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Abstract

This is the second part of a study of the limiting distributions of the top eigenvalues of a

Hermitian matrix model with spiked external source under a general external potential. The

case when the external source is of rank one was analyzed in an earlier paper. In the present

paper we extend the analysis to the higher rank case. If all the eigenvalues of the external

source are less than a critical value, the largest eigenvalue converges to the right end-point of

the support of the equilibrium measure as in the case when there is no external source. On the

other hand, if an external source eigenvalue is larger than the critical value, then an eigenvalue

is pulled off from the support of the equilibrium measure. This transition is continuous, and is

universal, including the fluctuation laws, for convex potentials. For non-convex potentials, two

types of discontinuous transitions are possible to occur generically. We evaluate the limiting

distributions in each case for general potentials including those whose equilibrium measure have

multiple intervals for their support.

1 Introduction

Let V : R→ R be an analytic function such that V (x)√
x2+1

→ +∞ as |x| → ±∞. Let An be an n× n
Hermitian matrix and consider the probability density function (p.d.f.) on the set Hn of n × n
Hermitian matrices defined by

pn(M) =
1

Zn
e−nTr(V (M)−AnM), M ∈ Hn. (1)

Here Zn is the normalization constant so that
∫
Hn pn(M)dM = 1 where dM denotes the Lebesgue

measure. The sequence of probability spaces (Hn, pn), n = 1, 2, · · · , is called a Hermitian matrix

model with external source matrices An, n = 1, 2, · · · , and potential V . Note that due to the

unitary invariance of dM and the presence of the trace in the exponent of (1), the density pn(M)
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depends only on the eigenvalues of An. Hence we may assume without loss of generality that An

is a diagonal matrix.

The main focus of this paper is the special case when

An = diag(a1, · · · ,am, 0, · · · , 0︸ ︷︷ ︸
n−m

) (2)

for all n ≥ m with fixed1 non-zero a1, · · · ,am. In this case, (Hn, pn) is called a Hermitian matrix

model with spiked external source (spiked model for short) of rank m. The main interest of this

paper is to study how the limiting location and the fluctuation of the top eigenvalue(s) of M as

n→∞ depend on the ‘external source eigenvalues’ aj .

The case when m = 1 (rank one case) was studied in [7] to which we refer the readers for the

background and motivations of the spiked models. See also [4], [23], [6], [18], [20], [27], [14], [1],

[22], [10], [9], [21], [28], [13], [25], [11], and [12].

The spiked model of an arbitrary fixed rank was studied in great detail for Gaussian potential

in [23] and also for the so-called complex Wishart spiked models in [4]. Let us review the Gaussian

case here. Let e denote the right end-point of the support of the equilibrium measure associated

to the potential V . For the Gaussian potential V (x) = 1
2x

2, e = 2. Let ξmax(n) denote the largest

eigenvalue of the random matrix of size n. Then there is a constant β > 0 such that

Pn((ξmax(n)− e)βn2/3 ≤ T ; a1, · · · ,am)→
{
F0(T ), if max{a1, · · · ,am} < 1

2V
′(e),

Fm(T ), if a1 = · · · = am = 1
2V
′(e).

(3)

On the other hand, if a1 = · · · = am > 1
2V
′(e), there is a constant x0(a1) > e and γ(a1) > 0 such

that

Pn((ξmax(n)− x0(a1))γ(a1)n1/2 ≤ T ; a1, · · · ,am)→ Gm(T ) (4)

for each T ∈ R, as n → ∞. Here Fm(T ), m = 0, 1, 2, · · · , and Gm(T ), m = 1, 2 · · · , are certain

cumulative distribution functions. The constant x0(a) is a continuous function in a ∈ (1
2V
′(e),∞)

and satisfies x(a) ↓ e as a ↓ 1
2V
′(e). Hence for the Gaussian potential, as aj ’s increase, the limiting

location ξmax := limn→∞ ξmax(n) stays at the right end-point e of the support of the equilibrium

measure until aj ’s reach the critical value 1
2V
′(e). After the critical value, ξmax break off from e

and moves to the right continuously.

