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We consider a limiting case of the joint probability distribution for a random matrix ensemble
with an additional interaction term controlled by an exponent γ (called the γ-ensembles), which is
equivalent to the probability distribution of Laguerre β-ensembles. The effective potential, which
is essentially the confining potential for an equivalent ensemble with γ = 1 (called the Muttalib-
Borodin ensemble), is a crucial quantity defined in solution to the Riemann-Hilbert problem associ-
ated with the γ-ensembles. It enables us to numerically compute the eigenvalue density of Laguerre
β-ensembles for all β > 1. In addition, the effective potential shows a non-monotonic behavior for
γ < 1, suggestive of its possible role in developing a transition from a diverging to a non-diverging
density near the hard-edge of the eigenvalue spectrum. Such a transition in eigenvalue density
is of critical importance for the random matrix theory describing disordered mesoscopic systems.
For γ-ensembles with γ > 1, the effective potential also shows transition from non-monotonic to
monotonic behavior near the origin when a parameter of the additional interaction term is varied.

I. INTRODUCTION

A generalized random matrix model with additional
interactions [1], called the γ-ensembles, was introduced
recently as a solvable toy model for three-dimensional
(3D) disordered conductors. The joint probability dis-
tribution (jpd) of the N non-negative eigenvalues xi for
these γ-ensembles has the form

p({xi}; θ, γ) ∝
N∏
i=1

w(xi)
∏
i<j

|xi − xj ||xθi − xθj |γ ,

0 < γ, 1 < θ <∞.

(1.1)

Here we assume the convention w(x) = e−NV (x), so that
the empirical distribution of the particles (a.k.a. the
equilibrium measure) converges as N → ∞. In [1], the
parameter γ was restricted to 0 < γ ≤ 1, but the method
developed there allows the evaluation of the density of
eigenvalues of the γ-ensembles for any γ > 0, θ > 1
and for any well behaved V (x). In particular, it was
shown that the jpd for the γ-ensembles can be mapped
on to the Muttalib-Borodin ensembles [2–6] (which has
the same jpd as (1.1), with γ = 1), by replacing the exter-
nal potential V (x) with a γ-dependent effective potential
Veff(x; γ). This effective potential was calculated explic-
itly for θ = 2 by numerically solving the Riemann-Hilbert
(RH) problem associated with the jpd of the γ-ensembles.

In this paper, we first consider the limit θ → 1 and
V (x) = 2x. We will be interested in two sets of values
for the exponent γ, namely, γ < 1 and γ > 1. Following
the numerical solution to the RH problem of γ-ensembles
explained in [1], we first compute the effective potentials
and then the corresponding eigenvalue densities for these
different values of γ. The effective potentials for different
γ show an interesting behavior. Near the origin, effec-
tive potentials for γ > 1 are monotonically increasing,
while those for γ < 1 become non-monotonic, initially
decreasing with increasing x. The minimum of the effec-
tive potential moves further away from the origin as γ is

systematically decreased from 1. Such a non-monotonic
potential has been shown [7] to give rise to a ‘hard-edge
to soft-edge’ transition in density, i.e., a transition from
a density diverging near the hard edge at the origin to a
density going to zero at a soft edge near the origin. This
type of transition is of keen interest for transport problem
in mesoscopic systems as it can describe disorder-induced
metal to insulator transition in 3D disordered conductors,
where only small xi � 1 contributes significantly to the
conductance [8].

It has been argued that in contrast to a quasi 1D sys-
tem considered in [2], describing a 3D disordered con-
ductor requires a disorder-dependent parameter γ that
controls the strength of the additional two-body inter-
action [9–12]. The exponent γ decreases from 1 as the
strength of disorder increases. The jpd describing a 3D
disordered system has been proposed to be of the general
form [12]

