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1 Time reversal symmetry and the three Gaussian ensembles:
GUE, GOE and GSE

This section follows mainly [19, Chapter 2]. Another reference is [13, Chapter 1].

1.1 Three kinds of random matrix models corresponding to physical systems
with different time reversal properties

Idea from physics How to find a random Hermitian operator to model a generic Hamiltonian
operator with discrete spectrum?

In quantum mechanics, the Hamiltonian of a physical system that determines the time-
evolution of the system, is represented by a self-adjoint Hamiltonian operator. If it has only
discrete spectrum (or if we only care about the discrete part of its spectrum), we would like to
use a finitely dimensional Hermitian operator, i.e., an N ×N Hermitian matrix, to model it.

We want to model a generic Hamiltonian, and most special properties of a physical sys-
tem can be safely ignored. But one property is too fundamental to ignore: the time-reversal
symmetry. Later it will be clear that the spectra of Hamiltonians of generic physical systems
in different time-reversal invariance classes, and that of generic physical systems without time-
reversal invariance, are quite different in the local behaviour.

First we model the generic Hamiltonian without time-reversal invariance. We would like the
N ×N random Hermitian matrix to satisfy the following properties.

1. The probability measure p(H)dH where

dH =
∏
j≤k

d<Hjk

∏
j<k

d=Hjk (1.1)

is invariant under the automorphism

H → U−1HU (1.2)

where U ∈ U(N) is any unitary matrix.

2. The probability density function p(H) can be written into the form

p(H)dH =
∏
j≤k

f
(0)
jk (Hjk)d<Hjk

∏
j<k

f
(1)
jk (Hjk)d=Hjk. (1.3)

Later we will see that these conditions almost define the Gaussian unitary ensemble (GUE).
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Time-reversal operator in quantum mechanics In quantum mechanics, the time-reversal
operator T is antiunitary, i.e., 〈Tψ, Tϕ〉 = 〈ψ,ϕ〉. Then T can be decomposed as

T = KC, (1.4)

where C is the complex conjugation operator such that Cψ = ψ̄, and K is a unitary operator,
since

〈Kψ,Kϕ〉 = 〈T ψ̄, T ϕ̄〉 = 〈ψ̄, ϕ̄〉 = 〈ψ,ϕ〉. (1.5)

Since applying time-reversal twice one gets the identity transformation, in quantum mechanics

T 2 = αI, where |α| = 1. (1.6)

Equivalently,

(KC)(KC) = K(CK)C = K(K̄C)C = KK̄(CC) = KK̄ = αI, (1.7)

where we use the identity that for any ψ

CKψ = Kψ = K̄ψ̄ = K̄Cψ. (1.8)

Since K is a unitary operator with KK∗ = K(K̄)T = I, we have

K̄ = α(K̄)T ⇔ K = ᾱKT . (1.9)

By using it twice
K = ᾱ(ᾱKT )T = ᾱ2K, (1.10)

we find
α = 1 or α = −1, (1.11)

and K is then symmetric or antisymmetric respectively.
Now we see that there are two cases of time-reversal invariant systems corresponding to

symmstric and antisymmetric K, and for some physical reasons we call them even-spin case
and odd-spin case respectively.

Remark 1. The original reference for the discussion of time-reversal operator is [27], but modern
textbooks on quantum field theory, like [26] may be more accessible.

Even-spin case of time-reversal invariant Hamiltonians Suppose H is an Hermitian
operator invariant under time-reversal, then

THT−1 = H ⇔ KCHC−1K−1 = H. (1.12)

Noting that
(CHC−1)ψ = C(Hψ̄) = Hψ̄ = H̄ψ, (1.13)

we see that (1.12) is equivalent to
KHTK−1 = H. (1.14)

Since K is a symmetric operator and we assume that it is finitely dimensional, i.e., K is an
N ×N matrix, we apply Takagi’s factorization (proved in Appendix A.1) and write it as

K = UDUT (1.15)
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where U is unitary and D is a real nonnegative diagonal matrix such that the diagonal elements
of D are the nonnegative square roots of the eigenvalues of KK∗. Note that K is also unitary,
so KK∗ = I and D = I. Thus (1.15) implies

K = UUT . (1.16)

Taking a unitary transformation of the representation of the states by U−1 such that ψ 7→ U−1ψ,
where U is that in (1.16), we find that the time-reversal operator T transforms to

T 7→ U−1TU = U−1(UUTC)U = (UTC)U = (CUT )U = C. (1.17)

Thus in the new representation, the operator K becomes the identity matrix. Then the relation
(1.14) means that H is a symmetric Hermitian matrix, that is, a real symmetric matrix.

To model the generic Hamiltonian in the even-spin case of time-reversal invariance class, we
would like the N ×N random real symmetric matrix to satisfy the following conditions.

1. The probability measure p(H)dH where

dH =
∏
j≤k

dHjk (1.18)

is invariant under the automorphism

H →W−1HW (1.19)

where W ∈ O(N) is any real orthogonal matrix.

2. The probability density function p(H) can be written into the form

p(H)dH =
∏
j≤k

fjk(Hjk)dHjk. (1.20)

Later we show that these conditions almost define the Gaussian orthogonal ensemble (GOE).

Odd-spin case of time-reversal invariant Hamiltonians We consider K as an antisym-
metric matrix of dimension N . Then by the theorem on the normal form of an antisymmetric
matrix under unitary congruence (proved in Appendix A.1), we have

K = UΣUT (1.21)

where U ∈ U(N) is a unitary matrix and Σ is of the form

Σ = diag

( 0 σ1

−σ1 0

)
,

(
0 σ2

−σ2 0

)
, . . . ,

(
0 σn
−σn 0

)
︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
N−2n

 , (1.22)

where σi are all positive numbers. From the unitarity of K, we have N = 2n since K is
nonsingular, and σ1 = · · · = σn = 1. Thus

Σ = diag

( 0 1
−1 0

)
,

(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)
︸ ︷︷ ︸

n

 . (1.23)
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Similar to the derivation in the even-spin case, taking the unitary transformation of the
representation of the states by U−1 where U is that in (1.21), we have

T 7→ U−1TU = U−1(UΣUTC)U = ΣC, (1.24)

and then in the new representation,
K = Σ. (1.25)

By relation (1.14), we see that H in the even-spin case satisfies ΣHTΣ−1 = H, or equivalently

ΣHT = HΣ. (1.26)

People who are familar with classical groups recognise immediately that (1.26) is similar to the
formula ΣAT = −ΣA that defines the element of sp(2n), the symplectic Lie algebra. Another
concept related is the unitary symplectic group Sp(n) whose elements are unitary matrices
W ∈ U(N) such that

Σ = WΣW T . (1.27)

Below we analyse (1.26) in an elementary way, without appealing to Lie group/algebra.
Since our H and Σ are both 2n× 2n, we think them as block matrices in 2× 2 blocks. Each

2× 2 complex matrix is the complex linear combination of

1 =

(
1 0
0 1

)
, e1 =

(
i 0
0 −i

)
, e2 =

(
0 1
−1 0

)
, e3 =

(
0 i
i 0

)
(1.28)

in the way (
a b
c d

)
=

1

2
(a+ d)1− i

2
(a− d)e1 +

1

2
(b− c)e2 −

i

2
(b+ c)e3. (1.29)

In these notations, we have
Σ = e2I. (1.30)

It is better to understand 1, e1, e2, e3 as the standard basis of quaternion, usually written as
1, i, j, k. But we do not use these notations in fear of namespace conflicts. Note that one matrix
representation of the quaternion a+ bi+ cj + dk is

a+ bi+ cj + dk →
(
a+ bi c+ di
−c+ di a− bi

)
, (1.31)

a 2 × 2 complex matrix of a special form. General 2 × 2 complex matrices correspond to a
generalisation of quaternions, called the biquaternions (or complexified quaternions), in the
sense that a, b, c, d can be complex numbers in the left-hand side of (1.31), where the i along
with j, k are different from the imaginary basis for the complex numbers.

Now we write the biquaternion, i.e., 2× 2 complex matrix, in the form of

q = q(0) + q · e, where q = (q(1), q(2), q(3)), e = (e1, e2, e3). (1.32)

The quaternion conjugate of q is

q∗ = q(0)−q · e, or equivalently

(
a1 + a2i b1 + b2i
c1 + c2i d1 + d2i

)∗
=

(
d1 + d2i −b1 − b2i
−c1 − c2i a1 + a2i

)
; (1.33)

the complex conjugate of q is (q̄ = (q(1), q(2), q(3)))

q? = q(0) + q̄ · e, or equivalently

(
a1 + a2i b1 + b2i
c1 + c2i d1 + d2i

)?
=

(
d1 − d2i −c1 + c2i
−b1 + b2i a1 − a2i

)
; (1.34)
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the Hermitian conjugate of q is

q† = (q∗)? = q(0) − q̄ · e, or equivalently

(
a1 + a2i b1 + b2i
c1 + c2i d1 + d2i

)†
=

(
a1 − a2i c1 − c2i
b1 − b2i d1 − d2i

)
.

(1.35)
Note that q† = q if and only if q is represented by a 2 × 2 Hermitian matrix. These three
conjugates satisfies

(q1q2)∗ = q∗2q
∗
1, (q1q2)? = q?1q

?
2, (q1q2)† = q†2q

†
1. (1.36)

Expressing

H = (qjk)
n
j,k=1, where qj,k =

(
ajk bjk
cjk djk

)
are biquaternions. (1.37)

We see that the Hermitian property H = H∗ = H̄T implies that(
akj bkj
ckj dkj

)
=

(
ajk cjk
bjk djk

)
, or equivalently qkj = q†jk. (1.38)

On the other hand, if we write HT into 2× 2 blocks, the (j, k) block is(
akj ckj
bkj dkj

)
= −

(
0 1
−1 0

)(
dkj −bkj
−ckj akj

)(
0 1
−1 0

)
(1.39)

and we have
(HT )jk = (−e2q

∗
kje2). (1.40)

Thus by (1.30), the time-reversal relation ΣHT = HΣ is equivalent to the blockwise identity

e2(−e2q
∗
kje2) = qjke2 ⇔ q∗kj = qjk. (1.41)

The (bi)quaternion matrix qjk satisfying q∗kj = qjk is said to be self-dual. Thus a finite di-
mensional Hamiltonian that is time-reversal invariant of the odd-spin class has to be of even
dimension, and in the respresentation where T = ΣC, it is both Hermitian and self-dual if
written in the biquaternion form.

Note that the self-dual Hermitian property of H implies

q∗jk = q†jk ⇔ ajk = djk and bjk = −cjk, (1.42)

or equivalently, each qjk = q
(0)
jk + q

(1)
jk + q

(2)
jk + q

(3)
jk is a real quanternion in the sense that

q
(0)
jk , q

(1)
jk , q

(2)
jk , q

(3)
jk are all real numbers. Furthermore we have that (q

(0)
jk )nj,k=0 forms a real sym-

metric matrix while (q
(i)
jk )nj,k=0 forms a real antisymmetric matrix for i = 1, 2, 3. It is straightfor-

ward to check that these conditions on (q
(0)
jk )nj,k=0 and (q

(i)
jk )nj,k=0 are equivalent to the self-dual

Hermitian condition.
One more remark on self-dual Hermitian matrices is that if H is self-dual Hermitian and

W ∈ Sp(n) is an element of the unitary symplectic group, then W−1HW is also self-dual
Hermitian.

The result we obtained above means that we need to study random self-dual Hermitian
matrices along with random real symmetric matrices. We consider the random matrix as follows.
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1. The probability measure p(H)dH where

dH =
∏
j≤k

dq
(0)
jk

3∏
i=1

∏
j<k

dq
(i)
jk (1.43)

is invariant under the automorphism

H →W−1HW (1.44)

where W ∈ Sp(n) is any unitary symplectic matrix.

2. The probability density function p(H) can be written into the form

p(H)dH =
∏
j≤k

f
(0)
jk (q

(0)
jk )dq

(0)
jk

3∏
i=1

∏
j<k

f
(i)
jk (q

(i)
jk )dq

(i)
jk . (1.45)

Later we will see that these conditions almost define the Gaussian symplectic ensemble (GSE).

1.2 The probability density function of Gaussian orthogonal ensemble (GOE)

The even-spin time-reversal invariant systems are modeled by random real symmetric matrices
satisfying two conditions specified on Page 3. Now we give a concrete description of this random
matrix model which is called the Gaussian orthogonal ensemble (GOE). It will be clear why it
is called “Gaussian”.

Before dealing with the probability measure p(H)dH, we first show that the measure dH
defined in (1.18) is invariant under the orthogonal similarity transformation (1.19). To show
this, we recall the Givens rotation in SO(N)

G(j, k; θ) =



. . .

cos θ . . . − sin θ
...

...
sin θ . . . cos θ

. . .


. (1.46)

where the (j, j), (j, k), (k, j), (k, k) entries constitute a plane rotation matrix and other (i, j)
entries are simply δij . It is well known that any rotation matrix in SO(N) is the product of
Givens rotations [14, Section 5.2.3]. On the other hand, the Givens rotation G(j, k; θ) is the
product of G(1, 2; θ) and permutation matrices. For example,cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 =

1 0 0
0 0 1
0 1 0

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 0
0 0 1
0 1 1

 . (1.47)

Thus G(1, 2; θ) and permutation matrices generates the orthogonal group O(N). Hence we need
only to show that dH is invariant under the conjugations of (a) the permutation matrices, and
(b) G(1, 2; θ). Condition (a) is obvious satisfied, and condition (b) is reduced into a 2×2 matrix
problem. Let (

u v
v w

)
:=

(
cos θ sin θ
− sin θ cos θ

)(
x y
y z

)(
cos θ − sin θ
sin θ cos θ

)
, (1.48)
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where

u = x cos2 θ + 2y cos θ sin θ + d sin2 θ, (1.49)

v = (z − x) cos θ sin θ + y(cos2 θ − sin2 θ), (1.50)

w = x sin2 θ − 2y cos θ sin θ + z cos2 θ. (1.51)

Then the Jacobian
∂(u, v, w)

∂(x, y, z)
= 1. (1.52)

We conclude that dH is invariant under the conjugation of G(1, 2; θ), and prove the claim.
To show p(H)dH is invariant under similarity transformation, we now only need to show

the function p(H) =
∏
j≤k fjk(Hjk) is invariant under the conjugation of (a) the permutation

matrices, and (b) G(1, 2; θ).
Condition (a) is equivalent to that

fjj(x) = fkk(x), (1.53)

fjk(x) = flm(x), where 1 ≤ j < k ≤ N and 1 ≤ l < m ≤ N . (1.54)

Hence we denote f(x) and g(x) as the probability density functions for diagonal entries and
off-diagonal entries of H respectively.

Condition (b) is again reduced to a 2× 2 matrix problem

f(u)g(v)f(w) = f(x)g(y)f(z) (1.55)

where u, v, w depend on x, y, z by (1.49)–(1.51).
Consider the case that θ = ε is infinitesimal. Then (1.55) becomes

f(x+ 2yε)g(y + (z − x)ε)f(z − 2yε) = f(x)g(y)f(z) +O(ε2). (1.56)

When f(x)g(y)f(z) 6= 0, the identity between ε coefficients becomes

2y

(
f ′(x)

f(x)
− f ′(z)

f(z)

)
= (x− z)g

′(y)

g(y)
. (1.57)

By separation of variables, we find a constant c such that

1

2y

g′(y)

g(y)
= − c, (1.58)

1

(x− z)

(
f ′(x)

f(x)
− f ′(z)

f(z)

)
= − c. (1.59)

Using separation of variables again to (1.59), we find a canstant b such that

f ′(x)

f(x)
= − cx+ b, (1.60)

f ′(x)

f(x)
= − cz + b. (1.61)

Therefore the probability density functions f and g are solved as

f(x) =

√
c

2π
e−

b2

2c e−
c
2
x2+bx, (1.62)

g(x) =

√
c

π
e−cy

2
, (1.63)
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and the density function p(H) can be written in a more compact form as

p(H) =
1

CN
exp(Tr(− c

2
H2 + bH)). (1.64)

After a simple shifting and scaling, we need only to analyse the model where

p(H) =
1

CN
exp(−N

4
TrH2), (1.65)

which is the definition of the Gaussian orthogonal ensemble (GOE). An equivalent definition is
that the diagonal entries are in N(0, 2N−1), upper-triangular entries are in N(0, N−1) distribu-
tions, and they are all independent.

Exercises

1. Show that the random Hermitian matrix H satisfying the two conditions on page 1 has
distribution p(H)dH = 1

CN
exp(Tr(− c

2H
2 + bH))dH. Thus it is essentially equivalent to

the Gaussian unitary ensemble where

p(H) =
1

CN
exp(−N

2
TrH2). (1.66)

An equivalent way to describe it is that the diagonal entries are real and in N(0, N−1),
upper-triangular entries are complex with both real and imaginary parts in independent
N(0, 1

2N
−1) distributions, and they are all independent.

2. Show that the random self-dual Hermitian matrix H satisfying the two conditions on page
6 has distribution p(H)dH = 1

CN
exp(Tr(− c

2H
2 + bH))dH. Thus it is equivalent to the

Gaussian symplectic ensemble where

p(H) =
1

CN
exp(−N

2
TrH2). (1.67)

2 Semicircle law and Stieltjes transform

The standard reference for this section is [5, Chapter 2, especially Section 2.3]. The textbooks
[3, Chapter 2, especially Section 2.4] and [25, Section 2.4] are also good expositions.

2.1 Statement of the theorem

With the help of newly invented computers, numerical study of high-dimensional random ma-
trices became possible in 1950’s. First people were interested in the empirical distribution of
eigenvalues of a large random matrix (especially when they are distributed on the real line).

Definition 1. Let M be an N × N matrix that has N real eigenvalues λN1 , . . . , λ
N
N . The

empirical spectral distribution (ESD) is

FM (x) :=
the number of j such that λNj ≤ x

N
. (2.1)
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Define the semicircle law as the probability distribution with density function σ(x) and
cumulative distribution function F (x) given by

σ(x) =
1

2π

√
4− x21|x|≤2, F (x) =

∫ x

−∞
σ(t)dt. (2.2)

It was observed that if MN is the GOE or GUE random matrix, then as N →∞, the random
ESD of MN converges weakly, in probability, to the semicircle distribution, FMN (x) → F (x),
in the sense that for any bounded and continuous function f on R, and any ε > 0,

lim
N→∞

P
(∣∣∣∣∫ f(x)dFMN (x)−

∫
f(x)dF (x)

∣∣∣∣ > ε

)
= 0. (2.3)

We are going to prove a more general theorem for the Wigner matrix. Let {Zij}1≤i<j
and {Yi}1≤i be two independent families of independent and identically distributed random
variables. We assume that Y1 is real valued and has zero mean, Z1,2 is complex valued, has zero
mean, and E(Z1,2Z̄1,2) = 1, and all moments of Y1 and |Z1,2| are finite. Let XN be a Hermitian
N ×N matrix with entries

XN (i, j) =

{ Zij√
N

if i < j,
Yi√
N

if i = j.
(2.4)

We call such a matrix a Wigner matrix. Note that the GUE random matrix is a special case of
the Wigner matrix, so is the GOE random matrix (where =Z12 = 0).

Theorem 1. As N → ∞, the ESD of the Wigner matrix XN converges weakly, in probability
to the semicircle law: FXN (x)→ F (x).

2.2 Preliminaries of Stietjes transform

Let µ be a positive, finite measure on R. The Stieltjes transform of µ is an analytic function
on C \ R defined as

Sµ(z) =

∫
dµ

t− z . (2.5)

From the Stieltjes transform, we can reconstruct the measure practically.

Theorem 2. For any open interval (a, b) where neither a nor b is an atom of µ (i.e., µ({a}) =
µ({b}) = 0), then

µ((a, b)) = lim
ε→0+

1

π

∫ b

a
=Sµ(λ+ iε))dλ. (2.6)

Proof. First we find a lower bound of 1
π

∫ b
a =Sµ(λ+ iε))dλ.

1

π

∫ b

a
=Sµ(λ+ iε)dλ =

∫ b

a

(
1

π

∫ ∞
−∞

ε

(λ− x)2 + ε2
dµ(x)

)
dλ

≥
∫ b

a

(∫ b−
√
ε

a+
√
ε

1

π

ε

(λ− x)2 + ε2
dµ(x)

)
dλ

=

∫ b−
√
ε

a+
√
ε

(∫ b

a

1

π

ε

(λ− x)2 + ε2
dλ

)
dµ(x)

≥
∫ b−

√
ε

a+
√
ε

(∫ x+
√
ε

x+
√
ε

1

π

ε

(λ− x)2 + ε2
dλ

)
dµ(x)

=

∫ b−
√
ε

a+
√
ε

(1 +O(ε))dµ(x)

= (1 +O(ε))µ((a+
√
ε, b−√ε)).

(2.7)
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On the other hand, we have similarly

1

π

∫ b

a
=Sµ(λ+ iε))dλ =

∫ ∞
−∞

(∫ b

a

1

π

ε

(λ− x)2 + ε2
dλ

)
dµ(x)

=

∫ b+
√
ε

a−
√
ε
dµ(x) +

∫ ∞
b+
√
ε
dµ(x) +

∫ a−
√
ε

−∞
dµ(x)

(∫ b

a

1

π

ε

(λ− x)2 + ε2
dλ

)
.

(2.8)

Note that ∫ b

a

1

π

ε

(λ− x)2 + ε2
dλ

{
< 1 for x ∈ (a−√ε, b+

√
ε),

= O(ε) for t ≤ a−√ε or t ≥ b+
√
ε.