This continuity of ξmax does not necessarily hold for general potentials. Indeed, for the rank

one case it was shown in [7] that ξmax may be a discontinuous function of the (unique) external

eigenvalue for certain potentials.2 If V is such a a potential, then ξmax for the potentials sV is also

discontinuous for all s close enough to 1. An example of such V can be constructed by considering

a two-well potential with a deep well of the left and a shallow well on the right. Nevertheless there

still is universality: it was shown in the rank one case that the limiting distribution of ξmax(n) at

1We also consider the case when aj depend on n. Indeed, in transitional cases we assume aj varies in n but

converges to a fixed value as n→∞.
2It was shown that ξmax is continuous when V (x) is convex in x ≥ e. A criterion when the discontinuity occurs

is given in [7].
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the continuous points of ξmax is (generically) same as that of the Gaussian potential. (It though

varies depending on whether the external eigenvalue is sub-critical, critical, and super-critical.)

Even more, at a discontinuous point, the limiting distribution is something new but it is still

(generically) independent of V . In this paper we show that similar universality holds for the higher

rank case as well.

While [7] and the current paper were being written, a work on a similar subject was announced

in the recent preprints [11] and [12] by Bertola, Buckingham, Lee, and Pierce. The major difference

of their work and ours is that we take aj ’s to be all distinct and keep m fixed, while [11, 12] take aj
to be identical and let m→∞ with m = o(n). Hence these two works complement each other. The

methods are different and it seems that each has an unique advantage in handling the situations

mentioned above; see Remark 1.3 below. See also Section 1.1 of [7] for a further comparison.

1.1 Algebraic relation of higher rank case and rank one case

The starting point of analysis in this paper is a simple algebraic relation between the higher rank

case and the rank one case. The gap probability, for example, can be written as a finite determinant

built out of the gap probabilities of rank one cases.

In order to state this algebraic relation, we slightly generalize the setting of the spiked model.

Note that in the definition of the density (1), the factor n in front of Tr(V (M)−AnM) equals the

dimension of the matrices M and An. We may take the factor different from the dimension and

consider the following p.d.f. :

pd,n(M) :=
1

Zd,n
e−nTr(V (M)−AdM), M ∈ Hd, (5)

where

Ad = diag(a1, · · · ,am, 0, · · · , 0︸ ︷︷ ︸
d−m

) (6)

for some non-zero numbers a1, · · · ,am. Define, for a complex number s and a measurable subset

E of R,

Ed,n(a1, · · · ,am;E; s) := E
[ d∏
j=1

(1− sχE(ξj))

]
=

∫
Hd

d∏
j=1

(1− sχE(ξj))pd,n(M)dM (7)

where ξj , j = 1, · · · , d denote the eigenvalues of M . It is well-known that (see e.g. [26])

P(j)
d,n(a1, · · · ,am;E) =

j−1∑
i=0

(−1)i

i!

di

dsi

∣∣∣∣
s=1

Ed,n(a1, · · · ,am;E; s). (8)

is the probability that there are no more than j − 1 eigenvalues in E. When E = (x,∞), this is

precisely the cumulative distribution function (c.d.f.) of the jth largest eigenvalue. When Ad = 0

we denote (7) by Ed,n(E; s), and we also define

Ēd,n(a1, · · · ,am;E; s) :=
Ed,n(a1, · · · ,am;E; s)

Ed,n(E; s)
. (9)
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Let pj(x;n), j = 0, 1, · · · , be the orthonormal polynomials with respect to the (varying) measure

e−nV (x)dx and set ψj(x;n) := pj(x;n)e−
n
2
V (x). Define

Γj(a;n) :=

∫
R
en(ax−V (x)/2)ψj(x;n)dx. (10)

The following identity relates the higher rank case to the rank one cases.

Theorem 1.1. Let E be a subset of R and let s be a complex number such that En−j+1,n(E; s) 6= 0

for all j = 1, · · · ,m. We have for distinct a1, · · · ,am,

Ēn,n(a1, · · · ,am;E; s) =
det
[
Γn−j(ak;n)Ēn−j+1,n(ak;E; s)

]m
j,k=1

det [Γn−j(ak;n)]mj,k=1

. (11)

Remark 1.1. When some aj are identical, the above theorem still holds by using L’Hôpital’s rule.

This follows from the smooth dependence of the quantities above in aj ’s which can be proved

directly. The explicit smooth dependence of multiple orthogonal polynomials on aj ’s, which is

essentially equivalent to the smooth dependence of quantities in (11), is shown in, e.g., [20, 11, 12]

in similar situations. However, in the rest of the paper, we only consider the case when aj are all

distinct.