p({xi}; γ) ∝
N∏
i=1

w(xi, γ)
∏
i<j

|xi − xj ||s(xi)− s(xj)|γ ,

(1.2)
where s(x) = sinh2√x, and the potential V (x, γ) has
a dominant linear dependence on x in the strongly dis-
ordered regime, whose strength depends on the param-
eter γ. The γ-ensemble defined by (1.1) was proposed
as a solvable toy model replacing (1.2), which allows one
to explore and study the role of the parameter γ. An
eigenvalue density diverging near the origin implies the
presence of a large number of small eigenvalues xi, and
hence, describes a metal with large conductance g. In
contrast, a non-divergent eigenvalue density with a soft
edge away from the origin describes an insulator with ex-
ponentially small conductance. However, the γ-ensemble
with θ = 2 studied in detail in [1] did not show any hint
of such a transition in the density as γ was decreased
systematically from 1.

In this work we show that for γ-ensembles defined by
(1.1) with θ close to 1, the effective potential does indeed
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develop a clear non-monotonicity as γ is reduced from
greater than 1 to less than 1. While this change in the
effective potential is still not large enough to produce
a transition in density, the change is suggestive of role
of disorder dependent parameter γ in realizing a transi-
tion from a diverging to a non-diverging density near the
hard-edge in a more realistic model given, for example,
by equation (1.2). We also observe that the effective po-
tential develops non-monotonic behavior even in case of
γ > 1 for parameter θ > 1 and then gradually changes
to monotonic behavior as θ → 1. As a bonus, since the
θ → 1 limit is equivalent to a Laguerre β-ensemble, the
model allows us to compute the eigenvalue density of La-
guerre β-ensembles. These ensembles are characterized
by the jpd

p({xi}) ∝
N∏
i=1

w(xi)
∏
i<j

|xi − xj |β ,

w(x) = e−
β
2 x or w(x) = e−N

β
2 x, β > 1.

(1.3)

The limiting eigenvalue density of Laguerre β-ensembles
for β = 1, 2 and 4 is known analytically [13] and is given
as,

σ(x) =

{
1

2π ( 4−x
x )

1
2 , for 0 < x < 4,

0, for x ≥ 4.
(1.4)

Later it was shown [14, 15] that the above equation is
also true for all values of β. With the limit θ → 1,
V (x) = β

2x and γ = β − 1, the γ-ensemble jpd in equa-
tion (1.1) approaches jpd for Laguerre β-ensembles de-
fined in equation (1.3). Thus with these limits for θ and
γ along with appropriate V (x), we can numerically com-
pute eigenvalue density of β-ensembles for any β > 1.
For Laguerre β-ensembles at β = 4, we choose γ = 3
and V (x) = 2x. Our numerical result for eigenvalue den-
sity shows excellent agreement with the analytical result
(1.4), except very close to the soft edge. Next we system-
atically vary exponent γ(= β − 1), keeping the external
potential (V (x) = 2x) the same. The eigenvalue densi-
ties thus obtained, after appropriate scaling, lie on top of
each other and are equivalent to eigenvalue densities of
Laguerre β-ensemble in equation (1.4). All the densities
diverge near hard edge with the exponent − 1

2 . The pa-
rameters of the fit for the density near origin also show
an excellent agreement with the analytical expressions.
The overall agreements with known and expected results
verifiy that the effective potential method developed in
[1] is a powerful tool that can be used for all γ > 0.

The paper is organized as follows. In Section II we give
some details of the numerical solution to RH problem for
γ ensembles. The equilibrium density can be obtained
replacing external potential V (x) with γ dependent ef-
fective potential Veff(x; γ). In Section III we obtain jpd
for β ensembles as limiting case of jpd for γ ensembles
and show how to compute eigenvalue density numerically
for any β > 1. In Section IV we compute effective poten-
tials and equilibrium densities by systematically varying

exponent γ, keeping the external potential V (x) = 2x.
We also show the results for equilibrium density of La-
guerre β ensembles at β = 4 and compare it with known
analytical result. Finally, we analytically solve the RH
problem for θ = 1 to find the exact expressions of effec-
tive potentials for Laguerre β ensembles and show that
they are consistent with our θ → 1 numerical results.

