv)z < eslfol} (4.131)

Sketch of the proof. Write

— (v, FINU>2 =51+ 52 — 53+ Sy, (4.132)
where
1 N 1 N
Sl = N3 Z(’U@'H — Ui)2, 52 =2N"56 vawiﬂ,
i=1 i=1
; N o (4.133)
S3 = BN_EZ%Q&, 54=2N_EZ’YW¢U¢+1-
i=1 i=1
Then apply the estimates (4.127) and (4.128]). O

The tightness of the random variables ¢;(/N) in Lemma [19| implies that any subsequence
{N;} of {N} contains a further subsequence {NN;.} such that the estimate (4.131]) holds with
random variables ¢;, independent of V.

For each N define the projection operator Py : L? — L2 such that

(Pn)f(z) =
the average of f(z) on [iNfé, (i + 1)]\77%) ifxe [iNfé, (1 + 1)N7%) and 7 < N3,
0 otherwise.

(4.134)

Then the operator Hy Py is an operator from L?(0,00) to LN? ¢ L?(0,00). The convergence
of Hy to Hp is described by the following two lemmas. In the statement of Lemma we use
the difference operator in LN2

Dyf(z) = N5 (f(z+ N73) - f(2)). (4.135)

Lemma 20. Let f € L*, fn € LN? and suppose fn — f weakly in L? and Dy fn — f' weakly
in L?. Then for all ¢ € C§°(0, 00),

— (¢, Hnfn)2 = (¢, f)H,, (4.136)

and in particular X A
— (PN, HN PN )2 — (¢, HNPNd)2 — (¢, d)1,- (4.137)

o8



Lemma 21. Let fy € L2 with || fyll2 =1 and || fn||n+ < c. Then there exists a subsequence
{Ni} and f € L* such that fn, — f in L*(0,00) and for all ¢ € C§°(0, 00),

— (b, HNfN)2 = (6, F)m,- (4.138)

Below we prove part |2| of Theorem Write the k top eigenvalues of Hy as NN, =
N1/6(/\%_i —2VN),i=0,...,k—1. Let vy, € RY be the associated eigenvectors such that
[on,ill2 = 1.

First we show that

n5 =limsupny; <N, i=0,...,k—1. (4.139)

N—o0
Without loss of generality, we assume nf > —oo for all ¢ < k. Then for each ¢, there is a
subsequence N; such that (nn,0,---,7n5.1) — (&o,---,& =n;7). By Lemma for j =0,...,1,
|lun, jll v« are uniformly bounded, and then a subsequence of vy, j converges in L? to a limit
function g; € L*. For notational simplicity, we denote the also subsequence by vy, ;. Then we

have that (go,&1), .., (gi,& = nj ) are eigenvector-eigenvalue pairs of Hg where & > - -+ > &;.
Since for each Ny, v, 0, - , VN, ; are orthogonal to each other in L?(0, 00), we have that go, . .., g;
are orthogonal in L?(0,00) to each other. Then &, ..., & are distinct since the eigenspaces of

Hg are 1-dimensional. Hence s < Ag, ..., A\ = n;r < )\, and we prove (4.139)).
Next we show that

n, :=liminfny; > X;., i=0,...,k—1 (4.140)
N—o00

and if the signs of vy ; and f; properly, we have the L? convergence as N — 0o
UN,i_>fi’ ,i:O,...,k—l. (4141)
We prove (4.140) and (4.141)) inductively in ¢. Suppose for j < i, (4.140]) and (4.141f hold with

i replaced by j. (Note that if i« = 0, then the inductive assumption is void.) For any € > 0, let
ff € C§°(0, 00) satisfy

1fi = fill« < e, (4.142)
and set
i—1
Ing = Pnfi— Z@N,j,Pfo)wN,j. (4.143)
§=0

In (4.143)), |lvnjl|n,« is bounded by Lemma Also by the orthogonality of f; and f; in
L?(0, 00),
[(ongs P fidal = |(f5 + (ong = fi): fi+ (fi = fi)2l
= (f5, (fi = el + (o g = £5), fidol + (ow g = f5), (fi = fi))ol - (4.144)
< |IfF = fillz + llowg = fill2 + 1fi = fill2llow g = fill2-
By the assumption 4.142f and the convergence (4.141]) for j, we have that if N is large enough,
|(vn,j, Pn ff)2| < 2e. Thus we have that for N large enough,
Ifni— Pnfil

where ¢ is a random constant independent of N. By (4.130)), nn,; > (fn.. vai)2_1<fN7,~I:INfN7i>2,
so by Lemma

Nx < CE, (4.145)

i =

N—oo <fN,i7fN,i>2 N—o0 <PNfZ€>2 +8(6)7 (4146)
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where s(e) — 0 as € — 0. By (4.137),
(PN f§, HNPNf)2 = (fi, fivm, = (fi, fiym, +8'(e), (4.147)

lim
N—o00
where s'(¢) — 0 as € — 0. Also it is not difficult to see that
(PN fi)2 = (fi, fi)2 =1 (4.148)
as N — oo. Thus by (4.146)), (4.147) and (4.148)), we obtain (4.140)) after taking ¢ — 0.