From the above theorem, the study of the limiting distribution of the eigenvalue of higher rank

case may be reduced to a study of rank one case, which was done in [7]. However, for the interesting

cases when aj ’s converge to the same number in the limit, the numerator and denominator both

tend to zero and thus we need to perform suitable row and column operations and extract the

common decaying factors to make the ratio finite. This requires us to extend the asymptotic result

of [7] to include the sub-leading terms of the asymptotics of Ēn−j+1,n(ak;E; s). Nevertheless we

only requires the existence of the asymptotic expansion but not the exact formulas, and hence most

of the extension of the result of [7] is straightforward. The technical part is the row and column

operations and to show that the ratio becomes finite after factoring out the common terms.

1.2 Assumptions on potential V and some preliminary notations

In this subsection, we first state the precise conditions on V . Then we fix some notations and

discuss a few important results of the rank one case.

Assume that V satisfies the following three conditions:

V (x) is real analytic in R, (12)

V (x)√
x2 + 1

→ +∞ as |x| → ∞, (13)

V is ‘regular’. (14)

At the end of this section, we will discuss additional technical assumptions on V .

Here the regularity of V is a condition defined in [16] which we do not state explicitly here.

We only note that this condition holds for ‘generic’ V [19] and for such V , the density Ψ(x) of the
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associate equilibrium measure (the limiting empirical measure when there is no external source)

vanishes like a square-root at the edges of its support.

In the usual unitary ensembles (with no external source), the condition (13) is typically replaced

by V (x)
log(x2+1)

→ +∞ as |x| → ∞ [16]. Here (13) is needed to ensure that the probability density (1)

is well defined for all (spiked) An.

With the above assumptions, the support Ψ(x) consists of finitely many intervals:

J :=

N⋃
j=0

(bj , aj+1), where b0 < a1 < · · · < aN+1, (15)

for some N ≥ 0. Note that we allow in this paper that N can be larger than 0. We denote the

right end-point of J by

e := aN+1 (16)

as in [7]. We also set

β :=
(

lim
x↑e

πΨ(x)√
e− x

)2/3
. (17)

By the condition (14), β is a non-zero positive number. It is also known that under the above

assumptions (see [16] and [15]) for the usual unitary ensemble with no external source,

lim
n→∞

Pn
(

the largest eigenvalue < e +
T

βn2/3

)
= F0(T ), (18)

where F0 is the Tracy-Widom distribution (see (34) below for definition.)

We now recall a few notations and results from the analysis of rank one case [7]. Let

g(z) :=

∫
J

log(z − s)Ψ(s)ds, z ∈ C \ (−∞, e), (19)

be the so-called g-function associated to V . Let ` be the Robin constant which is defined by the

condition

g+(x) + g−(x)− V (x) = `, x ∈ J̄ . (20)

We also define two functions

G(z; a) := g(z)− V (z) + az, H(z; a) := −g(z) + az + ` (21)

for a > 0. These functions play an important role in the analysis of rank one case. Observe that

G(e; a) = H(e; a) from (20). The function H(x; a) is convex in x ∈ [e,∞). Let c(a) ∈ [e,∞) be

the point at which H(x; a) takes its minimum. It is easy to check that c(a) = e for a ≥ 1
2V
′(e) and

c(a) > e for a < 1
2V
′(e).

Now let ac be the critical value associated to V defined by

ac := inf{a ∈ (0,∞)| there exists x̄ ∈ (c(a),∞),∞) such that G(x̄; a) > H(c(a); a)}. (22)
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In general, ac ∈ (0, 1
2V
′(e)]. If V (x) is convex for x ≥ e, then ac = 1

2V
′(e). The limiting location of

the largest eigenvalue in the rank one case depends on whether a < ac or a > ac. Here we denote

it by ξ(a) to indicate the dependence of on a.

Super-critical case: Set

JV := {a ∈ [ac,∞)| max
x∈[c(a),∞)

G(x; a) attains its maximum at more than one point}. (23)

This is a discrete set. If V (x) is convex in x ≥ e, then JV = ∅. For a > ac such that a /∈ JV ,

let x0(a) denote the point in [c(a),∞) at which G(x; a) takes its maximum. For such a, it was

shown that x0(a) is a continuous, strictly increasing function. Moreover, ξ(a), the limiting location

of the largest eigenvalue in the rank one case, equals x0(a) in this case. On the other hand, if

a > ac and a ∈ JV , then ξ(a) is a discrete random variable whose values are the maximizers

of maxx∈(c(a),∞)G(x; a) (there are at least two of them). We call a > ac such that a ∈ JV the

secondary critical values.