(2.9)

We find that

1

π

∫ b

a
=Sµ(λ+ iε))dλ ≤ µ((a−√ε, b+

√
ε)) +O(ε)µ(R \ (a−√ε, b+

√
ε)). (2.10)

Combine (2.7) and (2.10), we finish the proof.

We need the property of Stieltjes transform that the convergence of measures implies the
convergence of their Stieltjes transforms, and vice versa. To be precise, we state the following
theorem.

Theorem 3. Let µn be a sequence of probability measures.

1. If µn converges weakly to a probability measure µ, then Sµn(z) converges to Sµ(z) for each
z ∈ C \ R.

2. If Sµn(z) converges to Sµ for each z ∈ C \ R to a limit S(z), then S(z) is the Stieltjes
transform of a sub-probability measure µ (i.e., µ(R) ≤ 1) and µn converges vaguely to µ
(i.e., for any continuous function f on R such that limx→±∞ f(x) = 0,

∫
fdµn →

∫
fdµ).

3. If the probability measure µn are random and, for each z ∈ C \ R, Sµn(z) converges in
probability to a deterministic limit S(z) that is the Stieltjes transform of a probablility
measure µ, then µn converges weakly in probability to µ.

Proof. 1 By definition: µn
d→ µ implies 1

2πi

∫ dµn(x)
x−z →

dµ(x)
x−z , since 1

2πi(x−z) is bounded and

continuous in x, if z /∈ R.

2 By Helly’s selection theorem [9, Section 4.3], a subsequence µnk vaguely converges to a
sub-probability measure µ. Suppose µ is not the vague limit of µn, that is, there is a
positive constant ε and a function f that is continuous and vanishing at ±∞, such that
for a subsequence µn′k , |

∫
fdµn′k −

∫
fdµ| > ε. Using Helly’s selection theorem again,

a subsequence of µn′k converges vaguely to µ′ 6= µ. On the other hand, since Sµn(z)
converges, we have Sµ(z) = Sµ′(z), and get a contradiction to Theorem 2.

3 (By Tao [25, Section 4.2]). We show that for each f that is continuous and vanishing at

±∞,
∫
fdµn

p→
∫
fdµ. Then µn converges vaguely in probability to µ. Since we assume

that µ is a probability measure, the vague convergence is equivalent to weak convergence.

To show that

lim
n→∞

P
(∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣ > ε

)
= 0, (2.11)

10



we need only to find an f̃ such that

max
x∈R
|f(x)− f̃(x)| < ε

3
(2.12)

and

lim
n→∞

P
(∣∣∣∣∫ f̃dµn −

∫
f̃dµ

∣∣∣∣ > ε

)
= 0. (2.13)

Such an f̃ can be chosen as (see Exercise 1)

f̃(x) =
m∑
k=1

ck=
1

x− zk
=

m∑
k=1

ckbk
(x− ak)2 + b2k

where zk = ak + ibk. (2.14)

Then (2.13) becomes

lim
n→∞

P

(∣∣∣∣∣
m∑
k=1

ck(Sµn(zk)− Sµ(zi)

∣∣∣∣∣ > ε

3

)
= 0, (2.15)

which is a consequence of Sµn(zk)
p→ Sµ(zk).

For an N ×N Hermitian matrix X, define the Stieltjes transform of its ESD as

SX(z) = SdFX (z) =

∫
dFX(z)

x− z =
1

N

N∑
k=1

1

λNk − z
. (2.16)

Note that

SX(z) =
1

N
Tr(X − zI)−1. (2.17)

For the analysis of Wigner matrix, we state a linear algebraic result for Hermitian matrix.

Lemma 1. Let X be an N ×N symmetric matrix, and let xk denote the k-th column of X with
the entry xkk removed. Let the (N − 1) × (N − 1) matrix Xkk be the minor of X obtained by
removing the k-th column and k-th row. Then for z ∈ C \ R, the (k, k) entry of (X − zI)−1 is

(X − zI)−1(k, k) =
1

xkk − z − x̄Tk (Xkk − zIN−1)−1xk
. (2.18)

Therefore (2.17) can be written as

SX(z) =
1

N

N∑
k=1

1

xkk − z − x̄Tk (Xkk − zIN−1)−1xk
. (2.19)

Proof of Lemma 1. Without loss of generality, we consider the k = 1 case. From basis linear
algebra,

(X − zI)−1(1, 1) =
det(X1,1 − zI)

det(X − zI)
=

1

det(X − zI)/ det(X1,1 − zI)
. (2.20)

Computing det(X1,1 − zI) by Laplace’s formula along the first row (x1,1 − z, x̄T1 ), and then
divide it by det(X1,1 − zI), we have

det(X − zI)

det(X1,1 − zI)
= (x1,1 − z)−

N∑
k=2

(−1)kx̄k,1
det(Xk,1 − zIk,1)

det(X1,1 − zI)
. (2.21)

11



The form of
det(Xk,1−zIk,1)

det(X1,1−zI) give us reminiscence of Cramer’s rule, and we have that (−1)k
det(Xk,1−zIk,1)

det(X1,1−zI) =

ak, where a2, . . . , aN are solution to

(X1,1 − zI)

a2
...
aN

 =

x2,1
...

xN,1

 . (2.22)

Then (2.21) becomes

det(X1,1 − zI)

det(X1,1 − zI)
= (x1,1 − z)− x̄T1 · (X1,1 − zI)x1, (2.23)

and we prove (2.18) when k = 1.

2.3 Limiting ESD of truncated Wigner matrices

Before giving the proof of Theorem 1, we consider the truncated version of Wigner matrix.
In this subsection, we assume the random variables Yi and Zij that define the Wigner matrix
satisfy the follows.

Truncation conditions

1. Y1 = 0.

2. The support of Z11 is compact, i.e., there exists C > 0 such that P(|Z11| > C) = 0.

We prove Theorem 1 under these two conditions.
Here and later, for notational simplicity we write XN as X if there is no confusion, i.e.,

SXN (z) is written as SX(z).
Since the diagonal entries are 0, (2.19) becomes

SX(z) =
−1

N

N∑
k=1

1

z + x̄Tk (Xkk − zIN−1)−1xk
. (2.24)

Two heuristic observation

1. The ESD of Xkk is close to the ESD of X, due to the Cauchy interlacing inequality [16,
Section 4.3], [10, Section 1.4]. Suppose eigenvalues of X are {λNj } and those of Xkk are

{λN−1
j }, both in increasing order, then

λN1 ≤ λN−1
1 ≤ λN2 ≤ λN−1

2 ≤ · · · ≤ λNN−1 ≤ λN−1
N−1 ≤ λNN . (2.25)

Thus SXkk(z) ∼ SX(z).

2. Note that Xkk − zIN−1 is a normal matrix, such that

(Xkk − zI)∗(Xkk − zI) = (Xkk − z̄I)(Xkk − zI) = X2
kk − zXkk − z̄Xkk + |z|2I

= (Xkk − zI)(Xkk − zI)∗.
(2.26)

Then (Xkk − zIN−1)−1 is also normal. Let λ
(N−1)
1 , . . . , λ

(N−1)
N−1 be eigenvalues of Xkk and

denote

zj =
1

λ
(N−1)
j − z

, for j = 1, . . . , N − 1, (2.27)
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then z1, . . . , zN−1 are eigenvalues of (Xkk−zIN−1)−1. By the property of normal matrices
[16, Section 2.5], there exists a unitary matrix U ∈ U(N − 1) such that

(Xkk − zIN−1)−1 = U∗DU, where D = diag(z1, . . . , zN−1), (2.28)

and
xTk (Xkk − zIN−1)−1xk = ȳTkDyk, where yk = Uxk. (2.29)

In the special case that all components of xk are in i.i.d. N(0, 1
2) + iN(0, 1

2) distribution,
then components of yk are also in i.i.d. N(0, 1

2) + iN(0, 1
2) distribution (exercise). In this

special case, by (a stretch of) law of large numbers,

ȳTkDyk =

N−1∑
j=1

yk(j)yk(j)zj ∼
1

N

N−1∑
j=1

zj = SXkk(z) ∼ SX(z), (2.30)

where in the last approximate identity we use the heuristic observation 1.

The idea of the following transformation is then clear: To approximate xTk (Xkk−zIN−1)−1xk
by SX(z).

SX(z) =
−1

N

N∑
k=1

1

z + SX(z) + (x̄Tk (Xkk − zIN−1)−1xk − SX(z))

= − 1

z + SX(z)
+ δN (z),

(2.31)

where

δN (z) =
1

N

N∑
k=1

εk,N
(z + SX(z))(z + SX(z) + εk,N )

, with εk,N = x̄Tk (Xkk− zIN−1)−1xk−SX(z).

(2.32)
The next task os to show that for any z /∈ C \ R,

δN (z)
p→ 0. (2.33)

Suppose this is true, then

SX(z) +
1

z + SX(z)
= δN (z)

p→ 0. (2.34)

Note that for any z /∈ C \ R, the equation in w

w +
1

z + w
= 0 (2.35)

has two solutions

w1(z) =
−z +

√
z2 − 4

2
, w2(z) =

−z −
√
z2 − 4

2
. (2.36)

So for any ε > 0
lim
N→∞

P(SX(z) ∈ Nε(w1(z)) ∪Nε(w2(z))) = 1. (2.37)

From the definition of Stieltjes transform, it is clear that =SX(z) has the same sign as =z.
Therefore SX(z)

p→ w1(z), which is the Stieltjes transform of the semicircle law F (z). Verifica-
tion:

lim
ε→0+

=w1(x+ iε) =

{
1

2π

√
4− x2 if x ∈ (−2, 2),

0 if x ∈ R \ (−2, 2).
(2.38)
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Then by Theorem 3, we prove Theorem 1 under the two trancation conditions.
To show δN (z)

p→ 0, note that for any z in the upper half plane, =z > 0 and =SX(z) > 0,
and then

|z + SX(z)| ≥ |=z + =SX(z)| > |=z|. (2.39)

For z in the lower half plane, the result of (2.39) also holds. Therefore if we can show that

max
1≤k≤N

|εk,N |
p→ 0, (2.40)

then the absolute value of the denominator of each summand of δN (z) is bounded when |εk,N |
is small, and then (2.33) is proved.

To estimate |εk,N |, we write it as

εk,N = εk,N (1) + εk,N (2), (2.41)

where

εk,N (1) = x̄Tk (Xkk − zIN−1)−1xk −
N − 1

N
SXkk(z)

= x̄Tk (Xkk − zIN−1)−1xk −
1

N
Tr(Xkk − zIN−1)−1,

(2.42)

and

εk,N (2) =
N − 1

N
SXkk(z)− SX(z) =

1

N

(
Tr(Xkk − zIN−1)−1 − Tr(X − zIN )−1

)
. (2.43)

To estimate εk,N (1), we take short-handed notations

√
Nxk = (ξ1, . . . , ξN−1) and (Xkk − zIN−1)−1 = B. (2.44)

Note that ξj are independent and has the same distribution as Z12, and the ξj ’s are independent
to B. Further write

εk,N (1) = εk,N (3) + εk,N (4), where



εk,N (3) =
1

N

N−1∑
j=1

(ξ̄jξj − 1)B(j, j),

εk,N (4) =
1

N

N−1∑
j,l=1
j 6=l

ξ̄jξlB(j, l).

(2.45)

By the property of ξj , E(ξ̄jξj − 1) = 0. Since B(j, j) is independent to ξj , we see that each
summand of εk,N (3) has mean 0, and then E(εk,N (3)) = 0.

Now we consider the conditional expectation of |εk,N (3)|2 when B is fixed.

E(|εk,N (3)|2 | B = B0) =
1

N2
E

N−1∑
j=1

(ξ̄jξj − 1)B(j, j)

N−1∑
j=1

(ξ̄jξj − 1)B(j, j)


=

1

N2

N−1∑
j=1

E((ξ̄jξj − 1)2)|B0(j, j)|2,
(2.46)

where in the second identity we use the independence of ξj ’s. We know that E((ξ̄jξj − 1)2) =
E((Z̄12Z12 − 1)2) is a constant, and need to estimate |B(j, j)|2.
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Recall the facterisation B = U∗DU where U ∈ U(N − 1) and D = diag(z1, . . . , zN−1) and
zj are defined in (2.27). Let the j-th column of U be uj that is a unit vector. Then

B(j, j) = u∗Du, (2.47)

and
|B(j, j)| ≤ ‖D‖ = max

1≤j≤N−1
|zj |. (2.48)

(Recall the operator norm ‖D‖ = max|v|=1|Dv|.) From the definition of zj , it is clear that

|zj | =
1

|z − λ(N−1)
j |

=
1

|=z + (<z − λ(N−1)
j )|

≤ 1

|=z| . (2.49)

Hence B(j, j) is bounded by |=z|−1. We conclude that E(|εk,N (3)|2 | B = B0) is bounded by
cN−1 where c is a positive constant independent to B and k. We further conclude that

E(|εk,N (3)|2) < cN−1, (2.50)

with the same c independent to k.
This result is good, and by E(|εk,N (3)|2) we directly find εk,N (3)

p→ 0. But this is not
enough, since our goal is to estimate max1≤k≤N εk,N , so we need

max
1≤k≤N

εk,N (3)
p→ 0. (2.51)

This cannot be proved by the estimate of second moment (2.50). How to remedy it? Keep
computing higher moments!

E(|εk,N (3)|4 | B = B0)

=
1

N4
E

N−1∑
j=1

(ξ̄jξj − 1)B(j, j)

2N−1∑
j=1

(ξ̄jξj − 1)B(j, j)

2
=

1

N4

N−1∑
j=1

E((ξ̄jξj − 1)4)|B0(j, j)|4 +
∑

1≤j<l≤N−1

E((ξ̄jξj − 1)2)E((ξ̄lξl − 1)2)

× (2B0(j, j)2B0(l, l)
2

+ 2B0(j, j)
2
B0(l, l)2 + 8|B0(j, j)|2|B0(j, j)|2)


<

c

N2
.

(2.52)

and by arguments the same as in the discussion of the second moment, we see that E(|εk,N (3)|2) <
cN−1 for a constant independent of k. Then by Chebyshev’s inequality [9, Section 3.2], we find
that for any ε > 0,

P(|εk,N (3)| > ε) = O(N−2), (2.53)

and prove (2.51) by
P( max

1≤k≤N
|εk,N (3)| > ε) = O(N−1). (2.54)

Similarly, we can show that (exercise)

E(|εk,N (4)|4) <
c

N2
. (2.55)
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for some c independent of k, and then show

max
1≤k≤N

εk,N (4)
p→ 0. (2.56)

Therefore we conlude from (2.51) and (2.56) that max1≤k≤N εk,N (1)
p→ 0.

Next we need to estimate εk,N (2). Denote X̂kk as the N ×N Hermitian matrix with entries
in the k-th column and k-th row 0 and all other entries the same as those of X. The eigenvalues

of X̂kk are those of Xkk, i.e., λ
(N−1)
1 , . . . , λ

(N−1)
N−1 and 0. Then

Tr((Xkk − zIN−1)−1) =
N−1∑
j=1

1

λ
(N−1)
j − z

= Tr((X̂kk − zIN )−1)− 1

z
, (2.57)

and

εk,N (2) =
1

N

(
Tr((X̂kk − zIN )−1)− Tr((X̂kk − zIN )−1)− 1

z

)
. (2.58)

To estimate the Tr(X̂kk−zIN )−Tr(X̂kk−zIN ), we apply the following linear algebraic theorem.

Theorem 4 (Hoffman-Wielandt). Let A,B be N × N Hermitian matrices, with eigenvalues
λA1 ≤ λA2 ≤ · · · ≤ λAN and λB1 ≤ λB2 ≤ · · · ≤ λBN . Then

N∑
j=1

|λAj − λBj |2 ≤ Tr((A∗ −B∗)(A−B)). (2.59)

The proof of Theorem 4 is given in Appendix A.2. Here we note that For any A = (ajk)
n
j,k=1,

Tr(A∗A) =
∑n

j,k=1|ajk|2. Denoting the eigenvalues of X̂kk as λ1 ≤ · · · ≤ λN and the eigenvalues

of X as λ
(N)
1 ≤ · · · ≤ λ(N)

N , we have

∣∣∣Tr((X̂kk − zIN )−1)− Tr((X̂kk − zIN )−1)
∣∣∣ =

∣∣∣∣∣∣
N∑
j=1

(
1

λj − z
− 1

λ
(N)
j − z

)∣∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

λ
(N)
j − λj

(λj − z)(λ(N)
j − z)

∣∣∣∣∣
≤

N∑
j=1

|λ(N)
j − λj |

|λj − z||λ(N)
j − z|

≤ 1

|=z|2
N∑
j=1

|λ(N)
j − λj |

≤ 1

|=z|2

 N∑
j=1

|λ(N)
j − λj |2

 1
2
 N∑
j=1

1

 1
2

≤
√
N

|=z|2

 N∑
j=1

|λ(N)
j − λj |2

 1
2

.

(2.60)

By Hoffman-Wielandt theorem,

N∑
j=1

|λ(N)
j − λj |2 ≤ 2

N∑
j=1

|X(j, k)|2 ≤ 2C2, (2.61)
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where C is the upper bound of Z12. Thus we find that εk,N (2) converges to 0 surely. Now we
finish the proof of Theorem 1 under the two trancation conditions.

2.4 Limiting ESD for general Wigner matrices

In this subsection, we show that the semicircle law proved for trancated Wigner matrices also
holds for general Wigner matrices.

Restore the truncation on diagonal entries First, let XN be the trancated Wigner matrix
considered in last subsection, and X̃N be the Wigner matrix that satisfies Condition 2 but not
Condition 1 for truncated Wigner matrix. Namely, the diagonal entries of X̃N are given by i.i.d.
random variables N−1/2Yi where Y1 has mean 0 and every moment finite, and the off-diagonal
entries of X̃N are the same as those of XN . Then a direct application of the Hoffman-Wielandt
theorem shows that

N∑
i=1

|λ(N)
i − λ̃(N)

i |2 ≤ Tr((X̃∗N −X∗N )(X̃N −XN )) =
1

N

N∑
i=1

|Yi|2, (2.62)

where λ
(N)
i and λ̃

(N)
i are eigenvalues of XN and X̃N respectively, and are sorted in increasing

orders.
By the law of large numbers, we see that 1

N

∑N
i=1|Yi|2 converges to E(|Y1|2) almost surely

(and also in probability). Since we are interested in the weak, inprobability convergence of the
random ESD measures, we apply the following theorem.

Theorem 5 ([9, Exercise 9 in Section 4.4]). Let µn be a sequence of probability measures with
cumulative functions Fn(x) =

∫ x
−∞ 1dµn. Then µn converges weakly to a probability measure µ

if and only if ρ(Fn, F ) → 0, where F is the cumulative distribution function of µ and ρ is the
Lévy distance

ρ(F,G) = inf{ε | F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x}. (2.63)

The proof of this theorem is an exercise. Note that if ρ(F,G) > ε, without loss of generality,
we can assume F (x0 − ε)− ε > G(x0) for an x0 ∈ R and then∫ ∞

−∞
|F (x)−G(x)|dx ≥

∫ x0

x0−ε
F (x)−G(x)dx ≥ ε2. (2.64)

Geometrically, it means that we can put a square with size ε between the graphs of F (x) and
G(x).

Now we consider ρ(F X̃N , FXN ) where F X̃N and FXN are the ESDs of X̃N and XN .

ρ(F X̃N , FXN )2 ≤
∫ ∞
−∞
|F X̃N − FXN |dx =

1

N

N∑
i=1

|λ̃(N)
i − λ(N)

i | ≤
1√
N

(
N∑
i=1

(λ̃
(N)
i − λ(N)

i )2

) 1
2

,

(2.65)

where we use the Cauchy-Schwarz inequality. Now it is clear that ρ((F X̃N , FXN )
p→ 0 (actually

the convergence is almost sure). We know as well that ρ((FXN , F )
p→ 0 from the result in

last subsection, where F is the ESD of the semicircle law. Hence ρ((F X̃N , F )
p→ 0, i.e., F X̃N

converges weakly, in probability to the seimicircle law, and we prove Theorem 1 for X̃N whose
off-diagonal entries are truncated but diaagonal entries are general.
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Restore the truncation on off-diagonal entries Now we consider the general Wigner
matrix, and denote it as X̂N for fear of namespace conflict. Then the diagonal and off-diagonal
entries of X̂N are given by Yi and Zij by (2.4) with XN substituted by X̂N . We compare X̂N

with X̃N analysed above. To make them related, below we define X̃N by X̂N as

X̃N (i, i) = X̂N (i, i), for i = 1, . . . , N , (2.66)

X̃N (i, j) = X̂N (i, j)− 1√N |X̂N (i,j)|≤C − E(X̂N (i, j)− 1√N |X̂N (i,j)|≤C), for 1 ≤ i < j ≤ N ,

(2.67)

where C is a large but finite number independent of N .