II. THE EQUILIBRIUM PROBLEM FOR γ
ENSEMBLE

Here we give a brief overview of the solution to the
RH problem of γ-ensembles and the computation of its
eigenvalue density. The complete analysis can be found
in [1]. Consider the γ-ensembles defined by the jpd in
equation (1.1). The unique equilibrium measure µ that
minimizes the energy functional

1

2

∫∫
ln

1

|x− y|
dµ(x)dµ(y) +

γ

2

∫∫
ln

1

|xθ − yθ|
dµ(x)dµ(y)

+

∫
V (x)dµ(x),

(2.1)
satisfies the Euler-Lagrange (EL) equation∫

ln |x−y|dµ(y)+γ

∫
ln |xθ−yθ|dµ(y)−V (x) = ` (2.2)

if x lies inside the support of density and the equality
sign is replaced by < if x lies outside the support. Here
` is some constant. In formulating the RH problem from
the above EL equations, crucial role is played by the
Joukowsky Transformation (JT) for hard edge,

Jc(s) = c(s+ 1)(
s+ 1

s
)

1
θ , (2.3)

where s is a complex variable. The points in the complex
domain, which are mapped by the JT on to a real line,
form a contour ν given by,

r(φ) = tan

(
φ

1 + θ

)/[
sinφ− cosφ tan

(
φ

1 + θ

)]
,

(2.4)
where 0 < φ < 2π is the argument of s in the complex
plane. Schematic Figure 1 shows mapping of all points
on contour ν to two different regions in the complex plane
by the JT Jc(s). By defining complex transforms

g(z) ≡
∫

log(z − x)dµ(x), z ∈ C\(−∞, b],

g̃(z) ≡
∫

log(zθ − xθ)dµ(x), z ∈ Hθ\(0, b],
(2.5)

with their derivatives G(s) ≡ g′(s), G̃(s) ≡ g̃′(s) and the
function M(s) as,

M(s) ≡

{
G(Jc(s)), for s ∈ C\D̄,
G̃(Jc(s)), for s ∈ D\[−1, 0],

(2.6)
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FIG. 1: (Color online) Schematic figure for the mapping of
JT

the sum and difference of the EL equations can be written
as

M+(s1) + γM−(s1) +M−(s2) + γM+(s2) = 2V ′(Jc(s)),

M+(s1)−M−(s2) +M−(s1)−M+(s2) = 0.

(2.7)

Here s1 ∈ ν1 and s2 ∈ ν2 (see Figure 1). Equation (2.7),
together with some of the limits of M(s), form the RH
problem for M(s). The RH problem in terms of N(s) ≡
M(s)Jc(s) is then

RH problem for N :

• N is analytic in C \ ν.

• N+(s1) + γN−(s1) +N−(s2) + γN+(s2)
= 2V ′(Jc(s))Jc(s)

N+(s1)−N−(s2) +N−(s1)−N+(s2) = 0. (2.8)

• N(0) = θ and N(s)→ 1 as s→∞.

We further define a function f such that,

f(Jc(s)) ≡ N+(s) +N−(s). (2.9)

This gives solution to RH problem of N(s) as,

N(s) =

{
−1
2πi

∮
ν
f(Jc(ξ))
ξ−s dξ + 1, s ∈ C\D̄,

1
2πi

∮
ν
f(Jc(ξ))
ξ−s dξ − 1, s ∈ D\[−1, 0].

(2.10)

Also from the RH problem for N(s), the constant c of
the JT in (2.3) satisfies the equation

1

2πi

∮
ν

f(Jc(s))

s
ds = 1 + θ. (2.11)

Thus the sum equation in the RH problem for N(s) can
be rewritten as,

(1−γ)(N+(s1)+N−(s2))+2γf(Jc(s)) = 2V ′(Jc(s))Jc(s).
(2.12)

Defining the inverse mapping of JT as,

s = J−1
c (x) = h(x). (2.13)

with (s1)+ = h(y) ; (s2)− = h̄(y) ; s1 = h(x) and s2 =
h̄(x), we substitute for [N+(s1) + N−(s2)] using equa-
tion (2.10) and the inverse mapping. We finally get the
integral equation,

f(y; γ) =
V ′(y)y

γ
− 1− γ

γ

[
1 +

1

2π

∫ b

0

f(x; γ)φ(x, y)dx

]
,

(2.14)
where

φ(x, y) = Im

[(
1

h(y)− h(x)
+

1

h(y)− h(x)

)
h
′
(x)

]
.