Sub-critical case: On the other hand, if a < ac, then ξ(a) = e.

Critical case: At the critical case when a = ac, ξ(a) depends on whether ac = 1
2V
′(e) or

ac <
1
2V
′(e). In both cases, let us assume that ac /∈ JV . Then when ac = 1

2V
′(e), ξ(a) = e as

in the sub-critical case. But when ac <
1
2V
′(e), ξ(a) is a discrete random variable whose value is

either e or the unique maximizer x0(ac) of maxx∈(c(a),∞)G(x; a) (which equals H(c(ac); ac) from

the definition (22)).

For the rest of the paper, we assume that V is a potential such that

ac /∈ JV (24)

and

for a ∈ JV \ {ac}, max
x∈(c(a),∞)

G(x; a) is attained at two points x1(a) and x2(a). (25)

Moreover, we assume that

G′′(x0(a); a) 6= 0 for a ∈ (ac,∞) \ JV , (26)

G′′(x1(a); a) 6= 0, G′′(x2(a); a) 6= 0 for a ∈ JV \ {ac}, (27)

G′′(x0(ac); ac) 6= 0 for ac < ac. (28)

Note that under this assumption, all of G′′(xi(a); a) (i = 0, 1, 2) are negative. In [7], these excluded

cases are referred as “exceptional cases”. However, to be precise, even though it is reasonable to

imagine that non-exceptional cases are generic in the sense of [19], this was not established in [7].

This issue will be considered somewhere else.

The above conditions are trivially satisfied if V (x), x ≥ e, is convex since in this case JV = ∅.
We note that if V is such that JV not empty, then it is easy to see that JsV is also non-empty for

real number s close enough to 1. Also it is easy to find an example of non-convex potential V such

that JV 6= ∅ by considering a double-well potential. (See Remark 1.6 of [28].)
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The analysis of this paper applies to the excluded cases without much change but we do not

include them here for the sake of presentation.

We use the following notations for two intervals that appear frequently:

ITn :=
[
e +

T

βn2/3
,∞
)
, (29)

JTn (x∗) :=
[
x∗ +

T√
−G′′(x∗)n

,∞
)
, (30)

for T ∈ R and for x∗ > e, assuming that G′′(x∗) < 0 in the later case.

1.3 Statement of main results

We now state the main results. The asymptotic results here are stated in some cases in terms of the

distribution function (8) P(j)
d,n and in other cases in terms of the expectation (7) Ed,n. This choice is

simply to make the formula compact. The analysis applies to both quantities and indeed it is easy

to deduce one result from the other from the relation (8) and the uniformity of the asymptotics in

s near 1. We can also express all the results in terms of correlation functions but we find that the

attention to individual eigenvalue is more illustrating in the current framework.

We use the phrase that a limit holds ‘uniformly in s which is close to 1’ in several places, for

example in Theorem 1.2. This means that there exists a complex neighborhood of 1 independent of

n in which the limit holds. A slightly more careful analysis would show that s uniformly converges

in a larger domain (for example, in any compact subset of C \ (1 + ε,∞), ε > 0,) but we do not

discuss this issue in this paper.

We state the results under the ‘genericity assumptions’ (24)- (28), in addition to the condi-

tions (12)- (14) discussed in the last subsection. We group the asymptotic results into sub-critical,

super-critical and critical cases.

When d = n, we use the notation P(j)
n for P(j)

d,n and En for Ed,n, respectively. We also state results

only in this case. The case when d 6= n is similar.

1.3.1 Sub-critical case

The first result is on the sub-critical case when all external eigenvalues are smaller than the critical

value ac. In this case the external source does not change the location and the limiting distribution

of the top eigenvalues.

Let

KAiry(x, y) :=
Ai(x) Ai′(y)−Ai′(x) Ai(y)

x− y (31)

be the Airy kernel. For any T ∈ R and s ∈ C, set

F0(T ; s) := det(1− sχ[T,∞)KAiryχ[T,∞)), (32)

where χE denotes the projection on the set E. Then

F
(j)
0 (T ) :=

j−1∑
i=0

(−1)i

i!

di

dsi

∣∣∣∣
s=1

F0(T ; s) (33)
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is the Tracy-Widom j-th eigenvalue distribution. In particular,

F0(T ) := F
(1)
0 (T ) = det(1− χ[T,∞)KAiryχ[T,∞)) (34)

is the Tracy-Widom distribution.