Using the Hoffman-Wielandt theorem again (now λ̂
(N)
i are eigenvalues of X̂N in increasing

order), we have

N∑
i=1

|λ̂(N)
i − λ̃(N)

i |2 = Tr((X̂∗N − X̃∗N )(X̂N − X̃N )) =
2

N

∑
1≤i<j≤N

|Ẑ12|2, (2.68)

where
Ẑij = Zij1|Zij |>C − E(Zij1|Zij |>C). (2.69)

The expectation E(Zij1|Zij |>C) depends on C, and we denote is as ε(C). It is not difficult to
see (exercise) that

lim
C→∞

ε(C) = 0. (2.70)

By the law of large numbers,

1

N

N∑
i=1

|λ̂(N)
i − λ̃(N)

i |2
p→ ε(C). (2.71)

For any ε > 0, there is a C such that ε(C) < ε2/4. Then (2.71) implies that

lim
N→∞

P

(
1

N

N∑
i=1

|λ̂(N)
i − λ̃(N)

i |2 >
ε2

4

)
= 0. (2.72)

Analogous to (2.65), we have

ρ(F X̂N , F X̃N ) ≤
∫ ∞
−∞
|F X̂N − F X̃N |dx =

1

N

N∑
i=1

|λ̃(N)
i − λ(N)

i | ≤
(

1

N

N∑
i=1

(λ̃
(N)
i − λ(N)

i )2

) 1
2

,

(2.73)
and by (2.72),

lim
N→∞

P
(
ρ(F X̂N , F X̃N ) >

ε

2

)
= 0. (2.74)

On the other hand, the weak, inprobability convergence of the ESD of X̃N implies (via Theorem
5)

lim
N→∞

P
(
ρ(F X̃N , F ) >

ε

2

)
= 0. (2.75)

Thus
lim
N→∞

P
(
ρ(F X̂N , F ) > ε

)
= 0. (2.76)

By Theorem 5 and the arbitrariness of ε, we see that the ESD of X̂N converges weakly, in
probability to the semicircle law. Finally we prove Theorem 1 in the general case.

18



Exercises

1. Let f(x) be a continuous function on R and limx→±∞ f(x) = 0.

(a) Define

fδ(x) =
1

π

∫
R

δ

(t− x)2 + δ2
f(t)dt. (2.77)

Prove that as δ → 0, fδ(x) converges uniformly to f(x).

(b) By result 1a, show the existence of the function f̃(x) that is in the form of (2.14)
and satisfies (2.12).

2. Prove Theorem 5.

3 Local properties of the distribution of eigenvalues in GUE

In this section we focus on random matrices in Gaussian Unitary Ensemble (GUE), or GUE
matrix for short. The definition of GUE matrix is given in Exercise 1, and it is a special case of
the Wigner matrix defined by (2.4) where Y1 has distribution N(0, 1) and Z12 has distribution
N(0, 1

2) + iN(0, 1
2).

GUE matrix is a very special Wigner matrix in the sense that it is invariant under unitary
conjugation, while all other Wigner matrices, except for those equivalent to the GUE matrix
up to scaling and translation, are not. See Exercise 1. Some powerful techniques involving
orthogonal polynomials can be applied to GUE matrix so that we can analyse the local properties
of the distributions of its eigenvalues, expecially the asymptotic behaviours as N → ∞. Many
of these properties can be generalised to Wigner matrices with <Y12 and =Y12 in identical
distribution, but the proofs are much more difficult.

3.1 Joint distribution of eigenvalues of a GUE matrix

In this subsection we prove the following theorem:

Theorem 6. Let H = HN be the N × N random matrix in GUE. The distribution of its
eigenvalues λ1, . . . , λN is

P (λ1, . . . , λN ) =
1

CN
∆(λ)2

N∏
i=1

e
N
2
λ2i , (3.1)

where ∆(λ) =
∏

1≤i<j≤N (λj − λi) is the Vandermonde determinant and CN is a constant; or
equivalently, if we assume λ1, . . . , λN are in increasing order,

P (λ1, . . . , λN ) =
1

C ′N
∆(λ)2

N∏
i=1

e
N
2
λ2i 1λ1≤···≤λN , (3.2)

where C ′N = (N !)−1CN .

Note that the distribution of λ1, . . . , λN is a marginal distribution of X. Recall the standard
method to compute the marginal distribution function from the joint distribution function:

P (x) =

∫
P (x, y)dy. (3.3)

The question is: What is y?
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The idea of the proof of Theorem 6 is that

H = UDU∗, where D = diag(λ1, . . . , λN ), U = (uij)
N
i,j=1 ∈ U(N). (3.4)

We show that except for a measure zero part of the probability space of H, which can be
assumed to be RN2

, the decomposition above is unique and U is parametrised smoothly by
N(N−1) variables, say θ1, . . . , θN(N−1), and then obtain the marginal distribution of λ1, . . . , λN
by integrating out the variables θ1, . . . , θN(N−1). However, we only know that the probability
distribution function of X = (hij)

n
i,j=1, given in coordinates hii (1 ≤ i ≤ N), <hjk and =hjk

(1 ≤ j < k ≤ N) is

P (hii,<hjk,=hjk) =
N∏
i=1

√
N√
2π
e−

N
2
x2ii

∏
1≤j<k≤N

N

π
e−N(<hjk)2e−N(=hjk)2

= 2−
N
2

(
N

π

)N2

2

e−
N
2

TrH2

= 2−
N
2

(
N

π

)N2

2
N∏
i=1

e−
N
2
λ2i .

(3.5)

To obtain the probability distribution function of H in coordinates λ1, . . . , λN , θ1, . . . , θN(N−1),
we need

P (λ1, . . . , λN , θ1, . . . , θN(N−1)) = P (hii,<hjk,=hjk)
∂(λ1, . . . , λN , θ1, . . . , θN(N−1))

∂(hii,<hjk,=hjk)
, (3.6)

where the Jacobian

∂(λ1, . . . , λN , θ1, . . . , θN(N−1))

∂(hii,<hjk,=hjk)
= det H, and H = det


∂hii
∂λk

∂hii
∂θk

∂<hjl
∂λk

∂<hjl
∂θk

∂=hjl
∂λk

∂=hjl
∂θk

 (3.7)

is the determinant of an N2×N2 matrix, whose six blocks are of size N ×N , N(N − 1)/2×N ,
N ×N(N − 1) and N(N − 1)/2×N(N − 1). The computation of the Jacobian in (3.6) turns
out to be the trickiest step.

To prove the “bad” part has zero probability, we need an apparently obvious result.

Lemma 2. Given any nonzero polynomial from Rn to R, its zero set has Lebesgue measure
zero.

The proof is left as an exercise. Below we identify the (real) linear space of N×N Hermitian
matrices as RN2

with coordinates hii,<hjk,=hjk, in order to apply the lemma above.

Lemma 3. In the space of N ×N Hermitian matrices, the set of matrices with repeated eigen-
values has Lebesgue measure zero.

Proof. The discriminant of an N ×N matrix H = (hij)
N
i,j=1 is defined as

∏
1≤j<k≤N (λk − λj)2

where λ1, . . . , λN are eigenvalues of H. Actually it is the discriminant of the characteristic
polynomial of H. We need the property that the discriminant of H is a polynomial in hij ([22,
Exercise 19 in Section 2]) and hence a polynomial in hii,<hjk,=hjk, and the zero set of the
discriminant consists of matrices with repeated eigenvalues. A direct application of Lemma 2
finishes the proof.
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Suppose H is an N ×N Hermitian matrix with distinct eigenvalues, then in the decompo-
sition (3.4),

U = (u1, . . . ,uN ), (3.8)

where uk are eigenvectors such that Huk = λkuk. All uk are linear independent, and they are
unique up to a factor eiθk . Then if one U in decomposition (3.4) has all its entries nonzero,
then all possible U , given that the eigenvalues of H are distinct, consist of nonzero entries. For
H that satisfies 1. all eigenvalues are distinct, and 2. in one (and hence all) U , all entries are
nonzero, it has a good decomposition

H = U diag(λ1, . . . , λN )U∗, where λ1 < · · · < λN and ujj ∈ R+ for j = 1, . . . , N. (3.9)

The following lemma shows that we need only to consider Hermitian matrices with good
decomposition.

Lemma 4. In the space of N ×N Hermitian matrices, the set

{H | in at least one decomposition H = UDU∗, U has a zero entry} (3.10)

has Lebesgue measure zero.

Proof. Based on last lemma, we need to consider only the Hermitian matrices with distinct
eigenvalues.

For each k = 1, . . . , N , we find a condition that uk has all components nonzero. Note that
A := H − λk is a matrix with corank 1. Hence its adjoint matrix Aadj (whose (i, j) entry is
(−1)i+j det(Aji) where Aji is the (N − 1)× (N − 1) matrix by removing the i-th row and j-th
column of A) is a nonzero matrix, and AAadj = 0. It means that each column of Aadj is a
multiple of uk. Hence if for all j = 1, . . . , N , Aadj(j, j) = det(Hjj − λkI) are nonzero, then all
components of uk are nonzero.

Therefore, if for all j, k = 1, . . . , N , det(Hjj − λkI) 6= 0, then all entries of U are nonzero.
Or equivalently, for all j = 1, . . . , N , the resultant of Hjj and H, which means the resultant
of the characteristic polynomials of the pair of matrices, does not vanish, then all entries of U
are nonzero. Because of the fact that the resultant of A and B can be written as a polynomial
in entries of A and B (exercise, which you can solve in a similar way as in [22, Exercise 19 in
Section 2] for resultant), we prove this lemma by Lemma 2 and the conclusion that all Hermitian
matrices in the set considered are zeros of a polynomial in hii,<hjk,=hjk.

Among the good Hermitian matrices, we define the very good Hermitian matrices as those
whose U in decomposition (3.9) has all its minors nonzero. Similarly, we call a unitary matrix
U ∈ U(N) very good if all its minors are non zero, that is, for each k = 1, . . . , N , and for any
pair of I, J ⊆ {1, . . . , k} with |I| = |J |, det(uij)i∈I,j∈J 6= 0. We define T : U(N)vg := {U ∈
U(N) | U is very good} → CN(N−1)/2

T (U) =

(
u21

u11
, . . . ,

uN1

u11
,
u32

u22
, . . . ,

uN2

u22
, . . . ,

uN,N−1

uN−1,N−1

)
. (3.11)

Lemma 5. T is injective with smooth inverse, and CN(N−1)/2\T (U(N)vg) has Lebesgue measure
zero.

Proof. We define for each k = 1, . . . , N the mapping Tk, whose domain is the array of mutu-
ally orthogonal vectors (v1, . . . ,vk), with vi(i) = 1, all components nonzero, and for any pair of
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I, J ⊆ {1, . . . , k} with |I| = |J |, det(vi(j))i∈I,j∈J 6= 0, and whose value is in C(N−1)+(N−2)+···+(N−k),
such that

Tk(v1, . . . ,vk) = (v1(2), . . . ,v1(N),v2(3), . . . ,v2(N), . . . ,vk(k + 1), . . . ,vk(N)). (3.12)

Note that TN is equivalent to T . Given U = (u1, . . . ,uN ) ∈ U(N)vg and let vi = ui/uii,
then TN (v1, . . . ,vN ) = T (U); on the other hand, given (v1, . . . ,vN ) in the domain of TN ,
U = (v1/‖v1‖, . . . ,v1/‖v1‖) is in U(N)vg, and T (U) = TN (v1, . . . ,vN ).

T1 is obviously injective, and its range is all points in CN−1 with all coordinates nonzero.
Furthermore T−1

1 (z1, . . . , zN−1) = (1, z1, . . . , zN−1)⊥.
To show that T2 is injective, we only need to show that given any pair of vectors (v1,v2) in

the domain of T2, if v1(1) = 1,v1(2), . . . ,v1(N),v2(2) = 1,v2(3), . . . ,v2(N) are fixed (by the
value of T2(v1,v2)), then v2(1) is unique. This is clear, since by the orthogonality, v1(1)v2(1)+∑N

j=2 v1(j)v2(j) = 0 and v1(1) = 1, v2(1) is uniquely solved. We have

T−1
2 (z

(1)
2 , . . . , z

(1)
N , z

(2)
3 , . . . , z

(2)
N ) = ((1, z

(1)
2 , . . . , z

(1)
N )⊥, (−(z

(1)
2 +

N∑
j=3

z
(1)
j z

(2)
j ), 1, z

(2)
3 , . . . , z

(2)
N )⊥).

(3.13)
To show Tk is injective for k = 3, . . . , N , given that Tk−1 is injective, it suffices to show

that given (v1, . . . ,vk) in the domain of Tk, we can recover vk(1), . . . ,vk(k − 1) from the
other components of vk and the components of v1, . . . ,vk−1. By the orthogonality, the k − 1
components satisfied k − 1 linear equations

v1(1)vk(1) + · · ·+ v1(k − 1)vk(k − 1) = −
N∑
j=k

v1(j)vk(j),

...

vk−1(1)vk(1) + · · ·+ vk−1(k − 1)vk(k − 1) = −
N∑
j=k

vk−1(j)vk(j).

(3.14)

By the condition that det(vi(j))
k−1
i,j=1 6= 0, we find that vk(1), . . . ,vk(k − 1) are uniquely de-

termined. By induction, we find that TN is injective. Although we are not going to write the
explicit formula of T−1

N , inductively we find that it is smooth like T−1
2 in (3.13).

On the other hand, we set up the necessary and sufficient conditions on (z
(1)
2 , . . . , z

(1)
N , . . . ,

z
(2)
3 , . . . , z

(2)
N , . . . , z

(N−1)
N ) that it is in the range of TN .

(1) All of them are nonzero.

(2) v2(1) as shown in (3.13) is nonzero.

(k) (where k runs from 3 to N repeatedly)

(k1) vk(1), . . . ,vk(k − 1) solved by (3.14) are nonzero.

(k2) All det(vi(j))i∈I,j∈J are nonzero, for I, J ⊆ 1, . . . , k and |I| = |J |, where vi(j) = z
(i)
j

if j < i; vi(j) = 1 if j < i; vi(j) is solved in step (2) or (i1) if j < i.

The points that do not satisfy all of the conditions are in the union of zero sets of polynomials

in <z(i)
j and =z(i)

j , so they are of Lebesgue measure zero.

The following lemma shows that most Hermitian matrices are very good.
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Lemma 6. The N ×N Hermitian matrices that are not very good have Lebesgue measure zero.

Proof. For k = 2, . . . , N , we consider the Hermitian matrices H such that in at least one
of its decomposition H = UDU∗ as in (3.4), U has a zero k-minor, i.e., there is a pair of
I, J ⊆ {1, . . . , N} with |I| = |J | = k and the minor UIJ = det(uij)i∈I,j∈J of U is zero. If we can
show for each k the set of such Hermitian matrices have Lebesgue measure zero, the lemma is
proven. We note that the k = 1 case of the result is exactly Lemma 4.

Below we prove the k = 2 case. For any N × N matrix X, we define the N(N − 1)/2 ×
N(N − 1)/2 matrix

∧2 X := (XIJ)I,J⊆{1,...,N}
|I|=|J |=2

, where XIJ =

∣∣∣∣xi1,j1 xi1,j2
xi2,j1 xi2,j2

∣∣∣∣ . (3.15)

Although the order of I = (i1, i2) is not important, we may take the lexicographic order.
It is obvious that ∧2IN = IN(N−1)/2. It is also not difficult to see that for any X,

∧2 X∗ = (∧2X)∗. (3.16)

So if H is Hermitian, then ∧2H is also Hermitian, and if U ∈ U(N), then ∧2U ∈ U(N(N−1)/2).
A not so easy result is that

∧2 (XY ) = (∧2X)(∧2Y ). (3.17)

To see it, we note that

(XY )(i1,i2)(j1,j2) =

∣∣∣∣(XY )i1,j1 (XY )i1,j2
(XY )i2,j1 (XY )i2,j2

∣∣∣∣
=

∣∣∣∣∣
∑N

k=1 xi1,kyk,j1
∑N

l=1 xi1,lyl,j2∑N
k=1 xi2,kyk,j1

∑N
l=1 xi2,lyl,j2

∣∣∣∣∣
=

N∑
k=1

N∑
l=1

∣∣∣∣xi1,kyk,j1 xi1,lyl,j2
xi2,kyk,j1 xi2,lyl,j2

∣∣∣∣
=

1

2

N∑
k=1

N∑
l=1

∣∣∣∣xi1,kyk,j1 + xi1,lyl,j1 xi1,kyk,j2 + xi1,lyl,j2
xi2,kyk,j1 + xi2,lyl,j1 xi2,kyk,j2 + xi2,lyl,j2

∣∣∣∣
=

1

2

N∑
k=1

N∑
l=1

∣∣∣∣xi1,k xi1,l
xi2,k xi2,l

∣∣∣∣ ∣∣∣∣yk,j1 yk,j2
yl,j1 yl,j2

∣∣∣∣
=

∑
1≤k<l≤N

X(i1,i2)(k,l)Y(k,l),(j1,j2).

(3.18)

Hence we have for a Hermitian matrix H = UDU∗ as in (3.4),

∧2 H = (∧2U)(∧2D)(∧2U)∗ (3.19)

is also a decomposition in the form of (3.4). Note that U has vanishing 2-minor is equivalent
to that ∧2U has vanishing entries. As shown in the proof of Lemma (4), ∧2U has zero entries
only if the enties of ∧2H satisfies a polynomial equation, which implies that the entries of H
satisfies a polynomial equation. Thus by Lemma (2), such H have Lebesgue measure zero.

The k = 3, . . . , N cases are left for exercise. The method is similar to the k = 2 case, but
we need the Cauchy-Binet formula [16, Section 0.8.7] in place of (3.18). Thus we prove the
lemma.
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Now we are ready to prove Theorem 6. Since Hermitian matrices that are not very good
has Lebesgue measure zero, they have zero probability as the density function is given by (3.5).
Thus we need only to consider the very good Hermitian matrices such that they have the
unique decomposition (3.9) and the unitary matrix U is determined uniquely and smoothly

as U = T−1(z), where z = (z
(1)
2 , . . . , z

(1)
N , . . . , z

(2)
3 , . . . , z

(2)
N , . . . , z

(N−1)
N ). To parametrise U in

real parameters, we define θ1, . . . , θN(N−1) as θ2k−1 = <(the k-th component of z) and θ2k =
=(the k-th component of z). Then we write U = T−1(θ1, . . . , θN(N−1)).

Proof of Theorem 6. For each θk where k = 1, . . . , N(N − 1), we consider ∂U
∂θk

. Since U∗U = I,
we have

∂U∗

∂θk
U + U∗

∂U

∂θk
= 0. (3.20)

Denote

S(k) := U∗
∂U

∂θk
= −∂U

∗

∂θk
U, (3.21)

we have that S(k) is anti-Hermitian, i.e., (S(k))∗ = −S(k). By differentiation on the identity
H = U diag(λ1, . . . , λN )U∗, we have

∂H

∂θk
=
∂U

∂θk
diag(λ1, . . . , λN )U∗ + U diag(λ1, . . . , λN )

∂U∗

∂θk
, (3.22)

and then

U∗
∂H

∂θk
U = U∗

∂U

∂θk
diag(λ1, . . . , λN ) + diag(λ1, . . . , λN )

∂U∗

∂θk
U

= S(k) diag(λ1, . . . , λN )− diag(λ1, . . . , λN )S(k).

(3.23)

In terms of entries,

N∑
m,n=1

(
∂H

∂θk

)
mn

ūmjunl =

(
U∗

∂H

∂θk
U

)
jl

= (λl − λj)S(k)
jl . (3.24)

Similarly, for any k = 1, . . . , N ,

N∑
m,n=1

(
∂H

∂λk

)
mn

ūmjunl =

(
U∗

∂H

∂λk
U

)
jl

= δjkδlk. (3.25)

Note that we use hii,<hjk,=hjk as coordinates of H, and

(
∂H

∂µ

)
mn

=


∂<hmn
∂µ + i∂=hmn∂µ if m < n,

∂hmm
∂µ if m = n,

∂<hnm
∂µ − i∂=hnm∂µ if m > n,

where µ stands for θk or λk. (3.26)

From (3.26), we see that if we arrange ∂hii
∂µ ,

∂<hjl
∂µ ,

∂=hjl
∂µ as a vector and ∂hmn

∂µ as another

vector, both of dimension N2, there is a linear transformation, expressed by an N2×N2 matrix
V1, such that

V1


∂hii
∂µ

∂<hjl
∂µ

∂=hjl
∂µ

 =
(
∂hmn
∂µ

)
. (3.27)
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Although we do not write down V1 explicitly, it is clear that det(V1) 6= 0 is a constant. Similarly,
from (3.24) and (3.25), we find a linear transformation, expressed by an N2 × N2 matrix V2,
such that

V2

(
∂hmn
∂θk

)
=
(

(λl − λj)S(k)
jl

)
, V2

(
∂hmn
∂λk

)
=
(
δjkδlk

)
. (3.28)

Note that V2 depends on uij and hence depends on θk but not λk. Also V2 is unitary (exercise)
and so det(V2) 6= 0.

Recall the matrix H in (3.7). We have

V2V2H =
(
δjkδlk (λl − λj)S(k)

jl

)
, (3.29)

where then index k runs to the right and the index (jl) runs to the bottom. Note that each
factor (λl − λj) appears in one row on the right-hand side of (3.29), (3.29) implies

det(V2) det(V1) det(H) =
∏

1≤j<l≤N
(λl − λj)2 det(S), (3.30)

where entries of S are given by 0, 1 and S
(k)
jl . Note that S

(k)
jl are expressed in θk, and so is det S.

Therefore
det(H) =

∏
1≤j<l≤N

(λl − λj)2f(θ1, . . . , θN(N−1)), (3.31)

and by (3.5), (3.6) and (3.7), we have

P (λ1, . . . , λN , θ1, . . . , θN(N−1)) = 2−
N
2

(
N

π

)N2

2
N∏
i=1

e−
N
2
λ2i

∏
1≤j<l≤N

(λl − λj)2f(θ1, . . . , θN(N−1)).

(3.32)
After intergration with respect to θ1, . . . , θN(N−1), we derive (3.2), and then (3.1) is equivalent.