(2.15)
We solve (2.14) for f(y; γ) and (2.11) for c numerically,
self-consistently. The new effective potential Veff(x; γ) is
related to f(x; γ) by

V ′eff(x; γ) =
f(x; γ)

x
. (2.16)

The eigenvalue density for this effective potential is given
by [1],

σ(y; γ) =
−1

2π2γy

∫ 0

b

xV ′eff(x; γ)χ(x, y)dx,

χ(x, y) = Re

[(
1

h(y)− h(x)
− 1

h(y)− h(x)

)
h′(x)

]
.

(2.17)

III. EIGENVALUE DENSITY FOR β
ENSEMBLES

In equation (1.1) if we take limit θ → 1 and V (x) = β
2x,

we get jpd of Laguerre β ensembles with β = 1+γ. So in
the analysis of Section II, if we take θ → 1 and V (x) =
β
2x, we can compute eigenvalue density for Laguerre β
ensembles for any β > 1. Note that equations (2.14)–
(2.17) are valid only for θ > 1. Thus we choose θ =
1.0001 for the θ → 1 limit. In section IV C we analytically
solve the RH problem explicitly for θ = 1 case and show
that the results are consistent with numerical solution
for θ → 1. As θ → 1 the shape of contour ν approaches
a circle. Figure 2 shows contour ν and its mapping for
θ → 1, c→ 0.5.

Once the contour and the mapping (and consequently
the inverse mapping) is known, we solve equation (2.11)
and equation (2.14) self-consistently to find f(x;β).
Then the effective potential and the eigenvalue density
are computed with equation (2.16) and equation (2.17),
respectively, for β = 1 + γ.

IV. RESULTS

For the γ-ensembles, we first choose θ very close to 1
(θ = 1.0001) and a linear external potential, V (x) = 2x.
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FIG. 2: (Color online) Top panel: ν contour for θ → 1, c→
0.5. Bottom panel: mapping for θ → 1, c→ 0.5 (small scatter
is due to numerical errors).

We vary the exponent γ over a range of values to see how
the effective potential and the eigenvalue density changes.
The corresponding effective potential shows transition to
a non-monotonic behavior as γ is changed from greater
than 1 to less than 1. Such a nonmonotonic effective po-
tential has been shown [7] to produce transition from a
diverging to a non-diverging eigenvalue density near the
origin. Note that the γ-ensemble with θ → 1, γ = 3
and V (x) = 2x is also equivalent to the Laguerre β-
ensemble with β = 4. The numerically computed eigen-
value density is compared with analytical result available
for β = 4. From Section II and Section III we show that
this eigenvalue density can be numerically computed for
any β ≥ 1. The analytical results for Laguerre beta en-
sembles obtained in Section IV C also suggest that the
non-monotonicity of the effective potential should disap-
pear at θ = 1. To see this change in non-monotonic
behavior we vary the value of θ near 1 for two represen-
tative values of γ < 1 (γ = 0.6) and γ > 1 (γ = 3). For
γ = 3, we observe a transition from non-monotonic to
monotonic effective potential as θ is varied and then the
effective potential approaches a linear behavior as θ → 1.
Similarly, effective potential for γ = 0.6 shows gradual
decrease in non-monotonicity as θ → 1.
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FIG. 3: (Color online) Effective potential near origin for
different γ, V (x) = 2x and θ = 1.0001.