Theorem 1.2 (sub-critical case). Let a1, · · · ,am be fixed numbers such that max{a1, · · · ,am} < ac.

Assume that a1, · · · ,am are positive and distinct. Then for each T ∈ R,

lim
n→∞

En(a1, · · · ,am; ITn ; s) = F0(T ; s) (35)

uniformly in s which is close to 1.

Remark 1.2. The assumption that a1, · · · ,am are positive in Theorem 1.2 can be removed. The

proof of the above theorem uses the calculations in [7] of the gap probability Pn−j+1,n(a;E) which

are only detailed for a > 0. As suggested in [7, Section 2], there is a similar asymptotic result for

Pn−j+1,n(a;E) for a < 0 from which we can obtain the same result as the above theorem when

some of aj ’s are not positive. This remark applies also to Theorem 1.3 below.

Remark 1.3. The assumption that a1, · · · ,am are distinct in Theorem 1.2 is technical and the

result should hold without this assumption. The starting formula of the proof of this theorem

is the identity (11). When some of aj ’s are identical, the right-hand side of (11) becomes more

complicated by using l’Hôpital’s rule. This in turn requires a more detailed asymptotic results

for Pn−j+1,n(a;E). The analysis of [7] can be extended for this but we do not pursue this in this

paper for the sake of space and presentation. The same remark applies to all other theorems in

this section. It is interesting to contrast this situation to the papers [11] and [12] which analyzed

the similar model using the Riemann-Hilbert problem for multiple orthogonal polynomials. In that

approach, the case in which all aj ’s are identical is the simplest to analyze.

1.3.2 Super-critical case

In this subsection we consider the super-critical case in which some of the external source eigenvalues

are strictly larger than the critical value ac. In this case large external source eigenvalues do have

an effect on the top eigenvalues. We consider three sub-cases. In the first two cases, we assume

that aj /∈ JV for all j. The first among these is the case when aj are separated by O(1) distances.

In the second case, the external source eigenvalues are asymptotically the same. The third case is

the secondary critical case when aj are all asymptotically equal to some a ∈ JV \ {ac}. From the

discussion of Section 1.2, the last case does not occur if V (x) is convex for x ∈ [e,∞).

Let

G(T ) :=
1√
2π

∫ T

−∞
e−x

2/2dx (36)

be the c.d.f. of the standard normal distribution.
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Theorem 1.3 (super-critical case 1: separated external source eigenvalues). Let a1, · · · ,am be

fixed positive and distinct numbers. Suppose that there is p ∈ {1, · · · ,m} such that

aj > ac for j = 1, · · · , p, and aj < ac for j = p+ 1, · · · ,m. (37)

Assume, without loss of generality, that a1 > a2 > · · · > ap. Suppose that aj /∈ JV and

G′′(x0(aj)) 6= 0 for each j = 1, · · · , p. Then for each T ∈ R and j = 1, · · · , p,

lim
n→∞

P(j)
n (a1, · · · ,am; JTn (x0(aj))) = G(T ), (38)

where JTn (x∗) is defined in (30). We also have, for j = 1, 2, · · · ,

lim
n→∞

P(p+j)
n (a1, · · · ,am; ITn )) = F

(j)
0 (T ), (39)

where F
(j)
0 (T ) is the Tracy-Widom j-th eigenvalue distribution defined in (33).

Theorem 1.3 demonstrates that each of the external source eigenvalues which is greater than ac
pulls exactly one eigenvalue out of the support of the equilibrium measure. The limiting location

of each pulled-off eigenvalue depends only on the corresponding external source eigenvalue. The

fluctuation of each pulled-off is Gaussian. The rest of the eigenvalues are unaffected by the external

source eigenvalues asymptotically.

We now consider the situation when the external source eigenvalues are asymptotically the

same. A non-Gaussian fluctuation appears when they converge together in a particular fashion.