3.2 Cumulative probability distribution of the largest eigenvalue in GUE

We have derived the joint probability density function of the eigenvalues in the N ×N GUE in
Theorem 6. The next question is: What is the distribution of the largest eigenvalue, especially
as N →∞?

The semicircle law suggests that as N →∞, the largest eigenvalue is at
√

2. But it is only
a speculation. Actually it is true for all Wigner matrices considered in Section 2. We prove it
for GUE and furthermore derive the limiting distribution of the largest eigenvalue after scaling.

Write

P (λ1, . . . , λN ) =
1

CN

∣∣∣∣∣∣∣∣∣
1 . . . 1
λ1 . . . λN
...

...

λN−1
1 . . . λN−1

N

∣∣∣∣∣∣∣∣∣
2

N∏
i=1

e
N
2
λ2i . (3.33)

It is clear that if pj(x) and qj(x) are polynomials of degree j and the leading coefficients nonzero,
then

P (λ1, . . . , λN ) =
1

C ′N

∣∣∣∣∣∣∣∣∣
p0(λ1) . . . p0(λN )
p1(λ1) . . . p1(λN )

...
...

pN−1(λ1) . . . pN−1(λN−1
N )

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
q0(λ1) . . . q0(λN )
q1(λ1) . . . q1(λN )

...
...

qN−1(λ1) . . . qN−1(λN−1
N )

∣∣∣∣∣∣∣∣∣
N∏
i=1

e
N
2
λ2i .

(3.34)
The following identity was discovered by Andréief in 1886 [4]:
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Theorem 7. Let f1(x), . . . , fn(x) and g1(x), . . . , gn(x) be L2 functions on R, then∫
Rn

det(fi(xj))
n
i,j=1 det(gi(xj))

n
i,j=1dx1 · · · dxn = n! det

(∫
R
fi(x)gj(x)dx

)n
i,j=1

. (3.35)

Proof. By the Leibniz formula for determinants,∫
Rn

det(fi(xj))
n
i,j=1 det(gi(xj))

n
i,j=1dx1 · · · dxn

=
∑
σ∈Sn

(−1)sgn(σ)

∫
Rn

∣∣∣∣∣∣∣
f1(x1) . . . f1(xn)

...
...

fn(x1) . . . fn(xn)

∣∣∣∣∣∣∣
n∏
j=1

gσ(j)(xj)dx1 · · · dxn

=
∑
σ∈Sn

(−1)sgn(σ)

∫
Rn

∣∣∣∣∣∣∣
f1(x1)gσ(1)(x1) . . . f1(xn)gσ(n)(xn)

...
...

fn(x1)gσ(1)(x1) . . . fn(xn)gσ(n)(xn)

∣∣∣∣∣∣∣ dx1 · · · dxn

=
∑
σ∈Sn

(−1)sgn(σ)

∣∣∣∣∣∣∣
∫
R f1(x1)gσ(1)(x1)dx1 . . .

∫
R f1(xn)gσ(n)(xn)dxn

...
...∫

R fn(x1)gσ(1)(x1)dx1 . . .
∫
R fn(xn)gσ(n)(xn)dxn

∣∣∣∣∣∣∣
=
∑
σ∈Sn

(−1)sgn(σ) det

(∫
R
fi(x)gσ(j)(x)dx

)n
i,j=1

=
∑
σ∈Sn

(−1)sgn(σ)(−1)sgn(σ) det

(∫
R
fi(x)gj(x)dx

)n
i,j=1

= n!
∑
σ∈Sn

det

(∫
R
fi(x)gj(x)dx

)n
i,j=1

.

(3.36)

We want to consider the probability P(λmax = max1≤j≤N (λj) < a) for any a ∈ R. It is equal
to

P(λ1 < a, . . . , λN < a)

=
1

C ′N

∫
RN

det(pi−1(xj)e
−N

4
x2j1(−∞,a)(xj))

N
i,j=1 det(qi−1(xj)e

−N
4
x2j1(−∞,a)(xj))

N
i,j=1dx1 · · · dxN

=
N !

C ′N
det

(∫
R
pi−1(x)qj−1(x)e−

N
2
x21(−∞,a)(x)dx

)N
i,j=1

.

(3.37)

To eliminate the annoying constant C ′N , we note that let a = +∞, (3.37) becomes

1 =
N !

C ′N
det

(∫
R
pi−1(x)qj−1(x)e−

N
2
x2dx

)N
i,j=1

(3.38)

and then

P(λmax < a) =
det
(∫

R pi−1(x)qj−1(x)e−
N
2
x21(−∞,a)(x)dx

)N
i,j=1

det
(∫

R pi−1(x)qj−1(x)e−
N
2
x2dx

)N
i,j=1

. (3.39)
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To simplify (3.39), we assume qj(x) = pj(x), and let them be the orthogonal polynomials such
that ∫

R
pi(x)pj(x)e−

N
2
x2dx = δij . (3.40)

Then (3.39) becomes

P(λmax < a) = det

(∫
R
pi−1(x)qj−1(x)e−

N
2
x21(−∞,a)(x)dx

)N
i,j=1

. (3.41)

Below we will see that the orthogonality can bring us more advantages.
Now let A : L2(R) 7→ `2(N) and B : `2(N) 7→ L2(R) be the operators defined by the kernels

A(s, i) = pi−1(s)e−
N
4
s2 , B(j, s) = qj−1(s)e−

N
4
s2 , i, j = 1, . . . , N, (3.42)

such that for any f(s) ∈ L2(R), A(f) ∈ `2(N) is

A(f) =

(∫
R
A(s, 1)f(s)ds, . . . ,

∫
R
A(s,N)f(s)ds

)⊥
(3.43)

and for any k = (k1, . . . , kN )⊥ ∈ `2(N), B(k) ∈ L2(R) is

B(k) =

N∑
j=1

kjB(j, s). (3.44)

Then AB is a linear transformation from `2(N) to itself, represented by the N ×N matrix

AB(i, j) =

∫
R
A(s, i)B(j, s)ds, (3.45)

and BA is a linear transformation from L2(R) to itself, represented by the kernel

BA(s, t) =

N∑
j=1

Bj(s)Aj(t). (3.46)

Similarly, we define A± : L2(R) 7→ `2(N) and B± : `2(N) 7→ L2(R) by

A−(s, i) = A(s, i)1(−∞,a)(s), A+(s, i) = A(s, i)1(a,∞)(s),

B−(j, s) = B(j, s)1(−∞,a)(s), B+(j, s) = B(j, s)1(a,∞)(s).
(3.47)

Then A−B− : `2(N) 7→ `2(N) and B−A− : L2(R) 7→ L2(R) are represented by the matrices

A−B−(i, j) =

∫
R
A(s, i)B(j, s)1(−∞,a)(s)ds (3.48)

and the kernel

B−A−(s, t) = 1(−∞,a)(s)

 N∑
j=1

Bj(s)Aj(t)

1(−∞,a)(t), (3.49)

and A+B+ and B+A+ are represented anlogously.
Noting that

A−B− +A+B+ = AB = I, (3.50)
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the probability P(λmax < a) becomes

P(λmax < a) = det(A−B−) = det(I −A+B+). (3.51)

A heuristic idea to simplify (3.51) is to use the identity det(A−B−) = det(B−A−) and
transform the determiant of a large matrix into the determinant of an integral operator. This
approach does not work, since det(XY ) = det(Y X) holds only if X and Y are square matrices,
which is not true in our case. (A and B can be regarded as N × ∞ and ∞ × N matrices
respectively.) Nevertheless, a similar identity that does not require squareness saves us:

Theorem 8. Let X and Y be m× n and n×m matrices respectively. Then

det(Im×m +XY ) = det(In×n + Y X). (3.52)

Proof. Exercise. Hint: Cauchy-Binet formula.

The theorem above serves as an inspiration for us. The real technical tool is

Theorem 9. Let X be a linear transformation from L2(R) to `2(n) and Y be a linear trans-
formation from `2(n) to L2(R). Then

det(I +XY ) = det(1 + Y X), (3.53)

where on the left-hand side the determinant is the usual one for n × n matrices, and on the
right-hand side the determinant os the Fredholm determinant for trace class operators.

Before giving the proof of the theorem, we need to explain what a Fredholm determinant is.
The abstract definition for general trace class operators is given in the appendix, and a special
definition below suffices for us.

Definition 2. Let K be an integral operator on R either with a piecewise continuous and
rapidly decreasing kernel or of finte rank. Then the Fredholm determinant of 1 +K is

det(1 +K) = 1 +

∞∑
n=1

1

n!

∫
Rn

det(K(xi, xj))
n
i,j=1dx1 · · · dxn. (3.54)

The convergence of the series in (3.54) can be verified directly when K(x, y) is rapidly
decreasing, i.e., as max(|x|, |y|)→∞, |K(x, y)| → 0 faster than any power function. It will be
shown that if K is of rank m < ∞, i.e., K =

∑m
i=1 fi(x)gi(y), then the series terminates after

m terms.

Proof of Theorem 9. Expressing X and Y like we did for A and B in (3.42), we have

det(1 + Y X) = det

(
1 +

n∑
l=1

Y (l, s)X(t, l)

)

= 1 +
∞∑
k=1

1

k!

∫
Rk

det

(
n∑
l=1

Y (l, xi)X(xj , l)

)k
i,j=1

dx1 · · · dxk

= 1 +
∞∑
k=1

1

k!

n∑
l1,...,lk=1

∫
Rk

det(Y (lj , xi)X(xj , lj))
k
i,j=1dx1 · · · dxk

= 1 +

n∑
k=1

1

k!

n∑
l1,...,lk=1

∫
Rk

det(Y (lj , xi)X(xj , lj))
k
i,j=1dx1 · · · dxk

= 1 +

n∑
k=1

1

k!

n∑
l1,...,lk=1

det

(∫
Rk
Y (li, x)X(x, lj)dx

)k
i,j=1

.

(3.55)
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Note that in the last step we use the fact that the series terminates when k > n. The reason
is that if l1, . . . , lk are not distinct, then the integral of det(Y (lj , xi)X(xj , lj))

k
i,j=1 vanishes due

to identical rows.
On the other hand, we have

det(I +XY ) =

det


1 +

∫
RX(s, 1)Y (1, s)ds

∫
RX(s, 1)Y (2, s)ds . . .

∫
RX(s, 1)Y (n, s)ds∫

RX(s, 2)Y (1, s)ds 1 +
∫
RX(s, 2)Y (2, s)ds . . .

∫
RX(s, 2)Y (n, s)ds

...
...

...∫
RX(s, n)Y (1, s)ds

∫
RX(s, n)Y (2, s)ds . . . 1 +

∫
RX(s, n)Y (n, s)ds

 .

(3.56)

To compare this determinant with the Fredholm determinant expressed in (3.55), we use the
following expansion of determinant. Let M = (mij)

n
i,j=1 be an n×n matrix and t be a variable,

then

det(I + tM) =

∣∣∣∣∣∣∣∣∣
1 + tm11 tm12 . . . tm1n

tm21 1 + tm22 . . . tm2n
...

...
...

tmn1 1 + tmn2 . . . 1 + tmnn

∣∣∣∣∣∣∣∣∣ (3.57)

is a degree n polynomial in t. Computing its coefficient of each tk (k = 0, . . . , n), we have

det(I + tM) = 1 +

n∑
k=1

tk
∑

1≤l1<···<lk≤n
det(mli,lj )

k
i,j=1

= 1 +
n∑
k=1

tk
1

k!

n∑
l1,...,lk=1

det(mli,lj )
k
i,j=1.

(3.58)

Let t = 1 and M = XY , we have

det(I +XY ) = 1 +
n∑
k=1

1

k!

n∑
l1,...,lk=1

det

(∫
R
X(x, li)Y (lj , x)dx

)k
i,j=1

. (3.59)

Comparing (3.59) with (3.55), we prove the theorem.

Now applying Theorem 9 to (3.51), we have (see (3.42), (3.47) and (3.49) and note that
pj = qj)

P(λmax < a) = det(1−B+A+) = det

1− 1(a,∞)(s)

 N∑
j=1

pj(s)pj(t)e
−N

4
(s2+t2)

1(a,∞)(t)

 .

(3.60)
To further simplify (3.60), we use a property of orthogonal polynomials.

Theorem 10. Let pn(x) be orthogonal polynomials with respect to a measure µ such that∫
R
pi(x)pj(x)dµ(x) = δij . (3.61)

Denote the constants

an :=

∫
R
xp2

n(x)dµ(x), bn :=

∫
R
xpn(x)pn+1(x)dµ(x). (3.62)
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Then

xpn(x) =

{
bnpn+1(x) + anpn(x) + bn−1pn−1(x) if n ≥ 1,

b0p1(x) + a0p0(x) if n = 0.
(3.63)

Proof. Without loss of generality, we assume n > 0 and

xpn(x) = c0p0(x) + c1p1(x) + · · ·+ cn+1pn+1(x). (3.64)

Then for any j ≤ n+ 1,∫
R
xpn(x)pj(x)dµ(x) =

n+1∑
i=0

ci

∫
R
pi(x)pj(x)dµ(x) = cj . (3.65)

For j < n− 1, we have

cj =

∫
R
pn(x)(xpj(x))dµ(x) = 0, (3.66)

since xpj(x) is a polynomial of degree j + 1 < n, and pn(x) is orthogonal to all polynomials of
degree less than n. Similarly we find cn−1 = bn−1, cn = an and cn+1 = bn.

Then we have the celebrated Christoffel-Darboux formula.

Theorem 11. Let pn(x), an, bn be defined as in Theorem 10. Then

n−1∑
i=0

pi(x)pi(y) = bn−1
pn(x)pn−1(y)− pn−1(x)pn(y)

x− y . (3.67)

Proof. Take the difference between the two formulas

x
n−1∑
i=0

pi(x)pi(y) =

a0p0(x)p0(y) +b0p0(x)p1(y)
+b0p0(x)p1(y) +a1p1(x)p1(y) +b1p1(x)p2(y)

+b0p0(x)p1(y) +a1p1(x)p1(y)
. . .

. . .
. . .

+an−1pn−1(x)pn−1(y)
+bn−1pn(x)pn−1(y) , (3.68)

y
n−1∑
i=0

pi(x)pi(y) =

a0p0(x)p0(y) +b0p0(x)p1(y)
+b0p0(x)p1(y) +a1p1(x)p1(y) +b1p1(x)p2(y)

+b0p0(x)p1(y) +a1p1(x)p1(y)
. . .

. . .
. . .

+an−1pn−1(x)pn−1(y) +bn−1pn(x)pn−1(y) ,

(3.69)

and divide both sides by x− y.
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The orthogonal polynomial associated to GUE turns out to be quite special: They are
Hermite polynomials up to scaling. The standard reference book of Hermite polynomial is [23],
while Wikipedia is also a reliable source. Hermite polynomials (as used by probabilists) are
defined by the formula

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 . (3.70)

Hn(x) is a monic polynomial of degree n, and satisfies the orthogonality∫
R
Hm(x)Hn(x)e−

x2

2 dx =
√

2πn!δmn. (3.71)

We also have (for n ≥ 1)
xHn(x) = Hn+1(x) + nHn−1(x). (3.72)

It is straightforward to verify that if we define

pn(x) :=
N

1
4

(2π)
1
4

(n!)−
1
2Hn(

√
Nx), (3.73)

pn(x) satisfies the orthogonality condition (3.40), and

xpn(x) =

√
n+ 1

N
pn+1(x) +

√
n

N
pn−1(x). (3.74)

The conclusion of this subsection is:

Theorem 12. In the N ×N GUE random matrix, the distribution of the largest eigenvalue is
given by the cumulative distribution function

P(λmax < a) = det(1− 1(a,∞)(x)KN (x, y)1(a,∞)(y)), (3.75)

where

KN (x, y) =
pN (x)e−

N
4
x2pN−1(y)e−

N
4
y2 − pN−1(x)e−

N
4
x2pN (y)e−

N
4
y2

x− y , (3.76)

and pn(x) is expressed in Hermite polynomials by (3.73) and (3.70).

3.3 Limiting distribution of the largest eigenvalue in GUE

In this subsection we do asymptotic analysis, and assume N , the dimension of the GUE, to be
sufficiently large.

Hermite polynomial Hn(x) has a contour integral formula

Hn(x) =
n!

2πi

∮
ext−

t2

2

tn+1
dt, (3.77)

where the contour encloses the origin.

31

http://en.wikipedia.org/wiki/Hermite_polynomials


Proof. Since exp(xt − t2/2) is an analytic function in t, the Cauchy integral formula implies,
with the help of the change of variable u = x− t,

n!

2πi

∮
ext−

t2

2

tn+1
dt =

dn

dtn
ext−

t2

2

∣∣∣∣
t=0

= e
x2

2
dn

dtn
e−

1
2

(t−x)2
∣∣∣∣
t=0

= e
x2

2 (−1)n
dn

dun
e−

u2

2

∣∣∣∣
u=x

= e
x2

2 (−1)n
dn

dxn
e−

x2

2 = Hn(x).

(3.78)

Thus our pN (x) and pN−1(x) have contour integral formulas, with the change of variable
z = N−1/2t,

pN (x)e−
N
4
x2 =

CN
2πi

∮
Γ

eN(xz− z
2

2
−x

2

4
)

zN+1
dz, pN−1(x)e−

N
4
x2 =

CN
2πi

∮
Γ

eN(xz− z
2

2
−x

2

4
)

zN
dz, (3.79)

where Γ is a contour enclosing 0 and

CN =

√
N !

N
N
2
− 1

2 (2π)
1
4

. (3.80)

Note that by Stirling’s formula, as N →∞,

CN =
√
Ne−

N
2 (1 +O(N−1)). (3.81)

Next we apply the steepest-descent method to estimate pN (x)e−Nx
2/2 and pN−1(x)e−Nx

2/2

for x =
√

2 +O(N−2/3). The strategy of the steepest-descent method can be explained briefly
as below: To estimate the contour integral∮

C
enh(z)g(z)dz, (3.82)

where h(z) and g(z) are “usual” analytic functions and n is a large parameter, we take the steps

1. Find the critical points z1, . . . , zm where h′(zi) = 0 for i = 1, . . . ,m.

2. Deform the contour C such that it passes through one or more critical points and <h(z)
attains its global maximum hmax, on those critical points, say z1, . . . , zk on the contour.

3. Estimate ∮
C\Nδ(z1)∪···∪Nδ(zk)

enh(z)g(z)dz (3.83)

where Nδ(zi) is the neighbourhood of zi with radius δ, and show that the integral is of
the order O(exp(nhmax − nε)), where ε depends on δ and h(z).

4. Evaluate for each z1, . . . , zk ∮
C∩Nδ(zi)

enh(z)g(z)dz (3.84)

and find that the integral equals CiN
−αig(zi) exp(nhmax)(1+o(1)) where αi and Ci depend

on the local behavior of h(z) at zi.
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5. Take the sum of the parts of the contour integral evaluated in steps 3 and 4 The integral
over C \ Nδ(z1) ∪ · · · ∪ Nδ(zk) ie negligible since the exponential function part vanishes
faster than the power function parts as N →∞.

In practice, sometimes we modify some steps.
To apply the steepest-descent method to pN (x)e−Nx

2/2 and pN−1(x)e−Nx
2/2 in (3.85), we

write

pN (x)e−
N
4
x2 =

CN
2πi

∮
Γ
eN(xz− z

2

2
−log z−x

2

4
) 1

z
dz, pN−1(x)e−

N
4
x2 =

CN
2πi

∮
Γ
eN(xz− z

2

2
−log z−x

2

4
)dz.

(3.85)
First we evaluate pN (x). We have

h(z) = xz − z2

2
− log z − x2

4
, g(z) = z−1. (3.86)

According to (3.75) and the suggestion of the semicircle law, we need to consider x > a where
a is around 2. We start by the special case x = 2. Hence

h′(z) = 2− z − 1

z
, (3.87)

and h′(z) has a double zero z = 1, such that

h(1) =
1

2
, h′(1) = h′′(1) = 0, h′′′(2) = −2 < 0. (3.88)

To find the correct shape of Γ, we first consider the contour Γpre that differs from Γ only locally
around 1. See Figure 1.

Γpre = Γ1 ∪ Γ2 ∪ Γ3, where


Γ1 is the line segment from i

√
3 to 1,

Γ2 is the line segment from 1 to −i
√

3,

Γ3 is the semicircle with center 0, radius
√

3

from −i
√

3 to i
√

3 counterclockwise.

(3.89)

We show that <h(z) attains its global maximum on Γpre at 1 by explicit computation. For
z ∈ Γ1, we write z = (1− t) + i

√
3t where t ∈ [0, 1]. Then

<h(z) = 2(1− t)− 1

2
(1− 2t− 2t2)− log

√
(1− t)2 + 3t2 − 1 (3.90)

and for t ∈ (0, 1)
d

dt
<h(z) =

8t3 − 8t2

1− 2t+ 4t2
=

8t2(t− 1)

(1− t)2 + 3t2
< 0. (3.91)

Hence <h(z) decreases as z moves from 1 to
√

3i along Γ1. Since Γ2 is symmetric to Γ1 about
the real axis and h(z) is a real analytic function, <h(z) decreases as z moves from 1 to −i

√
3

along Γ2. For z ∈ Γ3, denote z =
√

3(cos θ + i sin θ) where θ ∈ [π/2, 3π/2]. Then for z ∈ Γ3

<h(z) =
1

2
− 3 cos2 θ + 2

√
3 cos θ − log

√
3

=
1

2
+ 1− (1−

√
3 cos θ)2 − log

√
3

≤ 1

2
− log

√
3 < <h(1).