A. Effective potential near origin for θ = 1.0001
(θ → 1 limit)

For θ = 1.0001 and V (x) = 2x, after finding a self-
consistent solution to f(x; γ) using equation (2.14) and
equation (2.11), we compute the effective potential using
equation (2.16). The effective potential shows a qualita-
tive change in its behavior near origin going from γ < 1
(or β < 2) to γ > 1 (or β > 2). Figure 3 shows that the
effective potential is monotonically increasing for γ > 1.
In contrast for γ < 1 the effective potential develops a
minima and shows decreasing behavior near origin. The
minima of effective potential moves further away from
origin as γ decreases from 1. It has been shown in [7] that
such a minima in confining potential, if deep enough, can
produce transition from diverging eigenvalue density at
hard-edge to non-diverging density. The γ-ensemble was
originally considered as a solvable toy model for 3D disor-
dered systems [1] whose eigenvalues xi determine the con-
ductance of the system. The parameter γ decreases from
1 as the strength of disorder increases. Taking θ = 1.0001
in this toy model, we show here that for γ < 1 the corre-
sponding effective potential deviates from the monotoni-
cally increasing behavior and has a minima which moves
away from origin as γ is decreased. This minima is very
close to the origin and is not sufficiently deep to produce
the transition in density, as shown in Figure 7. However,
the position and strength of the minima will depend on
the competition between the nature of the additional in-
teraction as well as the external confining potential. To
show the effect of the confining potential, we consider a γ-
ensemble with quadratic external potential V (x) = αx2,
γ = 0.7 and θ → 1. We choose α = 0.2 so that the po-
tential is much weaker near the origin compared to the
linear potential. Figure 4 shows that the minima of the
effective potential is shifted significantly away from the
origin and is deeper compared to the effective potentials
in Figure 3.
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B. Eigenvalue density for Laguerre β ensembles

For the eigenvalue density of Laguerre β ensembles
with β = 4, we choose V (x) = 2x, θ = 1.0001 and
γ = 3. Solving for f(x; γ) self-consistently using equa-
tion (2.14) and equation (2.11), we compute the corre-
sponding eigenvalue density using equation (2.17). The
numerical density matches very closely with the analytic
result except near the soft edge where it underestimates
the support slightly (see Figure 6). This is may be due to
the fact that θ is not exactly equal to 1 and the small non
monotonic behavior of Veff(x) near origin restricts the
support to a slightly smaller value. Since the γ-ensemble
formalism is valid for any γ > 0 and well behaved po-
tential V (x), we can numerically compute the eigenvalue
density for any β > 1. Such an eigenvalue density is ex-
pected to be the same for all β [16]. Instead, we system-
atically change β (or γ) but keep the external potential
same as V (x) = 2x. Though these are not classical β
ensembles, the eigenvalue density obtained can be con-
verted to Laguerre β ensemble density by appropriate
scaling. We have already shown in Figure 3 an interest-
ing qualitative behavior of these effective potentials near
origin. In Figure 5 we show the effective potentials over
the full support of density. The effective potential be-
comes less and less converging as β increases from 1.4 to
4 (or γ increases from 0.4 to 3). Figure 7 shows the den-
sities calculated from equation (2.17) for different values
of β. These numerical results also agree very well with
the analytical expression (see equation (4.1)) for density
obtained after appropriate scaling of equation (1.4) for

V (x) = 2x instead of V (x) = β
2x.

σ(x) =


2
π

1
β (β−xx )

1
2 , for 0 < x < β,

2
πβ
− 1

2x−
1
2 , for x→ 0,

0, for x ≥ β.
(4.1)

All of the densities diverge near the hard-edge and the
support of densities increases as β increases (see Figure
7). The numerical densities near origin when fitted to
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FIG. 5: (Color online) Effective potential for different β and
V (x) = 2x.

 Numerical(b=4)

FIG. 6: (Color online) density for β = 4. The dotted line
shows numerical result compared to analytical result shown
with bold line.

curve σ(x;β) = axb show that the exponents b are all
− 1

2 for different β. Figure 8 shows the prefactors a as
function of β.

C. RH problem for θ = 1

In this subsection we derive the analytic form of the
effective potential for Laguerre β ensemble by exactly
solving the RH problem for θ = 1, γ > 0. The external
potential for Laguerre β ensemble is V (x) = β

2x = 1+γ
2 x.