Define, for distinct α1, · · · , αk,

Gk(T ;α1, · · · , αk; s) :=
det
[∫∞
−∞ x

i−1e−x
2/2+αjx(1− sχ(T,∞)(x))dx

]
1≤i,j≤k

det
[∫∞
−∞ x

i−1e−x
2/2+αjxdx

]
1≤i,j≤k

. (40)

Observe that

Gk(T ;α1, · · · , αk; s) = Ek,1(α1, · · · , αk; [T,∞); s), (41)

in terms of the notation (7) when V (x) = x2/2 in (5). Hence Gk(T ;α1, · · · , αk; s) is an expectation

that arises from the k × k GUE with external source diag(α1, · · · , αm). As a special case,

G
(j)
k (T ) :=

j−1∑
i=0

(−1)i

i!

di

dsi

∣∣∣∣
s=1

Gk(T ; 0, · · · , 0; s) (42)

is the c.d.f. of the j-th largest eigenvalue of the k-dimensional GUE. When j = k = 1, this equals

G(T ).

Theorem 1.4 (super-critical case 2: clustered external source eigenvalues). Let a be a fixed number

such that a > ac, a /∈ JV and G′′(x0(a)) 6= 0. Set

ak = a+
√
−G′′(x0(a))

αk√
n
, k = 1, · · · ,m. (43)
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for fixed distinct α1, · · · , αm. Then for each T ∈ R,

lim
n→∞

En(a1, · · · ,am; JTn (x0(a)); s) = Gm(T ;α1, · · · , αm; s) (44)

uniformly in s which is close to 1.

Hence in this case the m eigenvalues which are outside of the bulk converge to the same location

x0(a). And after a scaling, they fluctuate as the eigenvalues of m×m GUE matrix with external

source diag(α1, · · · , αm).

Remark 1.4. We can also consider the general case that for a1, a2, · · · > ac where aj /∈ JV and

G′′(x0(aj)) 6= 0, p1 external source eigenvalues are close to a1, p2 external source eigenvalues are

close to a2, etc. Then for each j, pj eigenvalues converge to x0(aj) and they fluctuate like the

eigenvalues of pj × pj GUE with certain external source. This can be obtained by combining the

proofs of Theorem 1.3 and 1.4 but it is tedious. We omit the proof.

Remark 1.5. In Theorem 1.4, we can also prove the analogue of (39) and show that for each

j ≥ 1, the (m + j)-th eigenvalue converges to e and its limiting distribution is the Tracy-Widom

j-th eigenvalue distribution defined in (33). Similar remark also applies to Theorem 1.5 and to

Theorem 1.7 below.

We now consider the situation when all external source eigenvalues are near or at a secondary

critical value of V . In this case, we will state the result under the assumption that the support

of the equilibrium measure of V consists of one interval (i.e. N = 0 in (15)). This assumption is

made only for the ease of statement: see Remark 1.6 below how the result is changed if N > 0.

Let a ∈ JV and we consider the situation when m external source eigenvalues converge to a.

Under the assumption (25), the top m eigenvalues converge to one of two possible locations, which

we denote by x1(a) < x2(a). How many of the eigenvalues converge to each of them? It turned out

that any number is possible and it depends on how fast the external source eigenvalues converges

to a. There are m distinct scalings. To each scaling indexed by an m ∈ {1, · · · ,m} a number

pm ∈ (0, 1) is associated such that either one of the following two happens: with probability pm,

the top m−1 eigenvalues converge to x2(a) and the next top m−m+1 eigenvalues to x1(a), or with

probability 1 − pm, the top m eigenvalues converge to x2(a) and the next top m −m eigenvalues

to x1(a). In order to describe pm, we need some definitions.

Since we assume N = 0, the support J of Ψ(x) is of form J = (ẽ, e). Set γ(z) :=
(
z−ẽ
z−e

)1/4
which is defined on C \ [ẽ, e] and satisfies γ(z) ∼ 1 as z →∞. Define, for j ∈ Z,

Mj(z) =

√
2

π(e− ẽ)

γ(z) + γ(z)−1

2

(
γ(z)− γ(z)−1

γ(z) + γ(z)−1

)j
, z ∈ C \ (−∞, e] (45)

for z in C \ (−∞, e]. For j = 0, · · · ,m and for distinct a, b ∈ (e,∞), we define the matrix

P(a,m−j),(b,j) :=


M1(a) M′1(a) · · · M(m−j−1)

1 (a) M1(b) M′1(b) · · · M(j−1)
1 (b)

...
...

. . .
...

...
...

. . .
...