(3.92)
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1

√
3i

−
√
3i

−
√
3

Γ1

Γ3

Γ2

Figure 1: The shape of Γpre. It differs from
Γ only locally around 1.

0
e

2πi
3

e
−2πi

3

Figure 2: The shapes of Γ̃ and Γ̃∞ around
0. For Γ̃∞ the contour extents to infinity,
and for Γ̃ it extends to N1/30e±2πi/3. Γ̃ has
the same shape as Γ∩NδN (1) up to scaling.

Thus Γpre satisfies the requirement of the steepest-descent contour in Step 2. Γ is defined by
deforming Γpre such that the two points 1 + N−1/3e±2πi/3 are joint by a vertical line segment
instead of a polygonal chain through 1. See Figure 2 for this local part of Γ maginified.

By Taylor expansion around 1,

h(z) = h(1) +
1

6
h′′′(1)(z − 1)3 +O((z − 1)4) =

1

2
− (z − 1)3

3
+O((z − 1)4). (3.93)

Consider δN = N−3/10. The two points 1 + δNe
±2πi/3 are on Γ, and

h(1 + δNe
±2πi/3) =

1

2
− 1

3
N−

9
10 +O(N−

6
5 ) (3.94)

and then

<h(1 + δNe
±2πi/3) <

1

2
− εN− 9

10 (3.95)

for an ε > 0. From the construction of Γ, we can verify that

<h(z) <
1

2
− εN− 9

10 (3.96)

for all z ∈ Γ \NδN (1). Hence∣∣∣∣∣ 1

2πi

∮
Γ\NδN (1)

eNh(z)g(z)dz

∣∣∣∣∣
≤
∣∣∣∣∣ 1

2πi

∮
Γ\NδN (1)

eN( 1
2
−εN−

9
10 )|g(z)||dz|

∣∣∣∣∣
= e−εN

− 9
10 e

1
2
N

∣∣∣∣∣ 1

2πi

∮
Γ\NδN (1)

eN( 1
2
−εN−

9
10 )|g(z)||dz|

∣∣∣∣∣ = Ce−εN
− 9

10 e
1
2
N

(3.97)

where C depends on the behavior of g(z) on Γ.
On the other hand, on Γ∩NδN (1), we take the change of variable z = 1 +N−1/3w and have

eNh(z) = eN( 1
2
− 1

3
(z−1)3+O((z−1)4)) = e

N
2 e−

w3

3 eO(N−
1
5 ) = e

N
2 e−

w3

3 (1 +O(N−
1
5 )), (3.98)
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where we use the estimate that for z ∈ NδN (1), (z − 1)4 = O(N−6/5). Thus

1

2πi

∮
Γ∩NδN (1)

eNh(z)g(z)dz = N−
1
3

1

2πi

∮
Γ̃
e
N
2 e−

w3

3 (1 +O(N−
1
5 ))dw

= N−
1
3 e

N
2 (1 +O(N−

1
5 ))

1

2πi

∮
Γ̃∞

e−
w3

3 dw

= N−
1
3 e

N
2 (1 +O(N−

1
5 )) Ai(0).

(3.99)

Here the contours Γ̃ and Γ̃∞ are described in Figure 2, and we use the Airy function to denote
the integral in (3.99). The Airy function is a special function with many applications. See [1]
for its various properties. The general formula of the Airy function is, in its contour integral
formula,

Ai(x) =
1

2πi

∮
Γ̃∞

e−
w3

3
+xwdw. (3.100)

It is easy to see that the integrand in (3.100), although defined on an infinite contour, converges
for all x ∈ C.

Now we consider more generally x = 2 + N−2/3ξ where ξ is in a compact subset of C.
Although we are interested mostly in real value of x, it is harmless and actualy useful to
consider complex x. Then

h(z) = 2z − z2

2
− log z − 1 +N−

2
3 ξz −N− 2

3 ξ − 1

4
N−

4
3 ξ2, (3.101)

and for z ∈ NδN (1), after the change of variable z = 1 +N−1/3w, we have like (3.98)

eNh(z) = e
N
2 e−

w3

3
+ξw(1 +O(N−

1
5 )). (3.102)

Thus like (3.99)

1

2πi

∮
Γ∩NδN (1)

eNh(z)g(z)dz = N−
1
3 e

N
2 (1 +O(N−

1
5 ))

1

2πi

∮
Γ̃∞

e−
w3

3
+ξwg(1)dw

= N−
1
3 g(1)e

N
2 (1 +O(N−

1
5 )) Ai(ξ).

(3.103)

On the other hand, since the ingegrand is only slightly changed, the estimate of the integral
over Γ \NδN (1), which is not as sensitive as the integral near the critical point, barely changes,
and we still have like (3.97)∣∣∣∣∣ 1

2πi

∮
Γ\NδN (1)

eNh(z)g(z)dz

∣∣∣∣∣ < Ce−εN
− 9

10 e
N
2 . (3.104)

The detail is left to the reader.
The asymptotics (3.103) and the estimate (3.104), together with the asymptotics (3.81),

imply that as N →∞, for x = 2 +N−2/3ξ and ξ is in a compact subset of R,

pN (x)e−
N
4
x2 = N

1
6 (1 +O(N−

1
5 ) Ai(ξ). (3.105)

As x→ +∞, the Airy function Ai(x)→ 0 exponentially. Actually

Ai(x) =
e−

2
3
x
3
2

2
√
πx

1
4

, as x→ +∞. (3.106)
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It suggests that the asymptotic formula for pN (x)e−Nx
2/4 can be extrapolated so show that it

vanishes exponentially as x increases. However, we need always to be cautious to do extrapola-
tion. Below we give an expenential decay result, which is not the optimal one, but suffices for
our purpose.

We distinguish h(z) with different parameters x, and write

hξ(z) = h(z)|
x=2+N−

2
3 ξ

= 2z − z2

2
− log z +N−

2
3 ξz − 1−N− 2

3 ξ − 1

4
N−

4
3 ξ2. (3.107)

Then we have for all ξ ∈ R+ and all z ∈ Γ

<(hξ(z)− h0(z)) = N−
2
3 ξ

(
<z − 1− 1

4
N−

2
3 ξ

)
< −N−1 ξ

2
, (3.108)

where we use that <z ≤ 1−N−1/3/2 for all z ∈ Γ. Thus

|eNhξ(z)| < e−
ξ
2 |eNh0(z)| (3.109)

for all z ∈ Γ.
Recall the computation of pN (x)e−Nx

2/4 for x = 2, especially (3.97) and (3.99). We see that
we can use almost the same computation to derive that∫

Γ
|eNh0(z)||g(z)||dz| < CN−

1
3 e

N
2 , (3.110)

where C = O(1) is a positive constant. Hence (3.85) and (3.109) imply

pN (x)e−
N
4
x2
∣∣∣
x=2+N−

2
3 ξ
<

1

2π

∫
Γ
|eNhξ(z)||g(z)||dz| = CN

2π
e−

ξ
2CN−

1
3 e

N
2 = e−

ξ
2
C

2π
N−

1
6 (1+O(N−1)),

(3.111)
where the O(N−1) term comes from the Stirling formula of CN and is independent of ξ. We

conclude that as x = 2 + N−
2
3
ξ and ξ > 0, pN (x)e−Nx

2/4 decays exponentially with respect to
ξ. A slight stretch of the computation shows that the exponential decay holds if ξ is complex,
with its imaginary part bounded.

Now we have asymptotics of pN (x)e−Nx
2/4. The method can be applied to pN−1(x)e−Nx

2/4

verbatim, since the only difference between their contour integral formulas is from the g(z)
factor, but all our derivation does not use any specific property of g(z). Similar to (3.105), we
have that for x = 2 +N−2/3ξ and ξ is in a compact subset of C

pN−1(x)e−
N
4
x2 = N

1
6 (1 +O(N−

1
5 ) Ai(ξ), (3.112)

and we also have the exponential decay property as ξ → +∞. However, if we substitute formulas
(3.105) and (3.112) into (3.76), we get no meaningful result.

The situation can be saved in a simple way. Write

KN (x, y) =
(pN (x)− pN−1(x))e−

N
4
x2pN−1(y)e−

N
4
y2 − pN−1(x)e−

N
4
x2(pN (y)− pN−1(y))e−

N
4
y2

x− y ,

(3.113)
and express

(pN (x)− pN−1(x))e−
N
4
x2 =

CN
2πi

∮
Γ
eNh(z)g(z)dz, (3.114)

where

h(z) = xz − z2

2
− log z − x2

4
, g(z) = z−1 − 1. (3.115)
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The estimation of the integral over Γ \ NδN (1) can be done similarly to (3.97), and the same
result can be obtained. But since the saddle point 1 is a zero of g(z), the integral over Γ∩NδN (1)

need to be modified a little. With the change of variable z = 1 + N−1/3w, we have similar to
(3.99) and (3.103)

1

2πi

∮
Γ∩NδN (1)

eNh(z)g(z)dz = N−
1
3

1

2πi

∮
Γ̃
e
N
2 e−

w3

3
+ξw(−N− 1

3w)(1 +O(N−
1
5 ))dw

= −N− 2
3 e

N
2 (1 +O(N−

1
5 ))

1

2πi

∮
Γ̃∞

e−
w3

3
+ξwwdw

= −N− 2
3 e

N
2 (1 +O(N−

1
5 ))

d

dξ

(
1

2πi

∮
Γ̃∞

e−
w3

3
+ξwdw

)
= −N− 2

3 e
N
2 (1 +O(N−

1
5 )) Ai′(ξ),

(3.116)

and then
(pN (x)− pN−1(x))e−

N
4
x2 = −N− 1

6 (1 +O(N−
1
5 )) Ai′(ξ). (3.117)

Furthermore we know that it decays exponentially with respect to ξ as ξ → +∞.
We define the kernel function

KAiry(ξ, η) =


Ai(ξ) Ai′(η)−Ai′(ξ) Ai(η)

ξ − η if ξ 6= η,

Ai′(η)2 −Ai′′(η) Ai(η) if ξ = η.
(3.118)

Note that K(ξ, η) is analytic in both ξ and η. The asymptotics (3.105), (3.112), (3.117) and
the identity (3.113) immdiately give as that as x = 2 +N−2/3ξ and y = 2 +N−2/3η, where ξ, η
are in a compact subset of R and ξ 6= η,

lim
N→∞

N−
2
3KN (x, y) = KAiry(ξ, η). (3.119)

By a little complex analysis, we can generalise it to the ξ = η case. For any η, we consider

ξθ = η + eiθ, and xθ = 2 + ξθ. (3.120)

Then the Cauchy integral formula implies that

lim
N→∞

N−
2
3KN (y, y) = lim

N→∞

∫ 2π

0
N−

2
3KN (xθ, y)dθ =

1

2π

∫ 2π

0
KAiry(ξθ, η)dθ = KAiry(η, η).

(3.121)
Now we have the pointwise convergence that N−2/3KN (x, y) → KAiry(ξ, η). We also know

that as ξ, η → ±∞, |N−2/3KN (x, y)| vanishes uniformly. Then by argument in functional
analysis, we have that if a = 2 +N−2/3T , then

lim
N→∞

det(1−1(a,∞)(x)KN (x, y)1(a,∞)(y)) = FTW(T ) := det(1−1(T,∞)(ξ)KAiry(ξ, η)1(T,∞)(η)).

(3.122)
Here the FTW is the cumulative distribution function of the celebrated Tracy-Widom distri-
bution. Finally we have the result for the limiting distribution of the largest eigenvalue in
GUE:

Theorem 13. As the dimension N →∞, the largest eigenvalue λmax in GUE is almost surely
at 2, and its fluctuation is of order N−2/3, given by the Tracy-Widom distribution that

lim
N→∞

P(λmax < 2 +N−2/3T ) = FTW(T ). (3.123)

We are not going to give the proof of this theorem, unless we have enough time left in the
end of this semester.
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Exercise

1. Complete the proof of Lemma 6 for the k = 3, . . . , N case. (Hint: Cauchy-Binet formula
is an important linear algebraic identity that you can learn from http://en.wikipedia.

org/wiki/CauchyBinet_formula, for example.

2. The Laguerre polynomials (see [23] and http://en.wikipedia.org/wiki/Laguerre_polynomials)

L(α)
n (x) =

1

2πi

∮
e
xt
1−t

(1− t)α+1tn+1
dt (3.124)

where α > −1 is a parameter, and the contour encloses 0 but not 1.

Find an asymptotic formula involving Airy function of e−x/2L
(0)
n (x) for x = 4n + 2 +

2(2n/3)1/3t where n→∞ and t is in a compact subset of R.

4 Limiting distribution of the largest eigenvalue in Gaussian β
ensemble

We have derived the Tracy-Widom distribution for the limiting distribution of the largest eigen-
value in the GUE random matrices. For Gaussian orthogonal ensemble (GOE) and Gaussian
symplectic ensemble (GSE), similar results hold, but the derivation becomes more sophisticated.
Although the limiting distribution of the largest eigenvalues is a problem in probability, the so-
lution for GUE as shown in Section 3 and these for GOE and GSE rely on the exploit of the
symmetry of the models and analytical techniques not commonly seen in probability literature.
For people inclining to study probability, we present a unified solution for the limiting distribu-
tion of the largest eigenvalue in GUE, GOE and GSE. The drawback of this approach is that
the result is stated in a rather abstract way.

This section follows closely to [3, Section 4.5]. Another good reference is the Ph.D. thesis
of Alex Bloemendal [8]. The interested readers are refered to the original paper by Ramı́rez,
Rider and Virág [20] that contains more results about the β ensembles.

Remark 2. In this section, the terms “Gaussian unitary ensemble” and “Gaussian orthogonal
ensemble” are defined slightly different from those in Section 2. For GUE, we define it as a
random Hermitian matrix such that the diagonal entries are real and in N(0, 1), upper-triangular
entries are complex with both real and imaginary parts in independent N(0, 1

2) distributions,
and they are all independent. So it is the GUE in Section 2 scaled up by N . The GOE (as well
as GSE) is redefined by the same scaling.

4.1 Tridiagonal matrix models and the Gaussian β ensemble

We are going to define a tridiagonal random matrix model that has a parameter β > 0, such
that the distribution of the eigenvalues in the tridiagonal random matrix model with β = 1, 2, 4
is identical to that of the eigenvalues in GOE, GUE and GSE respectively. Thus we call this
tridiagonal random matrix model Gaussian β ensemble (GβE). The limiting distributions of
the largest eigenvalue in GOE, GUE and GSE become those of the largest eigenvalue in the
GβE for the corresponding β.

First we recall the χt distribution that is a positive continuous probability distribution given
by the density function

ft(x) =
21− t

2xt−1e−
x2

2

Γ( t2)
1(0,∞)(x), (4.1)
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where the real parameter t > 0. When t is an integer, χt distribution is related to the normal
distribution in the way that if X1, . . . , Xt are i.i.d. random variables in distribution N(0, 1),
then (

t∑
i=1

X2
i

) 1
2

∼ χt(x). (4.2)

If t is an integer, then it is a direct consequence of (4.2) and the central limit theorem that as
t→∞

2(χt(x)−
√
t)

d→ N(0, 1). (4.3)

A straightforward computation confirms that (4.3) holds for real t.
We define the Gaussian β ensemble as follows. Let ξ1, ξ2, . . . , Y1, Y2, . . . be independent

random variables such that ξi ∼ N(0, 1) and Yi ∼ ξiβ. For any dimension N , the N dimensional
symmetric matrix HN in GβE is given by

hij = 0 if |i− j| > 1, (4.4)

hii =
√

2/βξi, (4.5)

hi,i+1 = hi+1,i = YN−i/
√
β. (4.6)

Then we have

Theorem 14. For any β and N , let λ1, . . . , λN be the eigenvalues of HN . Then the joint
probability density function of λ1, . . . , λN is

Pβ(λ1, . . . , λN ) =
1

CN,β
∆(λ)βe−

β
4

∑N
i=1 λ

2
i . (4.7)

When β = 2, Theorem 14 shows that the GβE has the same spectral property as GUE. In
Exercise 1 we will see that the GβE with β = 1 has the same spectral property as GOE. The
relation between GβE with β = 4 and GSE is analogous, but the proof is a little too complicated
to be an exercise.

Proof of Theorem 14 for β = 2. First we show the eqivalence between the distribution of eigen-
values of GβE with β = 2 and GUE, and prove the theorem for β = 2. For any N , let the
N ×N random Hermitian matrix XN = (xij)

N
i,j=1 be a GUE random matrix, such that

XN =


N(0, 1) N(0, 1

2) + iN(0, 1
2) . . . N(0, 1

2) + iN(0, 1
2)

N(0, 1
2) + iN(0, 1

2) N(0, 1) . . . N(0, 1
2) + iN(0, 1

2)
...

...
...

N(0, 1
2) + iN(0, 1

2) N(0, 1
2) + iN(0, 1

2) . . . N(0, 1)

 (4.8)

where all the upper diagonal entries are independent. Since any unitary similarity trans-
formation does not change the spectrum of a matrix, we define a random unitary operator
U(1) ∈ U(N − 1) that depends on XN such that

1. Let x1 = (x21, x31, . . . , xN1)T . Then

U(1)x1 = ‖x1‖e1 = (‖x1‖, 0, . . . , 0)T . (4.9)

2. U(1)x = x if x is orthogonal to x1 and e1.
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This unitary transformation is the Householder transformation [16, Section 2.2.4]

U(1) = I − 2
uu∗

‖u‖2 , where u = x1 − ‖x1‖e1. (4.10)

Then we define the unitary matrix Ũ(1) ∈ U(N) by

Ũ(1) = I1×1 ⊕ U(1), or equivalently Ũ(1) =

(
1 0
0 U(1)

)
. (4.11)

Then

Ũ(1)XN Ũ(1)−1 =


x11 ‖x1‖ 0 . . . 0
‖x1‖

0
... XN−1

0

 , (4.12)

where XN−1 is a random matrix defined as

XN−1 = U(1)(XN )11U(1)−1, (4.13)

where (XN )11 is the (N − 1) dimensional matrix obtained by removing the first row and first
column of XN .

Note that x11 ∼ N(0, 1) and

‖x1‖ =

(
N∑
i=2

(<xi2)2 + (=xi2)2

) 1
2

∼ 1√
2
χ2(N−1) (4.14)

since both <xij and =xij are in N(0, 1
2) distribution for i 6= j. Thus Ũ(1)XN Ũ(1)−1 agrees with

the tridiagonal matrix HN in the first column and the first row.
(XN )11 is a random Hermitian matrix different from the (N − 1) dimensional GUE only

by scaling. Thus by Exercise 1 in Section 1, its distribution is invariant under unitary simi-
larity transformation. Note that the result in the exercise is valid when the unitary similarity
transformation is fixed. Here U(1) is random, but by its construction, U(1) depends only on
entries of XN that are not in (XN )11, so U(1) is independent of (XN )11, and then the result
of the exercise still holds. Also we have that XN−1 is independent of U(1), and if we write
XN−1 = (x̃ij)

N−1
i,j=1, all x̃ij are independent of x11 and ‖x1‖.

Let U(2) ∈ U(N − 2) be a Householder transformation sending x2 = (x̃21, x̃31, . . . , x̃N−1,1)T

into ‖x2‖e1 and keeping vectors orthogonal to x2 and e1 invariant. Then denoting Ũ(2) =
I2×2 ⊕ U(2), we have

Ũ(2)Ũ(1)XN Ũ(1)−1Ũ(2)−1 =



x11 ‖x1‖ 0 0 . . . 0
‖x1‖ x̃11 ‖x2‖ 0 0

0 ‖x2‖
0 0
...

... XN−2

0 0


, (4.15)

which agrees with HN in the first two columns and the first two rows, where XN−2 is defined
analogously to XN−1. Repeat the construction N − 1 times, we have finally that Ũ(N −
1) · · · Ũ(2)Ũ(1)XN Ũ(1)−1Ũ(2)−1 · · · Ũ(N − 1)−1 is the tridiagonal random matrix HN that has
the same spectral property as XN .
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Now we prove the general case. Denote the N ×N tridiagonal matrix

JN =


a0 b1
b1 a1 b2

b2
. . .

. . .
. . . aN−2 bN−1

bN−1 aN−1

 . (4.16)

Without loss of generality, we assume that b1, . . . , bN−1 are all strictly positive. Suppose λ1 ≥
· · · ≥ λN are eigenvalues of JN and v1, . . . ,vN are corresponding eigenvectors. Note that if λi’s
are distinct, then vi’s are fixed up to a scalar multiple.

Lemma 7. The eigenvalues λ1, . . . , λN are distinct. Furthermore, writing vi = (vi(1), . . . , vi(N))T ,
we have vi(1) 6= 0.

Proof. The identity JNvi = λivi is expressed as
a0 − λi b1
b1 a1 − λi b2

b2
. . .

. . .
. . . aN−2 − λi bN−1

bN−1 aN−1 − λi




vi(1)
vi(2)

...
vi(N − 1)
vi(N)

 = 0, (4.17)

or componentwise

(a0 − λi)vi(1) + b1vi(2) = 0,

b1vi(1) + (a1 − λi)vi(2) + b2vi(3) = 0,

...

bN−2vi(N − 2) + (aN−2 − λi)vi(N − 1) + bN−1vi(N) = 0,

bN−1vi(N − 1) + (aN−1 − λi)vi(N) = 0.

(4.18)

If vi(1) = 0, then iteratively we find all components to be zero, and then the vector is a zero
vector. For any nonzero vi(1), iteratively we can uniquely solve vi(2), . . . , vi(N) by the first,
. . . , (N − 1)-th equations in (4.18). Then the eigenspace associated to λi is 1-dimensional, and
λ1, . . . , λN are distinct.