For θ = 1, contour ν is a unit circle in complex plane
centered at origin. The regions inside and outside the
contour ν are both mapped onto the same complex region
C\[0, b]. Every point on the contour is mapped onto a
point on real line in [0, b]. Schematic Figure 9 shows the
mapping.

When θ = 1, equation (2.5) gives g(z) = g̃(z). M(s) is
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then defined as

M(s) ≡

{
G(Jc(s)), for s ∈ C\D̄,
G(Jc(s)), for s ∈ D\[−1, 0].

(4.2)

Now since g̃+(x) = g+(x), region (1) and region (3) in

FIG. 9: (Color online) Schematic figure for the mapping of
JT for θ = 1

the schematic mapping are one and the same. Similarly
g̃−(x) = g−(x) means region (2) and region (4) are same.
In terms of functions M(s) these relations can be written
as M+(s1) = M+(s2) and M−(s1) = M−(s2) (see Figure
1). With N(s) ≡M(s)Jc(s), equation (2.8) now becomes

(1 + γ)(N+(s1) +N−(s1)) = 2V ′(Jc(s))Jc(s), (4.3)

where Jc(s) = Jc(s1) = Jc(s2) = x ∈ [0, b]. With
f(Jc(s)) defined according to equation (2.9) and V (x) =
β
2x = 1+γ

2 x for Laguerre β ensembles, we finally get,

f(x) = x,

Veff(x) = x.
(4.4)

Note that this result is also apparent from equation (1.4)
which says that eigenvalue density for all Laguerre β en-
sembles is same and the fact that interaction term in
MB ensemble at θ = 1 is equivalent to that of Lagurre β
ensembles for β = 2. Equation (4.4) tells us that the non-
monotonicity of effective potentials previously shown for
γ < 1 should disappear when θ = 1. Figure (10) shows
the effective potentials near the origin for γ = 0.6 and a
range of values for θ between 1 and 2. We have shown
in [1] that the effective potential for θ = 2 monotoni-
cally goes to zero at the origin. As θ is reduced from
2, the effective potential develops a non-monotonicity.
The minima of the effective potential gradually becomes
deeper and moves away from the origin. Later as θ moves
closer to 1, the depth of the minima of the effective po-
tential decreases and the minima shifts closer to the ori-
gin. Thus with decreasing non-monotonicity, we expect
the effective potential to become linear for θ = 1 as pre-
dicted by equation (4.4). We also explore the change
in the effective potential for γ = 3 for different values
of θ near 1 (see Figure 11). Interestingly, the effective
potential shows change from a non-monotonic to mono-
tonic behavior near the origin at some intermediate value
of θ before finally tending to linear behavior as θ → 1.
Although within our numerical accuracy the effective po-
tential near the origin does not always decrease consis-
tently as θ is decreased, the general behavior tends to-
wards the expected linear dependence, Veff(x) = x, as
θ → 1.

In the RH problem for θ = 1, if we choose V (x) = 2x

instead of β
2x, equation(4.3) gives f(x) = Veff(x) =
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FIG. 10: (Color online) The effective potentials close to the origin and over the full support, for γ = 0.6 and different values
of θ. Near the origin, the minima of the non-monotonic effective potential first moves away from the origin and then moves
towards the origin as θ is reduced. We know from [1] that the effective potential is monotonic for θ = 2. Also, consistent with
the analytical result for θ = 1, the non-monotonicity of effective potential near the origin reduces as θ → 1.
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FIG. 11: (Color online) The effective potentials close to the origin and over the full support, for γ = 3.0 and different values
of θ. It shows transition from a non-monotonic to a monotonic behavior of the effective potential near the origin for different
values of θ. The effective potential tends to a linear behavior as predicted by the analytical result for θ = 1.

4
1+γx. The numerical results obtained for effective po-

tential of γ ensemble with θ = 1.0001 and V (x) = 2x
agree very well with this analytic expression (see Figure
5).