To prove (4.141), note that each subsequence of vy ; has a further subsequence, say vn;, ;,
converging in L? to g € £L* such that

(6, 9)m, = l1_1>11010<¢7 Hnoni)2 = lliglo NN UN )2 = Aild, 9)2, (4.149)

Hence g = f;, and we prove (4.141)).

Exercises

1. Prove that the joint probability density function of the eigenvalues of the random tridiago-
nal matrix Hy with 5 = 1 is the same as that of the eigenvalues of an N x N GOE random
matrix whose diagonal entries are in N(0, 2) and upper triangular entries in N(0, 1).

Hint: Follow the argument in the proof for § = 2.

A Some related results in linear algebra

A.1 Normal forms under the unitary congruence group for a complex sym-
metric matrix (Takagi’s factorisation) and for an complex anti-symmetric
matrix

In this appendix, we show that

1. Given any n x n complex symmetric matrix M, there is a unitary matrix U € U(n) and
a diagonal matrix D such that
M =UDU" (A.1)

and the diagonal entries of D are square roots of the eigenvalues of M M.

2. Given any n x n complex anti-symmetric matrix M, there is a unitary matrix U x U(n)
and a block diagonal matrix J such that

M=UJUT (A.2)

and

J_diag(<_3a @)(_&T V?),o,...,()), (A.3)

where a; are eigenvalues of —M M.

The result in the symmetric case is called Takagi’s factorisation, first discovered by Takagi [24]
in 1925, and reproved by Jacobson [I8], Hua [I7] and Schur [2I], and The text book [16] by
Horn and Johnson is a good reference. In the anti-symmetric case, the original reference can
be traced back to [I7]. An elementary proof for Youla decomposition, which generalises the
symmetric and antisymmetric cases to general complex square matrix case, was provided by
Youla [2§]. Here our proofs are based on the approach in [16], Section 4.4].
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Proof of the symmetric case. First, MM = MM?* is a nonnegative definite Hermitian matrix,
so it has nonnegative eigenvalues ap,...,a,. Let v € C" be an eigenvector of MM such that
MMv = ayv. Then MM (Mv) = a;Mv, i.e., Mv is an eigenvector of M M. Taking complex
conjugate on both sides, we have

MM(Mv) =a;Mv, or equivalently MM (MvV) = a;Mv, (A.4)

and see that MV is an eigenvector _of MM with eigenvalue a;. If MV is dependent on v, i.e.,
Mv = Av, then Mv = Av, and MMv = MMv = |A\|*>v. We find that A\ = \/aje?. Let the unit
vector u = e~%/2v /||v||, then

Ma = \/aju. (A.5)

Otherwise if Mv = w is independent of v, we have
Mw = MMv = av. (A.6)
Let the unit vector u = w + /a1 v, we have
Mua = MW+ /a1v) = aqv + Jaiw = y/aju. (A.7)
In either case, there is a unitary matrix U; such that Uje; = u. Then

1 * ... %

0
M =UMUL, where M' = | . . (A.8)
. M2

0
Note that M’ = Ul_lM(Ul_l)T is symmetric, and so its first row is (1,0,...,0), and My is
symmetric. Furthermore,

MM =U MU YT MUTHT = U MU (O) MUy = UM MUY, (A.9)

and has the same spectrum as M M. Hence M,M, has eigenvalues ao, . . ., ay.
Repeating this procedure, we have

N
M =U,--- Ul vlvl...ut, (A.10)

NS
and prove Tagaki’s factorization, the result in the symmetric case. O

Proof of the anti-symmetric case. First, note that MM = —MM?* is a nonpositive definite
Hermitian matrix. Without loss of generality, suppose it has a negative eigenvalue —ay. If v is
an eigenvector of MM such that MMv = —a;v, then MV cannot be equal to Av, otherwise
by the argument in the proof of the symmetric case, we have |A\|> = —ay, a contradiction. Thus
w := MV is independent to v, and by the same argument as in the proof of the symmetric case
we see that w is also an eigenvector of MM associated to the eigenvalue —aj;.