Converse to Lemma 7, we have

Lemma 8. Given a diagonal matrix

D = diag(λ1, . . . λN ) where λ1 > · · · > λN . (4.19)

and a unit row vector u = (u1, . . . , uN ) such that all its components are strictly positive and∑N
i=1 u

2
i = 1, there exists a tridiagonal matrix JN expressed as in (4.16) such that b1, . . . , bN−1

are strictly positive, and
JN = ODO−1 (4.20)

where O = (oij)
N
i,j=1 ∈ O(N) with the first row o1j = uj.
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Proof. We relate tridiagonal matrices with orthogonal polynomials. Given a measure µ on R,
let p0(x), p1(x), . . . be orthogonal polynomials of degree 0, 1, . . . such that∫

pi(x)pj(x)dµ(x) = δij . (4.21)

Then the three term-recurrence formula is (assuming a−1 = 0)

xpn(x) = bnpn+1(x) + anpn(x) + bn−1pn−1(x), (4.22)

or equivalently (note that the ai, bi in (4.22) and (4.23) are not consistent with those in (4.16))

x


p0(x)
p1(x)

...

...

 =


a0 b1
b1 a1 b2

b2
. . .

. . .
. . .



p0(x)
p1(x)

...

...

 . (4.23)

Truncate the N ×N upper left block of the operator on the right-hand side of (4.23), we get a
tridiagonal matrix. Note that bi > 0 if we choose all the orthogonal polynomials pi(x) to have
positive leading coefficient.

Suppose µ is a measure on R supported on N points λ1, . . . , λN , such that

µ(x) =

N∑
i=1

ciδλi(x), (4.24)

where we assume ci 6= 0. Then the space L2(µ) is an N dimensional space. Obviously L2(µ)
is spanned by {1λ1(x), . . . ,1λN (x)}, and it is also spanned by {1, x, . . . , xN−1} by the La-
grange interpolation formula. Given that the orthogonal polynomials p0(x), . . . , pN−1(x) exist,
(the existence of the orthogonal polynomials can be proved and is left as an exercise), then
{p0(x), . . . , pN−1(x)} is also a basis.

Furthermore, the basis

B1 = { 1

ci
1λi(x)

a.e. in µ
=

1

ci

∏
k=1,...,N,k 6=i

x− λk
λi − λk

| i = 1, . . . , N} (4.25)

is an orthonormal basis of L2(µ) for which the multiplication operator x has the matrix repre-
sentation D in (4.19), while the basis

B2 = {pi−1(x) | i = 1, . . . , N} (4.26)

is another orthogonal basis of L2(µ) for which the multiplication operator x has the matrix
representation JN in (4.16).

The identity JN = ODO−1 means that p0(x)
...

pN−1(x)

 = O

c
−1
1 1λ1(x)

...

c−1
N 1λN (x)

 , (4.27)

and especially (
N∑
i=1

c2
i

)− 1
2

= p0(x)
a.e. in µ

= o11
1

c1
1λ1(x) + · · ·+ o1N

1

cN
1λN (x). (4.28)
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This identity is satisfied when ci = o1i. Thus we conclude that the matrix constructed from
the three-term recurrence relation for the orthogonal polynomials pi(x) defined by (4.21) with
µ given by

µ(x) =
N∑
i=1

uiδλi(x), (4.29)

and the property that bi > 0 are satisfied if we require all pi(x) to have positive leading
coefficients.

Lemmas 7 and 8 define a bijection between the space of tridiagonal matrices HN with strictly
positive bi as denoted in (4.16) and the space of (D,u) where the diagonal matrix D and the
unit vector u satisfy the conditions in Lemma 8. We denote this map from HN to (D,u) as

F : ∆N × SN−1
+ → RN × (0,∞)N−1, (4.30)

where

∆N = {(x1, . . . , xN ) ∈ RN | x1 > · · · > xN}, (4.31)

SN+1
+ = {(x1, . . . , xN−1) ∈ (0,∞)N−1 | 0 <

N−1∑
i=1

x2
i < 1}, (4.32)

and
F (λ1, . . . , λN ;u1, . . . , uN−1) = (a0, . . . , aN−1; b1, . . . , bN−1). (4.33)

Obviously F is differentiable, and we have

Lemma 9. The Jacobian of F is

∂(a0, . . . , aN−1; b1, . . . , bN−1)

∂(λ1, . . . , λN ;u1, . . . , uN−1)
= C

∆(λ)∏N−1
i=1 bN−j−1

j

. (4.34)

The proof of Lemma 9 relies on the following technical result

Lemma 10. Any element in the set of N ×N Hermitian matrices, except for those in a subset
of Lebesgue measure 0 (or equivalently, probability 0 in GUE), can be written uniquely as

X = O−1DO, (4.35)

where D = diag(λ1, . . . , λN ) and λ1 < λ2 < · · · < λN , and O = (oij)
N
i,j=1 ∈ O(N) such that

o11, o21, . . . , oN1 are all strictly positive.

We are not going to prove this lemma, since its proof is parallel to those of Lemmas 3, 4
and 5 in Section 3.1.

Proof of Lemma 9. By Exercise 1, we have that given an N ×N random real symmetric matrix
XN in GOE (as defined in this section), by the tridiagonalisation procedure we get a random
tridiagonal matrix whose distribution is exactly the same as HN with β = 1. The tridiagonal
procedure is (analogous to the proof of Theorem 14 for β = 2)

XN → Õ(N − 1) · · · Õ(2)Õ(1)XN Õ(1)−1Õ(2)−1 · · · Õ(N − 1)−1, (4.36)

where

Õ(k) =

(
Ik 0
0 O(k)

)
and O(k) ∈ O(N − k). (4.37)
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Suppose XN has the unique decomposition (4.35), then the tridiagonalisation procedure be-
comes

O−1DO → Õ−1DÕ, where Õ = (õij)
N
i,j=1 = OÕ(1)−1 · · · Õ(N − 1)−1. (4.38)

We observe that the first column of Õ is identical to that of O. Therefore by Lemma 8, we
conclude that the tridiagonalisation procedure transforms real symmetric matrices XN (except
for those in a measure 0 subset) whose unique decomposition (4.35) has eigenvalues λ1, . . . , λN
and first column of O as oi1 = u1 (i = 1, . . . , N) to the tridiagonal matrix JN denoted in (4.16)
such that

a0, . . . , aN−1; b1, . . . , bN−1 = F (λ1, . . . , λN ;u1, . . . , uN−1). (4.39)

Suppose we have the marginal distribution of λ1, . . . , λN ;u1, . . . , uN−1, then by the bijectiv-
ity results in Lemmas 7 and 8, the distribution of a0, . . . , aN−1; b1, . . . , bN−1 is

P (a0, . . . , aN−1; b1, . . . , bN−1) = P (λ1, . . . , λN ;u1, . . . , uN−1)
∂(a0, . . . , aN−1; b1, . . . , bN−1)

∂(λ1, . . . , λN ;u1, . . . , uN−1)
.

(4.40)
We take a special choice of XN such that XN is in the GOE distribution. Then we have the

marginal distribution

P (λ1, . . . , λN ;u1, . . . , uN−1) =
1

C
∆(λ)

N∏
i=1

e
1
4
jjλ2i , (4.41)

where C does not depend on λi or ui. (The proof is similar to the arguments in Section 3.1,
and we are not going to give any detail. On the other hand, we have by Exercise 1 that

P (a0, . . . , aN−1; b1, . . . , bN−1) =
1

C

N−1∏
i=0

e−
1
4
a2i

N−1∏
j=1

e−
1
2
b2j bN−j−1

j . (4.42)

Noting that
N−1∏
i=0

e−
1
4
a2i

N−1∏
j=1

e−
1
2
b2j = e−

1
4

Tr(J2
N ) =

N∏
i=1

e−
1
4
λ2i , (4.43)

we derive (4.34) from (4.40), (4.41) and (4.42).

For the proof of Theorem 14, we need another technical result

Lemma 11. With notations the same as in Lemma 9, we have

N−1∏
j=1

bN−jj = ∆(λ)
N∏
i=1

ui. (4.44)

Proof. Let e1 = (1, 0, 0, . . . , 0)T . We have

JNe1 = (a0, b1, 0, . . . , 0), (4.45)

J2
Ne1 = (a2

0 + b1b0, a0b1 + b1a1, b1b2, . . . , 0), (4.46)

...
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Then

det(e1, JNe1, J
2
Ne1, . . . , J

N−1
N e1) =


1 ∗ ∗ . . . ∗
0 b1 ∗ . . . ∗
0 0 b1b2 ∗
...

...
...

. . .
...

0 0 0 . . . b1b2 · · · bN−1

 =
N−1∏
j=1

bN−jj . (4.47)

On the other hand, using the decomposition JN = O−1DO where D = diag(λ1, . . . , λN ) and λi
are increasing, and the first column of O is given by u = (u1, . . . , uN )T , we have

det(e1, JNe1, J
2
Ne1, . . . , J

N−1
N e1) = det(O−1D0Oe1, O

−1D1Oe1, . . . , O
−1DN−1Oe1)

= det(O−1(D0Oe1, D
1Oe1, . . . , D

N−1Oe1))

= det(O−1) det(D0u, D1u, . . . , DN−1u))

= ±

∣∣∣∣∣∣∣∣∣
u1 λ1u1 . . . λN−1

1 u1

u1 λ2u1 . . . λN−1
2 u1

...
... . . .

...

u1 λNu1 . . . λN−1
N u1

∣∣∣∣∣∣∣∣∣
= ±∆(λ)

N∏
i=1

ui.

(4.48)

The sign ambiguity can be solved since ∆(λ) is positive. Then we prove (4.44).

Proof of Theorem 14 for β > 0. The results in Lemmas 9 and 11 together imply that

∂(a0, . . . , aN−1; b1, . . . , bN−1)

∂(λ1, . . . , λN ;u1, . . . , uN−1)
=

∏N−1
j=1 bj∏N
i=1 ui

. (4.49)

For the N dimensional random tridiagonal matrix HN defined in the beginning of this subsec-
tion, in probability 1 the entries of hi,i+1 = hi+1,i are strictly positive, so we identify it with
JN in (4.16) and use a0, . . . , aN−1; b1, . . . , bN−1 to denote its nontrivial entries. From the distri-
bution of a0, . . . , aN−1; b1, . . . , bN−1 and the Jacobian (4.34), we compute the joint probability
density of λ1, . . . , λN ;u1, . . . , uN−1 as

P (λ1, . . . , λN ;u1, . . . , uN−1) = P (a0, . . . , aN−1; b1, . . . , bN−1)
∂(a0, . . . , aN−1; b1, . . . , bN−1)

∂(λ1, . . . , λN ;u1, . . . , uN−1)

= C
N−1∏
i=0

e−
β
4
a2i

N−1∏
j=1

b
β(N−j)−1
j e−

β
2
b2j

∏N−1
j=1 bj∏N
i=1 ui

= Ce−
β
4

TrH2
N

∏N−1
j=1 b

β(N−j)
j∏N

i=1 ui

= C∆(λ)β
N∏
i=1

e−
β
4
λ2i

(
N∏
i=1

ui

)β−1

.

(4.50)

Integrating out u1, . . . , uN−1, we obtain the distribution of λ1, . . . , λN as in Theorem 14.
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4.2 Limiting distribution of the largest eigenvalue in Gaussian β ensemble

Before the statement of the result on the limiting distribution of the largest eigenvalue of HN ,
we give a heuristic argument to motivate the theorem and its proof. From our result for the
largest eigenvalue in GUE that is equivalent to the special case of HN with β = 2, we conjecture
that the largest eigenvalue is around 2

√
N with fluctuation O(N−1/6). Write

H̃N = N
1
6 (HN − 2

√
NI)

=


−2N

2
3 +

√
2
βN

1
6 ξ1

1√
β
N

1
6YN−1

1√
β
N

1
6YN−1 −2N

2
3 +

√
2
βN

1
6 ξ2

1√
β
N

1
6YN−2

1√
β
N

1
6YN−2 −2N

2
3 +

√
2
βN

1
6 ξ3

. . .

. . .
. . .



=


−2N

2
3 +

√
2
βN

1
6 ξ1 N

1
6

√
N − 1 + 1√

2β
N

1
6 ξ′1

N
1
6

√
N − 1 + 1√

2β
N

1
6 ξ′1 −2N

2
3 +

√
2
βN

1
6 ξ2 N

1
6

√
N − 2 + 1√

2β
N

1
6 ξ′2

N
1
6

√
N − 2 + 1√

2β
N

1
6 ξ′2 −2N

2
3 +

√
2
βN

1
6 ξ3

. . .

. . .
. . .

 ,

(4.51)

where ξ′i =
√

2(YN−i −
√

(N − i)β), and from (4.3) we have that the distribution of ξ′i is close
to N(0, 1) if i is not close to N .

The matrix H̃N acts on N -dimensional vector (f1, f2, . . . , fN )T . Define a function f(x) on
[0, N2/3] such that

f(x) = fi for x ∈ [(i− 1)N−
1
3 , iN−

1
3 ). (4.52)

The function f(x) is not continuous, let alone differentiable. But we assume that f(x) is a
“discretised” continuous, or even smooth, function with step length N−1/3. One way to think
of it is to let f̃(x) be a smooth function, and f(x) = f̃((i − 1)N−1/3) where i is the smallest
possible number such that iN−1/3 ≥ x. Then heuristically (as commonly used in numerical
analysis of smooth functions)

fi+1 − fi ≈ N−
1
3 f ′(iN−

1
3 ), (4.53)

fi+1 − 2fi + fi−1 ≈ N−
1
3 f ′(iN−

1
3 )−N− 1

3 f ′((i− 1)N−
1
3 ) ≈ N− 2

3 f ′′(iN−
1
3 ). (4.54)
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For i = xN1/3 where x ∈ (0,∞), the vector identity

H̃N


...
fi
...

 =



...

(N
1
6

√
N − i+ 1 +

N
1
6√

2β
ξ′i−1)fi−1 + (−2N

2
3 +

√
2

β
N

1
6 ξi)fi

+(N
1
6

√
N − i+

N
1
6√

2β
ξ′i)fi+1

...



=



...

N
2
3 (fi−1 + fi + fi+1) + (N

1
6

√
N − i+ 1−N 2

3 )fi−1 + (N
1
6

√
N − i−N 2

3 )fi+1

+N
1
6

(
1√
2β
ξ′i−1fi−1 +

√
2

β
ξifi +

1√
2β
ξ′ifi+1

)
...


(4.55)

can be approximated, by the identities

N
1
6

√
N − i+ 1−N 2

3 ≈ −x
2
, N

1
6

√
N − i−N 2

3 ≈ −x
2

(4.56)

and fi−1 ≈ fi ≈ fi+1, as

H̃(f)(x) ≈ f ′′(x)− xf(x) +
2√
β
N

1
6

(
1

2
√

2
ξ′i−1 +

1√
2
ξi +

1

2
√

2
ξ′i+1

)
f(x). (4.57)

Note that as N →∞,
1

2
√

2
ξ′i−1 +

1√
2
ξi +

1

2
√

2
ξ′i+1

d→ N(0, 1). (4.58)

We relate this factor in normal distribution to Brownian motion Bx. It is well known that Bx
is not differentiable. But if we consider the discretised derivative of Bx with step length N−1/3,
we have

B
x+N−

1
3
−Bx

N−
1
3

∼ N 1
6 N(0, 1). (4.59)

Thus we can write (4.57) as
HN (f)(x) ≈ Hβ(f)(x), (4.60)

where the stochastic differential operator

Hβ =
d2

dx2
− x+B′x. (4.61)

Remark 3. When we approximate N1/6( 1
2
√

2
ξ′i−1 + 1√

2
ξi+

1
2
√

2
ξ′i+1) by B′x, we violate the martin-

gale property of Bx, that is, B′x and B′
x+N−1/3 should be independent. To solve this discrepency,

we aproximate N1/6ξi by Bx(1)′ and approximate N1/6ξi by Bx(2)′ where Bx(1) and Bx(2) are
independent Brownian motions. Then N1/6( 1

2
√

2
ξ′i−1 + 1√

2
ξi + 1

2
√

2
ξ′i+1) is approximated by

1
2
√

2
Bx−N−1/3(2)′+ 1√

2
Bx(1)′+ 1

2
√

2
Bx(2)′, and this is in some sense close to a Brownian motion.

The next question is, how to make sense of the stochastic differential operator (that is
sometimes called Stochastic Airy operator). The B′x term does not make sense, but it makes
sense in distribution: If h(x) is a function such that it has compact support and h′(x) exists
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and is continuous, then for any continuous but not necessarily differentiable function f , we can
talk about its derivative in the sense that∫

f ′(x)h(x)dx = −
∫
f(x)h′(x)dx. (4.62)

We use this idea, together with that the path of Bx is continuous, to rigorously define Hβ.
For any f, g ∈ C∞0 (0,∞), i.e., smooth functions of compact support in (0,∞), we define the

inner product

〈f, g〉∗ =

∫ ∞
0

f ′(x)g′(x)dx+

∫ ∞
0

(1 + x)f(x)g(x)dx, (4.63)

and then define L∗ as the Hilbert space that is the completion of C∞0 (0,∞) with respect to
the inner product 〈·, ·〉∗, and denote ‖f‖∗ = 〈f, f〉∗ for the norm of f ∈ L∗. Readers familiar
with Sobolev spaces can see immediately the similarity between our L∗ and H1

0 (0,∞), which is
defined as the Hilbert space obtained as the completion of smooth functions of compact support
in (0,∞) with respect to the inner product

〈f, g〉H1(0,∞) =

∫ ∞
0

f ′(x)g′(x)dx+

∫ ∞
0

f(x)g(x)dx. (4.64)

The norm ‖f‖H1(0,∞) is also defined similar to ‖f‖∗. Below we give some basic properties of
the space L∗.

Lemma 12. The point set of L∗ can be realised as a subset of Hölder 1
2 -continuous functions

on (0,∞). Then for any f ∈ L∗ ∈ C0, 1
2 (0,∞), we have f(0) := limx→0∗ f(x) = 0 and for all

x > 1
(x+ 1)

1
4 |f(x)| ≤

√
2‖f‖∗. (4.65)

Proof. Comparing 〈·, ·〉∗ with 〈·, ·〉H1(0,∞), we see that any f ∈ L∗ satisfies ‖f‖H1(0,∞) ≤ ‖f‖∗
and then L∗ can be embedded into H1

0 (0,∞) naturally. It is a standard result that H1
0 (0,∞) can

be embedded into C0, 1
2 (0,∞) [2, Theorem 4.12, Part II]. Hence we have the embedding result

from L∗ to the space of Hölder 1
2 -continuous functions. Furthermore, the Sobolev embedding

theorem also imply that on any finite closed interval I = [a, b] ∈ [0,∞), there is a constant C
depending on b− a only such that

‖f‖
C0, 12 (I)

:= max
x∈I

(|f(x)|) + max
x1,x2∈I

f(x1)− f(x2)√
|x1 − x2|

< C

(∫ b

a
f(x)2 + f ′(x)2dx

) 1
2

≤ C‖f‖H1
0 (0,∞) ≤ ‖f‖∗. (4.66)

Let f ∈ L∗ ⊂ C0, 1
2 (0,∞) and f = limn→∞ fn where fn ∈ C∞0 (0,∞). Since fn(0) = 0, we have

f(0) = 0 by the convergence in Hölder norm (4.66). Below we prove the inequality (4.65). By
the convergence in Hölder norm, we only need to consider f ∈ C∞0 (0,∞). To prove (4.65), We
show that for f ∈ C∞0 (0,∞),

f(x)2 ≤ 4‖f‖L2(x,∞)‖f ′‖L2(x,∞), where ‖φ‖L2(x,∞) =

(∫ ∞
x

φ(t)2dt

) 1
2

for φ = f, f ′.

(4.67)
Suppose (4.67) does not hold for f , without loss of generality we assume that there is x > 0
such that f(x) > 0 and f(x)2 > 4‖f‖L2(x,∞)‖f ′‖L2(x,∞). Then in the set Ax = {y : 0 < y− x <
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1
4f(x)2/‖f ′‖2L2(x,∞)}, because

|f(y)− f(x)| =
∣∣∣∣∫ y

x
f ′(t)dt

∣∣∣∣ < (∫ y

x
f ′(t)2dt

) 1
2 √

y − x ≤ ‖f ′‖L2(x,∞), (4.68)

we have

f(y) ≥ f(x)−
√
|y − x|‖f ′‖L2(x,∞) ≥ f(x)− 1

2

f(x)

‖f ′‖L2(x,∞)
‖f ′‖L2(x,∞) =

1

2
f(x), (4.69)

and get the contradiction that

‖f‖2L2(x,∞) ≥
∫
Ax

f(t)2dt >

(
1

2
f(x)

)2

· 1

4

f(x)2

‖f ′‖2
L2(x,∞)

> ‖f‖2L2(x,∞). (4.70)

Then we prove (4.65) by combining (4.67) with the inequality

‖f‖2∗ ≥
∫ ∞
x

(1 + t)f(t)2dt+

∫ ∞
x

f ′(t)2dt

≥ (x+ 1)‖f‖2L2(x,∞) + ‖f ′‖2L2(x,∞)

≥ 2
√
x+ 1‖f‖L2(x,∞)‖f ′‖L2(x,∞).

(4.71)

Due to the embedding property of L∗ into C0, 1
2 [0,∞), we assume all elements of L∗ as

continuous functions.