Mm(a) M′m(a) · · · M(m−j−1)
m (a) Mm(b) M′m(b) · · · M(j−1)

m (b)

 .
(46)
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We show in Proposition 7.1(b) that the determinant of P(a,m−j),(b,j) is non-zero and (−1)m(m−1)/2

times the determinant is positive if a < b. We also define, for c 6= 0 and distinct real numbers

α1, · · · , αm,

Q(0,m−j),(c,j)(α1, · · · , αm) :=

1 α1 · · · αm−j−1
1 ecα1 α1e

cα1 · · · αj−1
1 ecα1

...
...

. . .
...

...
...

. . .
...

1 αm · · · αm−j−1
m ecαm αme

cαm · · · αj−1
m ecαm

 , (47)

where j = 0, 1, · · · ,m. Note that (−1)m(m−1)/2 det[Q(0,m−j),(c,j)(α1, · · · , αm)] > 0 if c > 0 and

α1 > · · · > αm.

Theorem 1.5 (secondary critical case). Assume that the support of the equilibrium measure asso-

ciated to V consists of one interval. Let a be a secondary critical value (i.e. a ∈ JV \ {ac} ) such

that G(x; a), x ∈ (c(a),∞), attains its maximum value at two points x1(a) < x2(a). Assume that

G′′(x1(a); a) 6= 0 and G′′(x2(a); a) 6= 0. Fix m ∈ {1, 2, · · · ,m}, and set

qm :=
m− 2m+ 1

x2(a)− x1(a)
(48)

and

Km :=

(
(m−m)!

(m− 1)!

(−G′′(x1(a)))m−m+1/2

(−G′′(x2(a)))m−1/2

) 1
m−2m+1

. (49)

Suppose that the external source eigenvalues are

ak = a− qm
log(Kmn)

n
+
αk
n
, k = 1, · · · ,m, (50)

for fixed distinct α1 > · · · > αm. Then for any T ∈ R, as n→∞ we have the following.

(a) For k = 1, · · · ,m− 1,

P(k)
n (a1, · · · ,am; JTn (x2(a))) = pmG

(k)
m−1(T ) + (1− pm)G(k)

m (T ) + o(1). (51)

(b) For k = m,

P(k)
n (a1, · · · ,am; JTn (x2(a))) =pm + (1− pm)G(m)

m (T ) + o(1), (52)

P(k)
n (a1, · · · ,am; JTn (x1(a))) =pmG

(1)
m−m+1(T ) + o(1). (53)

(c) For k = m+ 1, · · · ,m,

P(k)
n (a1, · · · ,am; JTn (x1(a))) = pmG

(k−m+1)
m−m+1 (T ) + (1− pm)G

(k−m)
m−m (T ) + o(1). (54)

Here pm is a number in (0, 1) defined by

pm :=
det[Pm−1] det[Qm−1]

det[Pm−1] det[Qm−1] + det[Pm] det[Qm]
(55)

where P` := P(x1(a),m−`),(x2(a),`) and Q` := Q(0,m−`),(x2(a)−x1(a),`)(α1, · · · , αm). The function

G
(`)
k (T ) is the distribution function of the `th largest eigenvalue of k × k GUE defined in (42).
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Observe that one more eigenvalue is pulled off from x1(a) to x2(a) as m increases by 1. The

eigenvalues clustered near each of x1(a) or x2(a) fluctuate like the eigenvalues of a GUE matrix of

dimension equal to the cluster size.

Note that pm is well defined even for non-distinct αj if we apply l’Hôpital’s rule to the right-

hand side of (55). The theorem holds without the assumption of distinctness but we do not pursue

it here. See Remark 1.3.

Remark 1.6. When the support of equilibrium measure associated to the potential V consists of

more than one interval (i.e. N > 0), the above theorem still holds after one change: the probability

pm depends on n. In the formula (45), Mj needs to be changed to Mj,n in [7, Formula (311)],

which is expressible in terms of a Riemann theta function and depends on n quasi-periodically.

Nevertheless, it can be shown that pm lies in a compact subset of (0, 1) for all large enough n from

Proposition 7.1. This is enough to extend the proof of the above theorem from N = 0 case to

N > 0 case.

1.3.3 Critical case

The final two theorems concern the critical case. In this case the limiting location of the top

eigenvalue(s) is about to break off from e. Recall that the critical value ac which is determined

by the potential V satisfies ac ≤ 1
2V
′(e). Depending on whether ac = 1

2V
′(e) or ac <

1
2V
′(e),

the break-off is continuous or discontinuous. When V (x) is convex in x ∈ [e,∞), we always have

ac = 1
2V
′(e) and the break-off is continuous.