Let u; = v/||v|| and uy be a unit vector in span(v, w) that is orthogonal to u;. Note that
there is a angular parameter not specified for ug, and we are going to fix it later. Both u; and
uy are eigenvectors of MM with eigenvalue —a, and we denote

Mu; = cpjuq + copug, fori=1,2. (A.ll)
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Suppose U; is a unitary matrix such that Uje; = uy,Uies = Uus. Then

C11 Ci12 * ... *
C21 C22 * ... *
M=UM'U], where M'=] 0 0 : (A.12)
S M,
0 0

Since M is anti-symmetric, M’ = Uy 'M(U; )7 is also anti-symmetric, and so its first two rows

become
cii ci2 * ... x\ (0 X 0 ... O
<021 co9 ¥ ... >|<> o <_)\ 00 .. 0> ’ (A.13)

and Ms is anti-symmetric. Note that (A.12) and (A.13) imply

Mu; = —duy, Miuy = Au;. (A.14)

Using (A.14)), we see that M Mu; = M(—Auy) = —|A|?uy, and then obtain A\ = \/aje? by
the property M Mu; = —ajuy. Finally by a change of variable uy — e?usy and use the new uy
instead of the original one used above, we find the factorisation

0 a 0 ... 0
—yai 0 0 ... 0

M=u | O 0 : (A.15)
. . My
0 0
Repeating this argument, we prove the result in anti-symmetric case. O

A.2 Proof of Hoffman-Wielandt theorem

In the lecture notes we only consider the theorem of Hoffman and Wielandt for Hermitian
matrices. The original theorem discovered by these two authors [15] is more general, for normal
matrices.

Theorem 16 (Hoffman-Wielandt). Let A and B be n x n matrices with eigenvalues oy, . . ., oy,

and B1,...,0Bn respectively. Then there is a permutation o € Sy, the symmetric group of
{1,...,n}, such that

n

> k= Boy? < 1A - B, (A.16)
k=1
where ||| is the Frobenius norm (aka Hilbert-Schmidt norm) of a matriz such that

2

(i)l = [ D |zl | - (A.17)

ij=1
Remark 4. For any square matrix X,
X2 = Tr(X*X). (A.18)

Remark 5. If A and B are Hermitian, i.e., a;’s and j3;’s are all real, then the minimum of
> ohq ok — Bw(k)P is obtained when both «;’s and 3;’s are in increasing order. Thus Theorem
becomes a special case of
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Proof. Since A and B are normal matrices, they can be written as
A=U{DU;, B =U;DyUs,, (A.19)

where Dy = diag(aq,...,an), Do = (51,...,5,) and Uy, Uy € U(n) are unitary matrices.

With the help of (A.18)), we write (A.16)) as
D o+ I8l + ) (@B + arBogry) < Tr A*A+ Tr BB+ Tr(A*B + AB®). (A.20)
k=1 k=1 k=1

It is clear that .
> law> = Tr Dy Dy = Tr(Uf D;ULUT DUy ) = Tr A* A, (A.21)
k=1

and similarly Y 7_;|8k|?> = Tr B*B. Then we need only to show that there is a o € S,, such
that

> (@Boir) + kBo(iy) = Tr(A*B + ABY). (A.22)
=1

Define V' = UxUY, suppose V = (v;;);;_; and |v;j]% = w;j. We have

Tr(A*B + AB*) = Tr(U*DiU,U5 DUy + U* DU U5 D5U3)
= Tr U{ (DiV*DyV + D1V*DyV)Up
= Tr(DiV*DyV + DV*D,V)
= (@B + if))lvi (A.23)
ig—1
= Z (O?Zﬂj + aiﬁj)fwij.

4,j=1

Note that (w;;);';_; is a doubly stochastic matrix in the sense that

n.

lh]:
n n

Zwi]’ = 1, Zwi]’ = 1, Wi > 0, for ’i,j = 1, ey (A24)
=1 7=1

A theorem of Birkhoff [16], Section 8.7], [7] shows that the set of all n x n doubly stochastic
matrices form an (n — 1)? dimensional polytope in the n? dimensional space of all real n x n
matrices, denoted as X,,, and this polytope has permutation matrices as its vertices.

Consider the right-hand side of as a linear function of w;; on the domain X, the set
of doubly stochastic matrices (actually {(wj;);';—} is a subset of X;,). It is an (almost) obvious
and well known (at least in linear programming) that a linear function on a polytope attains
its maximum at a vertex. In our case, it implies that

min_ > (@B + aiBwig = > _(QkBa) + OkBoti)); (A.25)
(wij)i:jZIE%n ij=1 k=1

where the permutation ¢ corresponds to the vertex that is a permutation matrix. Then we

prove Theorem [16| with the o in (A.16) the same as the o in (A.25]). O
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