Lemma 13. Let {fn} be a bounded sequence in L∗, then we can choose a subsequence {fnk} ⊆
{fn} and a f ∈ L∗ and have

1. L2 convergence: fnk → f in L2(0,∞).

2. Weak L2 convergence in derivative: f ′nk → f ′ weakly in L2(0,∞), that is, for any h ∈
L2(0,∞), 〈f ′nk , h〉2 → 〈f ′, h〉2.

3. Locally uniform convergence: On any compact subset of (0,∞), fnk → f uniformly.

4. Weak L∗ convergence: fnk → f weakly in L∗, that is, for any h ∈ L∗, 〈fnk , h〉∗ → 〈f, h〉∗.

Proof. Property 4 is direct consequence of the Banach-Alaoglu theorem. Noting that the bound-
edness of ‖f‖∗ implies the boundedness of ‖f ′‖2, we find property 2 to be the sequence of the
Banach-Alaoglu theorem as well. By the inequality (4.66), the boundedness in L∗ norm implies
the uniform boundedness and equicontinuous over a compact interval, so property 3 is proved
by the Arzelá-Ascoli theorem. Property 3 immediately implies that given any C > 0, a subse-
quence {fnk} converges in L2(0, C) if we consider these functions on (0, C). The condition that∫∞

0 (1 + x)fn(x)2dx ≤ ‖f‖2∗ is bounded implies that the result holds when C = ∞. The detail
is left as an exercise.

We call a pair (f, λ) ∈ L∗×R an eigenvector-eigenvalue pair of Hβ, if ‖f‖2 := ‖f‖L2(0,∞) = 1
and Hβf = λf in the sense of Schwarz distribution, i.e., for any test function φ(x) ∈ C∞0 (0,∞),

λ

∫ ∞
0

f(x)φ(x)dx =

∫ ∞
0

[
f ′′(x)− xf(x) +

2√
β
B′xf(x)

]
φ(x)dx, (4.72)
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or equivalently

λ

∫ ∞
0

f(x)φ(x)dx =

∫ ∞
0

f(x)

[
φ′′(x)− xφ(x)− 2√

β
Bxφ

′(x)

]
− 2√

β
f ′(x)Bxφ(x)dx. (4.73)

Now we can state the main result in this section

Theorem 15. Fix β > 0. Let λNN ≥ λNN−1 ≥ · · · be eigenvalues of HN . We consider any
k ∈ Z+.

1. For almost any Brownian motion path Bx, Hβ has well defined largest, second largest,
. . . , k-th largest eigenvalues λ1, . . . , λk and all of them are simple eigenvalues.

2. The random vector N1/6(λNN − 2
√
N, . . . , λNN−k+1 − 2

√
N) converges in distribution to

(λ1, . . . , λk) as N →∞.

To prove part 1 of Theorem 15, we introduce a bilinear form on L∗ associated with Hβ.
Suppose f, g ∈ C∞0 (0,∞) ⊂ L∗ are smooth functions, we inteprete Hβg as a distribution, and
define

〈f, g〉Hβ
= −

∫ ∞
0

(Hβg)(x)f(x)dx

= −
∫ ∞

0
f(x)

(
g′′(x)− xg(x) +

2√
β
B′xg(x)

)
dx

=

∫ ∞
0

f ′(x)g′(x)dx+

∫ ∞
0

xf(x)g(x)dx+
2√
β

∫ ∞
0

Bx(f(x)g(x))′dx

= 〈f, g〉∗ − 〈f, g〉2 +
2√
β

∫ ∞
0

Bx(f ′(x)g(x) + f(x)g′(x))dx.

(4.74)

Since 〈·, ·〉Hβ
is symmetric, we only need to consider the 〈f, f〉Hβ

, since 〈f, g〉Hβ
= 1

4(〈f +g, f +
g〉Hβ

− 〈f − g, f − g〉Hβ
).

To extend the definition of 〈f, f〉Hβ
to f ∈ L∗, we need to make the integral

∫∞
0 Bxf(x)f ′(x)dx

meaningful. It is not a problem if we consider the integral on a compact interval [0, C]. Since
f ′(x) ∈ L2(0,∞),

√
1 + xf(x) ∈ L2(0,∞) and Bx is bounded on [0, C],∣∣∣∣∫ C

0
Bxf(x)f ′(x)dx

∣∣∣∣ ≤ ‖(1 + x)−
1
2Bx‖L∞(0,C)‖

√
1 + xf(x)‖L2(0,C)‖f ′(x)‖L2(0,C)

≤ sup
0≤x≤C

|(1 + x)−
1
2Bx|‖

√
1 + xf(x)‖2‖f ′(x)‖2

≤ sup
0≤x≤C

|(1 + x)−
1
2Bx|‖f(x)‖2∗.

(4.75)

But as C →∞, almost surely

sup
0≤x≤∞

|(1 + x)−
1
2Bx| =∞. (4.76)

So the well-definedness of 〈f, f〉Hβ
is not obvious. It is an interesting question whether a

straightforward definition∫ ∞
0

Bxf(x)f ′(x)dx = lim
C→∞

∫ C

0
Bxf(x)f ′(x)dx (4.77)

leads to a satisfactory definition of 〈f, f〉Hβ
such that it is almost surely a bounded operator.

Below we are going to take an indirect way to solve the problem.
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Consider the smoothed Brownian motion

B̄x =

∫ x+1

x
Btdt. (4.78)

Then B̄x is differentiable with B̄′x = Bx+1 −Bx. Denoting

Qx = B̄′x = Bx+1 −Bx, and Rx = Bx − B̄x, (4.79)

for f ∈ C∞0 (0,∞), we have∫ ∞
0

Bxf(x)f ′(x)dx =

∫ ∞
0

B̄xf(x)f ′(x)dx+

∫ ∞
0

(Bx − B̄x)f(x)f ′(x)dx

= − 1

2

∫ ∞
0

Qxf(x)2dx+

∫ ∞
0

Rxf(x)f ′(x)dx.

(4.80)

Inspired by this transform, we define for all f ∈ L∗

〈f, f〉Hβ
= ‖f‖2∗ − ‖f‖22 −

2√
β

∫ ∞
0

Qxf(x)2dx+
4√
β

∫ ∞
0

Rxf(x)f ′(x)dx. (4.81)

Below we show that this definition is valid.

Lemma 14. Given any ε > 0, almost surely for all paths of Bx, there exists a constant C1,
depending on β, ε and the path, such that

2√
β

sup
x≥0

|Qx|
C1 +

√
x
<
ε

2
, and

4√
β

sup
x≥0

|Rx|
C1 +

√
x
< ε. (4.82)

Proof. For each k ∈ Z+, we define

Zk = max
0≤t≤1

|Bk+t −Bk|. (4.83)

Then we have

|Rx| ≤ max
x≤y≤x+1

|By −Bx|

≤ max

 max
x≤y≤bxc+1

(|Bx −Bbxc|+ |By −Bbxc|),

max
bxc+1≤y≤x+1

(|Bx −Bbxc|+ |Bbx+1c −Bbxc|+ |By −Bbxc+1|)


≤ 2Zbxc + Zbxc+1.

(4.84)

Similarly we also have |Qx| ≤ 2Zbxc + Zbxc+1. Note that Zk are independently and identically
distributed. The distribution of Z0 can be explicitly computed, but the following estimate
suffices for us. The distribution of Mt = sup0≤s≤tBs is the same as |Bt| by the reflection
principle [11, Example 8.4.1]. Then for t = 1 and x ≥ 0,

P(M1 > x) =
2√
2π

∫ ∞
x

e−
t2

2 dt = 2− 2Φ(x). (4.85)

By the symmetry of Bt about 0, for any x ≥ 0

P(Z0 > x) ≤ 2P(M1 > x) = 4(1− Φ(x)). (4.86)
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Then for each k ∈ Z+, if x > 3,

P(2Zk + Zk+1 > x) ≤ P(Zk >
x

3
) + P(Zk+1 >

x

3
)

≤ 8(1− Φ(
x

3
) =

8√
2π

∫ ∞
x
3

e−
t2

2 dt

≤ 8√
2π

∫ ∞
x
3

te−
t2

2 dt =
8√
2π
e−

x2

18 .

(4.87)

Thus for any ε > 0,

∞∑
k=0

P
(

2Zk + Zk+1 >

√
β

4

√
k

)
≤ 1 + 1 + · · ·+ 1︸ ︷︷ ︸

L’s 1

+
8√
2π

∞∑
k=L+1

e−
βε
288

k <∞, (4.88)

where L is the smallest number such that
√
βkε/4 ≥ 3. By the Borel-Cantelli lemma [9, Section

4.2], [11, Section 2.3], we have that in probability 1 there are only finitely many k ∈ Z+ such
that

2Zk + Zk+1 >

√
β

4

√
k. (4.89)

For any path of Bx such that (4.89) holds for only finitely many k, there exists a C1 such that
for all k ∈ Z+

2Zk + Zk+1 >

√
β

4
(C1 +

√
k). (4.90)

Thus for all x ∈ (0,∞)
4√
β

|Rx|
C +

√
x
<

4√
β

2Zbxc + Zbxc+1

C +
√
x

< ε, (4.91)

and we prove the lemma 14 for Rx. The proof for Qx is identical.

Lemma 15. The quadratic form 〈·, ·〉Hβ
defined in (4.81) extends to a continuous symmetric

bilinear form on L∗×L∗ almost surely for all paths of Bx, such that there exists constants C2, C
′
2

depending on the path and

1

2
‖f‖2∗ − C2‖f‖22 ≤ 〈f, f〉Hβ

≤ C ′2‖f‖2∗. (4.92)

Proof. We need to consider only 〈f, f〉Hβ
for f ∈ L∗. The first two terms on the right-hand

side of (4.81) are well defined, so we only need to consider the last two terms. Suppose for the
path of Bx there exists C1 to make the inequality (4.82) hold with ε = 1

4 . (The paths that are
qualified are in probability 1.) Then∣∣∣∣∫ ∞

0

2√
β
Qxf

2(x)dx

∣∣∣∣ ≤ 1

8

∫ ∞
0

(C1 +
√
x)f2(x)dx

≤ 1

8

(∫ ∞
0

(1 + x)f2(x)dx+ C1

∫ ∞
0

f2(x)dx

)
≤ 1

8
‖f‖2∗ +

C1

8
‖f‖22,

(4.93)
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where we use the inequality 1 + x >
√
x, and∣∣∣∣∫ ∞

0

4√
β
Rxf(x)f ′(x)dx

∣∣∣∣
≤ 1

4

∣∣∣∣∫ ∞
0

(C1 +
√
x)f(x)f ′(x)dx

∣∣∣∣
≤ 1

4

∣∣∣∣∫ ∞
0

√
1 + xf(x)f ′(x)dx+ C1

∫ ∞
0

f(x)f ′(x)dx

∣∣∣∣
≤ 1

4

[(∫ ∞
0

(1 + x)f(x)2dx

) 1
2 (
f ′(x)2dx

) 1
2 + C1

(
f(x)2dx

) 1
2
(
f ′(x)2dx

) 1
2

]
≤ 1

4
[‖f‖∗‖f‖∗ + C1‖f‖2‖f‖∗]

≤ 1

4

[
‖f‖2∗ +

(
1

2
‖f‖2∗ +

C2
1

2
‖f‖22

)]
=

3

8
‖f‖2∗ +

C2
1

8
‖f‖22,

(4.94)

where we use the Cauchy-Schwarz inequality. Summing up all terms together, we see that the
〈f, f〉Hβ

is well defined by (4.81) as long as C1 exists, and C2, C
′
2 in (4.92) are determined by

C1 as C2 = 1 + (C1 +C2
1 )/8 and C ′2 = 3/2 + (C1 +C2

1 )/8, where in the calculation of C ′2 we use
that ‖f‖2 ≤ ‖f‖∗.

Lemma 16. In probability 1, the infimum

Λ0 = inf
g∈L∗, ‖f‖2=1

〈g, g〉Hβ
(4.95)

exists, and is achieved at some f ∈ L∗. Furthermore, (f,−Λ0) is an eigenvector-eigenvalue pair
for Hβ with −Λ0 = λ0.

Proof. We consider a path of Bx such that C2, C
′
2 in Lemma 15 exist. The set of these paths is

of probability 1.
By the result of Lemma 15, we see that for all f ∈ L∗ with ‖f‖2 = 1,

〈f, f〉Hβ
>

1

2
‖f‖2∗ − C2‖f‖22 ≥ (

1

2
− C2)‖f‖22 =

1

2
− C2. (4.96)

Thus the infimum on the right-hand side of (4.95) exists.
Let {fn} ⊂ L∗ be a sequence such that

‖fn‖2 = 1 and lim
n→∞

〈fn, fn〉Hβ
= Λ0. (4.97)

Then ‖fn‖∗ are bounded, since by Lemma 15 again,

1

2
‖f‖2∗ < 〈f, f〉Hβ

+ C2‖f‖22 = 〈f, f〉Hβ
+ C2. (4.98)

Below we denote ‖fn‖∗ < K. Using the result of Lemma 12, we see that by passing to a
subsequence if necessary, there exists f ∈ L∗ that is the limit of {fn} in the sense of (1) L2, (2)
weak L2 in derivative, (3) locally uniform and (4) weak L∗. But the desired convergence in the
sense of L∗ still need to be proved. Some direct consequences of the convergence results above
are:
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• Due to the L2 convergence,
‖f‖2 = lim

n→∞
‖fn‖2 = 1. (4.99)

• Due to the weak L∗ convergence,

‖f‖∗ ≤ lim inf
n→∞

‖fn‖∗ < K. (4.100)

By inequality (4.82) in Lemma 14, in probability 1 there exists a constant C3 depending
only on the path of Bx such that

2√
β
Qx <

ε

2
(1 + x), and

4√
β
Rx <

ε

2

√
1 + x. (4.101)

Then for all g ∈ L∗, by arguments similar to those in (4.93) and (4.94), we have∣∣∣∣−∫ ∞
C3

2√
β
Qxg(x)2dx+

∫ ∞
C3

4√
β
Rxg(x)g′(x)dx

∣∣∣∣
≤ ε

2

(∫ ∞
C3

(1 + x)g(x)2dx+

∣∣∣∣∫ ∞
C3

√
1 + xg(x)g′(x)dx

∣∣∣∣)
≤ ε

2
(‖g‖2∗ + ‖g‖2∗) = ε‖g‖2∗.

(4.102)

Hence

lim
n→∞

−
∫ ∞

0

2√
β
Qxfn(x)2dx+

∫ ∞
0

4√
β
Rxfn(x)f ′n(x)dx =

−
∫ ∞

0

2√
β
Qxf(x)2dx+

∫ ∞
0

4√
β
Rxf(x)f ′(x)dx, (4.103)

since for any ε > 0 and C3 determined by (4.101), by L2 convergence,

lim
n→∞

∫ C3

0

2√
β
Qxfn(x)2dx =

∫ C3

0

2√
β
Qxf(x)2dx, (4.104)

by L2 convergence and weak L2 convergence in derivative,

lim
n→∞

∫ C3

0

4√
β
Rxfn(x)f ′n(x)dx =

∫ C3

0

4√
β
Rxf(x)f ′(x)dx, (4.105)

and by the boundedness ‖f‖, ‖fn‖ < K together with (4.102), for n large enough∣∣∣∣∣∣∣∣
(
−
∫ ∞

0

2√
β
Qxfn(x)2dx+

∫ ∞
0

4√
β
Rxfn(x)f ′n(x)dx

)
−
(∫ ∞

0

2√
β
Qxf(x)2dx+

∫ ∞
0

4√
β
Rxf(x)f ′(x)dx

)
∣∣∣∣∣∣∣∣

≤
∣∣∣∣∫ C3

0

2√
β
Qxfn(x)2dx−

∫ C3

0

2√
β
Qxf(x)2dx

∣∣∣∣
+

∣∣∣∣∫ C3

0

4√
β
Rxfn(x)f ′n(x)dx−

∫ C3

0

4√
β
Rxf(x)f ′(x)dx

∣∣∣∣
+

∣∣∣∣−∫ ∞
C3

2√
β
Qxfn(x)2dx+

∫ ∞
C3

4√
β
Rxfn(x)f ′n(x)dx

∣∣∣∣
+

∣∣∣∣−∫ ∞
C3

2√
β
Qxf(x)2dx+

∫ ∞
C3

4√
β
Rxf(x)f ′(x)dx

∣∣∣∣
< ε+ ε+ εK + εK = ε(2 + 2K).

(4.106)
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Substituting the limit formulas (4.99), (4.100) and (4.103) into the definition formula (4.81) for
〈f, f〉Hβ

, We write

〈f, f〉Hβ
≤ lim inf

n→∞
‖fn‖2∗ − lim

n→∞
‖f‖22 + lim

n→∞

(
−
∫ C3

0

2√
β
Qxf(x)2dx+

∫ C3

0

4√
β
Rxf(x)f ′(x)dx

)
= lim inf

n→∞
〈fn, fn〉Hβ

= Λ0.

(4.107)

Thus we prove the first part of the lemma.
To prove the second part, we consider any φ ∈ C∞0 (0,∞) and ε an arbitrary small real

number. Then

fφ,ε =
1

‖f + εφ‖2
(f + εφ) (4.108)

is a function in L∗ with ‖fφ,ε‖2 = 1. Since we assume that f solves the minimisation problem
(4.95), we have

0 ≤ 〈fφ,ε, fφ,ε〉Hβ
− 〈f, f〉Hβ

=

∫ ∞
0

(fφ,ε)′(x)2 − f ′(x)2dx+

∫ ∞
0

x(fφ,ε(x)2 − f(x)2)dx

− 2√
β

∫ ∞
0

Qx(fφ,ε(x)2 − f(x)2)dx+
4√
β

∫ ∞
0

Rx(fφ,ε(x)(fφ,ε)′(x)− f(x)f ′(x))dx

= 2ε

[
−〈f, f〉Hβ

∫ ∞
0

f(x)φ(x)dx

+

∫ ∞
0

f ′(x)φ′(x) + xf(x)φ(x)− 2√
β
Qxf(x)φ(x) +

2√
β

(f ′(x)φ(x) + f(x)φ′(x))dx

]
+O(ε2).

(4.109)

By the standard argument for variational problem, noting that 〈f, f〉Hβ
= Λ0 and the relation

(4.79) between Qx, Rx and Bx, we have

− Λ0

∫ ∞
0

f(x)φ(x)dx

=

∫ ∞
0

f(x)

[
φ′′(x)− xφ(x)− 2√

β
Rxφ

′(x)

]
− 2√

β
(Rxf

′(x)φ(x)−Qxf(x)φ′(x))dx

=

∫ ∞
0

f(x)

[
φ′′(x)− xφ(x)− 2√

β
Bxφ

′(x)

]
− 2√

β
f ′(x)Bxφ(x)

− 2√
β

∫ ∞
0

f ′(x)B̄xφ(x) + f(x)B̄′xφ(x) + f(x)B̄xφ(x)′dx

=

∫ ∞
0

f(x)

[
φ′′(x)− xφ(x)− 2√

β
Bxφ

′(x)

]
− 2√

β
f ′(x)Bxφ(x).

(4.110)

Then (f(x),−Λ0) is an eigenvector-eigenvalue pair of Hβ.
At last we show that −Λ0 = λ0, i.e., −Λ0 is the largest eigenvalue of Hβ. Suppose (g, λ)

is an eigenvector-eigenvalue pair. Since g ∈ L∗, there is a sequence φn → g in L∗ where
{φn} ⊂ C∞0 (0,∞). By the definition (4.72), (4.73), for all φn,

λ

∫ ∞
0

g(x)φn(x)dx =

∫ ∞
0

(Hβg)(x)φn(x)dx, (4.111)
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or equivalently,
λ〈g, φn〉2 = −〈g, φn〉Hβ

. (4.112)

By Lemma 15, we can take the limit on both sides of (4.112) and get

λ〈g, g〉2 = −〈g, g〉Hβ
, (4.113)

or equivalently, by ‖g‖2 = 1, 〈g, g〉Hβ
= −λ. Thus λ ≤ −Λ0, and we finish the proof.

We have considered λ0 = −Λ0, the largest eigenvalue of Hβ. Now define

H0 = span of {f ∈ L∗ | ‖f‖2 = 1 and 〈f, f〉Hβ
= Λ0}, (4.114)

and consider the minimisation problem

Λ1 = inf
f∈L∗,‖f‖2=1,f∈H0

〈f, f〉Hβ
. (4.115)

By the same arguments as the proof of Lemma 16, there exists an f that achieves the minimi-
sation problem, (f,Λ0) is an eigenvector-eigenvalue pair of Hβ, and λ1 = −Λ1. Recursively we
can find λ2, λ3, . . . .

At last, we show that the eigenvalues of Hβ are all simple.

Lemma 17. For each path of Bx and λ ∈ R where Hβf = λf has a nontrivial solution f ∈ L∗,
the solution space is one-dimensional.