V. SUMMARY AND CONCLUSION

The eigenvalue density of γ-ensembles has previously
been computed by solving the corresponding Riemann-
Hilbert problem. We use the same method for different
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values of θ close to 1 and γ > 0, and find that the effec-
tive potential becomes non-monotonic near the origin for
γ < 1. The minimum of the effective potential shifts fur-
ther away from the origin as γ is decreased systematically.
While the shift and the depth of the minimum is not suf-
ficient to produce a hard-edge to soft-edge transition in
density in this toy model, it suggests that with appro-
priate combination of the additional interaction and the
confining potential, such a transition can indeed occur.
The exponent γ induced hard-edge to soft-edge transition
in density describes disorder induced metal to insulator
transition in mesoscopic systems. It would be interest-
ing to see if (1.2) remains a good candidate for such a
transition.

The limit θ → 1 corresponds to the Laguerre β-
ensembles. This allows us to use the model to numerically
compute the eigenvalue density for Laguerre β-ensembles

for all β > 1. The results agree with various expected an-
alytical expressions including the ones from the exact an-
alytical solution to RH problem for θ = 1. This shows the
applicability of the effective potential method for general
γ-ensembles with different values of θ > 1 and γ > 0.
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B 72(12) 125317 URL https://link.aps.org/doi/10.

1103/PhysRevB.72.125317

[13] Forrester P J 1994 J. Math. Phys. 35 2539–2551 ISSN
0022-2488 URL https://doi.org/10.1063/1.530883

[14] Baker T H and Forrester P J 1997 Comm. Math. Phys.
188 175–216 ISSN 0010-3616 URL https://doi.org/

10.1007/s002200050161

[15] Johansson K 1998 Duke Math. J. 91 151–204
ISSN 0012-7094 URL https://doi.org/10.1215/

S0012-7094-98-09108-6

[16] Forrester P J 1993 Nuclear Phys. B 402 709–
728 ISSN 0550-3213 URL https://doi.org/10.1016/

0550-3213(93)90126-A

https://doi.org/10.1088/1751-8121/ab56e0
https://doi.org/10.1088/1751-8121/ab56e0
http://stacks.iop.org/0305-4470/28/L159
http://dx.doi.org/10.1016/S0550-3213(98)00642-7
http://dx.doi.org/10.1016/S0550-3213(98)00642-7
https://doi.org/10.1214/17-EJP62
https://doi.org/10.1214/17-EJP62
http://dx.doi.org/10.1007/s10955-015-1353-3
https://doi.org/10.1088/1361-6544/ab247c
https://doi.org/10.1088/1361-6544/ab247c
http://dx.doi.org/10.1088/0951-7715/27/10/2419
http://dx.doi.org/10.1088/0951-7715/27/10/2419
https://link.aps.org/doi/10.1103/PhysRevLett.59.2475
https://link.aps.org/doi/10.1103/PhysRevLett.59.2475
https://link.aps.org/doi/10.1103/PhysRevLett.82.4272
https://link.aps.org/doi/10.1103/PhysRevLett.82.4272
https://link.aps.org/doi/10.1103/PhysRevB.66.115318
https://link.aps.org/doi/10.1103/PhysRevB.66.115318
https://doi.org/10.1088/1751-8113/47/12/125103
https://doi.org/10.1088/1751-8113/47/12/125103
https://link.aps.org/doi/10.1103/PhysRevB.72.125317
https://link.aps.org/doi/10.1103/PhysRevB.72.125317
https://doi.org/10.1063/1.530883
https://doi.org/10.1007/s002200050161
https://doi.org/10.1007/s002200050161
https://doi.org/10.1215/S0012-7094-98-09108-6
https://doi.org/10.1215/S0012-7094-98-09108-6
https://doi.org/10.1016/0550-3213(93)90126-A
https://doi.org/10.1016/0550-3213(93)90126-A

	Introduction
	The equilibrium problem for  ensemble
	Eigenvalue density for  ensembles
	Results
	Effective potential near origin for = 1.0001 (1 limit)
	Eigenvalue density for Laguerre  ensembles
	RH problem for = 1

	Summary and conclusion
	Acknowledgment
	References
	References