Proof. Write the identity (Hβ − λ)f = 0 as∫ ∞
0

f(x)

[
φ′′(x)− (x+ λ)φ(x)− 2√

β
Bxφ

′(x)

]
− 2√

β
f ′(x)Bxφ(x)dx = 0, (4.116)

or equivalently,∫ ∞
0

[
−f ′(x) +

∫ x

0
(t+ λ)f(t)dt− 2√

β
Bxf(x) +

2√
β

∫ x

0
Btf

′(t)dt

]
φ′(x)dx, (4.117)

for all φ ∈ C∞0 (0,∞). The identity (4.117) holds for all φ if and only if the formula in the
bracket is a constant. Using the identity∫ x

0
(t+ λ)f(t)dt =

1

2
(x+ λ)2

∫ x

0
f ′(t)dt−

∫ x

0

1

2
(t+ λ)2f ′(t)dt, (4.118)

we express the condition that the formula in the bracket in (4.117) as

f ′(x) = C +

∫ x

0

(
1

2
((x+ λ)2 − (t+ λ)2)− 2√

β
(Bx −Bt)

)
f ′(t)dt. (4.119)

To show that the solution space of the integral equation (4.119) is one-dimensional, we only
need to show that for C = 0, (4.119) has only the trivial solution f(x) = 0. The (4.119) shows
that f ′(x) is continuous (if it is the solution to Hβf = λf). For any T > 0, there is an upper
bound C ′ for 1

2((x+ λ)2 − (t+ λ)2)− 2√
β

(Bx −Bt) with x, t ∈ [0, T ]. Thus for all x ∈ [0, T ],

|f ′(x)| ≤
∫ x

0
C ′|f ′(t)|dt. (4.120)

This is an integral form of Gronwell inequality [6], and it implies that f ′(x) = 0 for all x ∈ [0, T ].
Since T is arbitrary, it shows that f ′(x) = 0 for x ≥ 0.
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Below we prove part 2 of Theorem 15. Recall that HN is a tridiagonal matrix whose diagonal
entries hi,i are in normal distribution and off-diagonal entries hi,i+1 are in χ distribution, as
defined in (4.5) and (4.6). Define

yN,1(x) = N−
1
6

bxN
1
3 c∑

i=1

hi,i = N−
1
6

√
2

β

bxN
1
3 c∑

i=1

ξi, (4.121)

yN,2(x) = 2N−
1
6

bxN
1
3 c∑

i=1

(
√
N − hi,i+1) = N−

1
6

2√
β

bxN
1
3 c∑

i=1

(
√
βN − YN−i). (4.122)

Lemma 18. There exists a probability space supporting the processes yN,1(x), yN,2(x) for all
N ∈ Z+ and two independent Brownian motion Bx(1), Bx(2) such that with respect to the
Skorokhod topology [12, Section3.5] on DR[0,∞),

yN,1 →
√

2

β
Bx(1), yN,2 →

√
2

β
Bx(2) +

x2

2
. (4.123)

Sketch of the proof. The convergence of yN,1 to Brownian motion is Donsker’s theorem, and the
convergence of yN,2 can be proved similarly, since each term in the summation (4.122) converges
in distribution to normal distribution as N →∞.

As N →∞, yN,1(x) converges to a Brownian motion and yN,2(x) converges to a Brownian
motion with a drift. We separate the Brownian motion part and the drift part as

yN,2(x) = ȳN,2(x) + ỹN,2(x), (4.124)

where

ȳN,2(x) =

bxN
1
3 c∑

i=1

ηi, ỹN,2(x) =

bxN
1
3 c∑

i=1

γi, (4.125)

and

ηi = N−
1
6

2√
β

(
√
βN − EYN−i), γi = N−

1
6

2√
β

(EYN−i − YN−i). (4.126)

We can compute
√
βN−EYN−i explicitly, but for our purpose we are satisfied with the inequality

i

κ
√
N
− κ ≤ ηi ≤

κi√
N

+ κ (4.127)

for some constant κ. Like the estimate in Lemma 14, we have that for any ε > 0 there is a tight
sequence of random variables κN,ε such that

sup
x≤t≤x+1

|YN,1(t)− YN,1(x)| ≤ εx+ κN,ε, sup
x≤t≤x+1

|ỸN,2(t)− ỸN,2(x)| ≤ εx+ κN,ε. (4.128)

We define a norm ‖·‖N,∗ on the space of N -dimensional vector RN , such that (denoting
vN+1 = 0)

‖v‖2N,∗ =
N∑
i=1

(N
1
3 (vi+1 − vi))2N−

1
3 +

N∑
i=1

(1 +N−
1
3 i)v2

iN
− 1

3 . (4.129)

We identify an N -dimensional vector as a step function on [0, N2/3] as in (4.52), and then
‖·‖N,∗ is a norm defined on the space of the step functions that we denote by LN,2. This norm
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gives a symmetric bilinear form 〈·, ·〉N,∗ on LN,2 as the norm ‖·‖∗ gives 〈, ·, ·〉∗ on L∗. We note
that as N →∞, ‖·‖N,∗ converges to ‖·‖∗ in some sense. Also LN,2 can be viewed as a subspace
of L2(0,∞), where f(x) ∈ LN,2 is piecewise constant for x < N2/3 and f(x) = 0 for x ≥ N2/3.
Thus LN,2 has the natural norm ‖·‖2 and inner product 〈·, ·〉2 inherited from L2(0,∞).

From the heuristic argument in the beginning of this subsection, we expect that ĤN → Hβ

as N →∞. We interpret the convergence in the associated bilinear forms. Analogous to 〈·, ·〉Hβ

defined by Hβ, we consider the bilinear form −〈f, ĤNg〉2 for f, g ∈ LN,2. Since LN,2 = RN is

finite dimensional, the bilinear form is clearly well defined. Since ĤN is a symmetric matrix, it
is well known that its top eigenvalues are characterised recursively by

the k-th largest eigenvalue of ĤN = max
f∈LN,2, f⊥eigenvectors

associated to the top k − 1 eigenvalues

〈fĤNf〉2
〈f, f〉2

. (4.130)

Analogous to Lemma 15, we have

Lemma 19. There exists a tight sequence of random variables ci = ci(N), i = 1, 2, 3, such that

c1‖v‖2N,∗ − c2‖v‖22 ≤ −〈v, ĤNv〉2 ≤ c3‖v‖2N,∗. (4.131)

Sketch of the proof. Write

− 〈v, ĤNv〉2 = S1 + S2 − S3 + S4, (4.132)

where

S1 = N
1
3

N∑
i=1

(vi+1 − vi)2, S2 = 2N−
1
6

N∑
i=1

ηivivi+1,

S3 =

√
2

β
N−

1
6

N∑
i=1

v2
i ξi, S4 = 2N−

1
6

N∑
i=1

γivivi+1.

(4.133)

Then apply the estimates (4.127) and (4.128).

The tightness of the random variables ci(N) in Lemma 19 implies that any subsequence
{Nl} of {N} contains a further subsequence {Nli} such that the estimate (4.131) holds with
random variables ci, independent of Nli .

For each N define the projection operator PN : L2 → LN,2 such that

(PN )f(x) ={
the average of f(x) on [iN−

1
3 , (i+ 1)N−

1
3 ) if x ∈ [iN−

1
3 , (i+ 1)N−

1
3 ) and x < N

2
3 ,

0 otherwise.

(4.134)

Then the operator ĤNPN is an operator from L2(0,∞) to LN,2 ⊂ L2(0,∞). The convergence
of ĤN to Hβ is described by the following two lemmas. In the statement of Lemma 20, we use
the difference operator in LN,2

DNf(x) = N
1
3 (f(x+N−

1
3 )− f(x)). (4.135)

Lemma 20. Let f ∈ L∗, fN ∈ LN,2 and suppose fN → f weakly in L2 and DNfN → f ′ weakly
in L2. Then for all φ ∈ C∞0 (0,∞),

− 〈φ, ĤNfN 〉2 → 〈φ, f〉Hβ
, (4.136)

and in particular
− 〈PNφ, ĤNPNφ〉2 → 〈φ, ĤNPNφ〉2 → 〈φ, φ〉Hβ

. (4.137)
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Lemma 21. Let fN ∈ LN,2 with ‖fN‖2 = 1 and ‖fN‖N,∗ ≤ c. Then there exists a subsequence
{Nl} and f ∈ L∗ such that fNl → f in L2(0,∞) and for all φ ∈ C∞0 (0,∞),

− 〈φ, ĤNfNl〉2 → 〈φ, f〉Hβ
. (4.138)

Below we prove part 2 of Theorem 15. Write the k top eigenvalues of ĤN as ηN,i =
N1/6(λNN−i − 2

√
N), i = 0, . . . , k − 1. Let vN,i ∈ RN be the associated eigenvectors such that

‖vN,i‖2 = 1.
First we show that

η+
i := lim sup

N→∞
nN,i ≤ λi, i = 0, . . . , k − 1. (4.139)

Without loss of generality, we assume η+
i > −∞ for all i < k. Then for each i, there is a

subsequence Nl such that (ηNl,0, . . . , ηNl,i)→ (ξ0, . . . , ξi = η+
i ). By Lemma 19, for j = 0, . . . , i,

‖vNl,j‖N,∗ are uniformly bounded, and then a subsequence of vNl,j converges in L2 to a limit
function gj ∈ L∗. For notational simplicity, we denote the also subsequence by vNl,j . Then we
have that (g0, ξ1), . . . , (gi, ξi = n+

i ) are eigenvector-eigenvalue pairs of Hβ where ξ0 ≥ · · · ≥ ξi.
Since for eachNl, vNl,0, · · · , vNl,i are orthogonal to each other in L2(0,∞), we have that g0, . . . , gi
are orthogonal in L2(0,∞) to each other. Then ξ0, . . . , ξi are distinct since the eigenspaces of
Hβ are 1-dimensional. Hence ξ0 ≤ λ0, . . . , λi = η+

i ≤ λi, and we prove (4.139).
Next we show that

η−i := lim inf
N→∞

nN,i ≥ λi., i = 0, . . . , k − 1. (4.140)

and if the signs of vN,i and fi properly, we have the L2 convergence as N →∞

vN,i → fi, , i = 0, . . . , k − 1. (4.141)

We prove (4.140) and (4.141) inductively in i. Suppose for j < i, (4.140) and (4.141) hold with
i replaced by j. (Note that if i = 0, then the inductive assumption is void.) For any ε > 0, let
f εi ∈ C∞0 (0,∞) satisfy

‖f εi − fi‖∗ ≤ ε, (4.142)

and set

fN,k = PNf
ε
k −

i−1∑
j=0

〈vN,j , PNf εi 〉2vN,j . (4.143)

In (4.143), ‖vN,j‖N,∗ is bounded by Lemma 19. Also by the orthogonality of fi and fj in
L2(0,∞),

|〈vN,j , PNf εi 〉2| = |〈fj + (vN,j − fj), fi + (f εi − fi)〉2|
= |〈fj , (f εi − fi)〉2|+ |〈(vN,j − fj), fi〉2|+ |〈(vN,j − fj), (f εi − fi)〉2|
≤ ‖f εi − fi‖2 + ‖vN,j − fj‖2 + ‖f εi − fi‖2‖vN,j − fj‖2.

(4.144)

By the assumption 4.142 and the convergence (4.141) for j, we have that if N is large enough,
|〈vN,j , PNf εi 〉2| < 2ε. Thus we have that for N large enough,

‖fN,i − PNf εi ‖N,∗ < cε, (4.145)

where c is a random constant independent of N . By (4.130), ηN,i ≥ 〈fN,i, fN,i〉−1
2 〈fN,iĤNfN,i〉2,

so by Lemma 20

η−i ≥ lim inf
N→∞

〈fN,iĤNfN,i〉2
〈fN,i, fN,i〉2

= lim inf
N→∞

〈PNf εi , ĤNPNf
ε
i 〉2

〈PNf εi 〉2
+ s(ε), (4.146)
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where s(ε)→ 0 as ε→ 0. By (4.137),

lim
N→∞

〈PNf εi , ĤNPNf
ε
i 〉2 = 〈f εk, f εk〉Hβ

= 〈fi, fi〉Hβ
+ s′(ε), (4.147)

where s′(ε)→ 0 as ε→ 0. Also it is not difficult to see that

〈PNf εi 〉2 → 〈fi, fi〉2 = 1 (4.148)

as N →∞. Thus by (4.146), (4.147) and (4.148), we obtain (4.140) after taking ε→ 0.
To prove (4.141), note that each subsequence of vN,i has a further subsequence, say vNl,i,

converging in L2 to g ∈ L∗ such that

〈φ, g〉Hβ
= lim

l→∞
〈φ, ĤNlvNl,i〉2 = lim

l→∞
nNl,i〈φ, vNl,i〉2 = λi〈φ, g〉2, (4.149)

Hence g = fi, and we prove (4.141).

Exercises

1. Prove that the joint probability density function of the eigenvalues of the random tridiago-
nal matrix HN with β = 1 is the same as that of the eigenvalues of an N×N GOE random
matrix whose diagonal entries are in N(0, 2) and upper triangular entries in N(0, 1).

Hint: Follow the argument in the proof for β = 2.

A Some related results in linear algebra

A.1 Normal forms under the unitary congruence group for a complex sym-
metric matrix (Takagi’s factorisation) and for an complex anti-symmetric
matrix

In this appendix, we show that

1. Given any n × n complex symmetric matrix M , there is a unitary matrix U ∈ U(n) and
a diagonal matrix D such that

M = UDUT (A.1)

and the diagonal entries of D are square roots of the eigenvalues of MM̄ .

2. Given any n× n complex anti-symmetric matrix M , there is a unitary matrix U × U(n)
and a block diagonal matrix J such that

M = UJUT (A.2)

and

J = diag(

(
0

√
a1

−√a1 0

)
, . . . ,

(
0

√
ar

−√ar 0

)
, 0, . . . , 0), (A.3)

where ai are eigenvalues of −MM̄ .

The result in the symmetric case is called Takagi’s factorisation, first discovered by Takagi [24]
in 1925, and reproved by Jacobson [18], Hua [17] and Schur [21], and The text book [16] by
Horn and Johnson is a good reference. In the anti-symmetric case, the original reference can
be traced back to [17]. An elementary proof for Youla decomposition, which generalises the
symmetric and antisymmetric cases to general complex square matrix case, was provided by
Youla [28]. Here our proofs are based on the approach in [16, Section 4.4].
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Proof of the symmetric case. First, MM̄ = MM∗ is a nonnegative definite Hermitian matrix,
so it has nonnegative eigenvalues a1, . . . , an. Let v ∈ Cn be an eigenvector of MM̄ such that
MM̄v = a1v. Then M̄M(M̄v) = a1M̄v, i.e., M̄v is an eigenvector of M̄M . Taking complex
conjugate on both sides, we have

M̄M(M̄v) = a1M̄v, or equivalently MM̄(M v̄) = a1M v̄, (A.4)

and see that M v̄ is an eigenvector of MM̄ with eigenvalue a1. If M v̄ is dependent on v, i.e.,
M v̄ = λv, then M̄v = λ̄v̄, and MM̄v = Mλ̄v̄ = |λ|2v. We find that λ =

√
a1e

iθ. Let the unit
vector u = e−iθ/2v/‖v‖, then

M ū =
√
a1u. (A.5)

Otherwise if M v̄ = w is independent of v, we have

Mw̄ = MM̄v = a1v. (A.6)

Let the unit vector u = w +
√
a1v, we have

M ū = M(w̄ +
√
a1v̄) = a1v +

√
a1w =

√
a1u. (A.7)

In either case, there is a unitary matrix U1 such that U1e1 = u. Then

M = U1M
′UT1 , where M ′ =


1 ∗ . . . ∗
0
... M2

0

 . (A.8)

Note that M ′ = U−1
1 M(U−1

1 )T is symmetric, and so its first row is (1, 0, . . . , 0), and M2 is
symmetric. Furthermore,

M ′M̄ ′ = U−1
1 M(U−1

1 )T Ū−1
1 M̄(U−1

1 )T = U−1
1 MŪ1(Ū)−1

1 M̄U1 = U−1
1 MM̄U1, (A.9)

and has the same spectrum as MM̄ . Hence M2M̄2 has eigenvalues a2, . . . , an.
Repeating this procedure, we have

M = Un · · ·U2U1


√
a1

. . . √
an

UT1 U
T
2 · · ·UTn , (A.10)

and prove Tagaki’s factorization, the result in the symmetric case.

Proof of the anti-symmetric case. First, note that MM̄ = −MM∗ is a nonpositive definite
Hermitian matrix. Without loss of generality, suppose it has a negative eigenvalue −a1. If v is
an eigenvector of MM̄ such that MM̄v = −a1v, then M v̄ cannot be equal to λv, otherwise
by the argument in the proof of the symmetric case, we have |λ|2 = −a1, a contradiction. Thus
w := M v̄ is independent to v, and by the same argument as in the proof of the symmetric case
we see that w is also an eigenvector of MM̄ associated to the eigenvalue −a1.

Let u1 = v/‖v‖ and u2 be a unit vector in span(v,w) that is orthogonal to u1. Note that
there is a angular parameter not specified for u2, and we are going to fix it later. Both u1 and
u2 are eigenvectors of MM̄ with eigenvalue −a1, and we denote

M ūi = c1iu1 + c2iu2, for i = 1, 2. (A.11)
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Suppose U1 is a unitary matrix such that U1e1 = u1, U1e2 = Uu2. Then

M = U1M
′UT1 , where M ′ =


c11 c12 ∗ . . . ∗
c21 c22 ∗ . . . ∗
0 0
...

... M2

0 0

 . (A.12)

Since M is anti-symmetric, M ′ = U−1
1 M(U−1

1 )T is also anti-symmetric, and so its first two rows
become (

c11 c12 ∗ . . . ∗
c21 c22 ∗ . . . ∗

)
=

(
0 λ 0 . . . 0
−λ 0 0 . . . 0

)
, (A.13)

and M2 is anti-symmetric. Note that (A.12) and (A.13) imply

M ū1 = −λu2, M ū2 = λu1. (A.14)

Using (A.14), we see that MM̄u1 = M(−λu2) = −|λ|2u1, and then obtain λ =
√
a1e

iθ by
the property MM̄u1 = −a1u1. Finally by a change of variable u2 7→ eiθu2 and use the new u2

instead of the original one used above, we find the factorisation

M = U1


0

√
a1 0 . . . 0

−√a1 0 0 . . . 0
0 0
...

... M2

0 0

 . (A.15)

Repeating this argument, we prove the result in anti-symmetric case.

A.2 Proof of Hoffman-Wielandt theorem

In the lecture notes we only consider the theorem of Hoffman and Wielandt for Hermitian
matrices. The original theorem discovered by these two authors [15] is more general, for normal
matrices.

Theorem 16 (Hoffman-Wielandt). Let A and B be n×n matrices with eigenvalues α1, . . . , αn
and β1, . . . , βn respectively. Then there is a permutation σ ∈ Sn, the symmetric group of
{1, . . . , n}, such that

n∑
k=1

|αk − βσ(k)|2 ≤ ‖A−B‖2, (A.16)

where ‖·‖ is the Frobenius norm (aka Hilbert-Schmidt norm) of a matrix such that

‖(xij)ni,j=1‖ =

 n∑
i,j=1

|xij |2
2

. (A.17)

Remark 4. For any square matrix X,

‖X‖2 = Tr(X∗X). (A.18)

Remark 5. If A and B are Hermitian, i.e., αj ’s and βj ’s are all real, then the minimum of∑n
k=1|αk − βπ(k)|2 is obtained when both αj ’s and βj ’s are in increasing order. Thus Theorem

4 becomes a special case of 16.
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Proof. Since A and B are normal matrices, they can be written as

A = U∗1D1U1, B = U∗2D2U2, (A.19)

where D1 = diag(α1, . . . , αn), D2 = (β1, . . . , βn) and U1, U2 ∈ U(n) are unitary matrices.
With the help of (A.18), we write (A.16) as

n∑
k=1

|αk|2 +

n∑
k=1

|βk|2 +

n∑
k=1

(ᾱkβσ(k) + αkβ̄σ(k)) ≤ TrA∗A+ TrB∗B + Tr(A∗B +AB∗). (A.20)

It is clear that
n∑
k=1

|αk|2 = TrD∗1D1 = Tr(U∗1D
∗
1U1U

∗
1D1U1) = TrA∗A, (A.21)

and similarly
∑n

k=1|βk|2 = TrB∗B. Then we need only to show that there is a σ ∈ Sn such
that

n∑
k=1

(ᾱkβσ(k) + αkβ̄σ(k)) ≥ Tr(A∗B +AB∗). (A.22)

Define V = U2U
∗
1 , suppose V = (vij)

n
i,j=1 and |vij |2 = wij . We have

Tr(A∗B +AB∗) = Tr(U∗D∗1U1U
∗
2D2U2 + U∗D1U1U

∗
2D
∗
2U2)

= TrU∗1 (D∗1V
∗D2V +D1V

∗D2V )U1

= Tr(D∗1V
∗D2V +D1V

∗D2V )

=

n∑
i,j=1

(ᾱiβj + αiβ̄j)|vij |2

=

n∑
i,j=1

(ᾱiβj + αiβ̄j)wij .

(A.23)

Note that (wij)
n
i,j=1 is a doubly stochastic matrix in the sense that

n∑
i=1

wij = 1,

n∑
j=1

wij = 1, wij ≥ 0, for i, j = 1, . . . , n. (A.24)

A theorem of Birkhoff [16, Section 8.7], [7] shows that the set of all n × n doubly stochastic
matrices form an (n − 1)2 dimensional polytope in the n2 dimensional space of all real n × n
matrices, denoted as Xn, and this polytope has permutation matrices as its vertices.

Consider the right-hand side of (A.23) as a linear function of wij on the domain Xn, the set
of doubly stochastic matrices (actually {(wij)ni,j=1} is a subset of Xn). It is an (almost) obvious
and well known (at least in linear programming) that a linear function on a polytope attains
its maximum at a vertex. In our case, it implies that

min
(wij)ni,j=1∈Xn

n∑
i,j=1

(ᾱiβj + αiβ̄j)wij =
n∑
k=1

(ᾱkβσ(k) + αkβ̄σ(k)), (A.25)

where the permutation σ corresponds to the vertex that is a permutation matrix. Then we
prove Theorem 16 with the σ in (A.16) the same as the σ in (A.25).
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