−iα

Figure 1: The contour of the integral in (56)

Let us define the limiting distributions that appear in the case when ac = 1
2V
′(e). For α ∈ R,

define the function (see [4, Formula (15)] and [7, Formula (18)])

Cα(ξ) :=
1

2π

∫
ei

1
3
z3+iξz dz

α+ iz
, (56)

where the contour is from ∞e5πi/6 to ∞eπi/6 and the pole z = −iα lies above the contour in the

complex plane: see Figure 1. Set for T ∈ R and s ∈ C

F1(T ;α; s) := F0(T ; s) ·
(

1− s〈(1− sχ[T,∞)KAiryχ[T,∞))
−1Cα, χ[T,∞) Ai〉

)
, (57)

where 〈f, g〉 denotes the real inner product over R,
∫
R f(x)g(x)dx. For k ≥ 1 and distinct real

12



parameters α1, · · · , αk, define

Fk(T ;α1, · · · , αk; s) := F0(T ; s)
det
[
(αi + d

dT )j−1 F1(T ;α;s)
F0(T ;s)

]
1≤i,j≤k∏

1≤i<j≤k(αj − αi)
. (58)

When s = 1, the function F1(T ;α; 1) was defined in [4, Definition 1.3] and Fk(T ;α1, · · · , αk; 1) was

introduced in [2, Theorem 1.1]. They are known to be distribution functions and can be expressed

in terms of Painlevé II equation and its Lax pair equations. It is also known that F1(T ; 0; 1) is the

square of the GOE Tracy-Widom distribution (see [4, Formula (24)]).3

Theorem 1.6 (critical case 1: continuous transition). Suppose that V is a potential such that

ac = 1
2V
′(e) and ac /∈ JV . Suppose that

ak = ac +
βαk
n1/3

, k = 1, · · · ,m, (60)

for distinct real numbers α1, · · · , αm. Then for each T ∈ R,

lim
n→∞

En(a1, · · · ,am; ITn ; s) = Fm(T ;−α1, · · · ,−αm; s) (61)

uniformly in s which is close to 1.

We now consider the case with potential V such that ac <
1
2V
′(e). As usual, we assume

ac /∈ JV . As in Theorem 1.5 above, we also assume, for the ease of statement, that the support of

the equilibrium measure of V consists of a single interval. An analogue of Remark 1.6 applies to

the multiple interval case.

Define (cf. (45)), for j ∈ Z,

M̃j(z) =

√
2

π(e− ẽ)

γ(z)− γ(z)−1

−2i

(
γ(z)− γ(z)−1

γ(z) + γ(z)−1

)−j
, z ∈ C \ (−∞, e]. (62)

Note that −iM̃j(x) > 0 for x ∈ (e,∞). For j = 0, 1, · · · ,m and a, b ∈ (e,∞), we define, similarly

to (46), the matrix

P
(b,j)
(a,m−j) :=


M̃1(a) M̃′1(a) · · · M̃(m−j−1)

1 (a) M1(b) M′1(b) · · · M(j−1)
1 (b)

...
...

. . .
...

...
...

. . .
...

M̃m(a) M̃′m(a) · · · M̃(m−j−1)
m (a) Mm(b) M′m(b) · · · M(j−1)

m (b)

 . (63)

3The function Fk(T ;α1, · · · , αk; 1) is shown to be the limiting distribution of the largest eigenvalue in the spiked

model of rank k at the critical case for the potentials V (x) = ((1 + c)x− c log x)χ(0,∞)(x) and V (x) = x2/2 in [4] and

[23], respectively. It is easy to check from the determinantal point process structure that

F
(j)
k (T ;α1, · · · , αk) :=

j−1∑
i=0

(−1)i

i!

di

dsi

∣∣∣∣
s=1

Fk(T ;α1, · · · , αk; s) (59)

is the limiting distribution of the j-th largest eigenvalue in these potentials even though this was not discussed in

[4, 23].
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Also recall the matrix Q(0,m−j),(c,j)(α1, · · · , αm) defined in (47)

Recall the point x0(ac) which is well defined when ac <
1
2V
′(e) from Section 1.2. Note that

x0(ac) > c(ac) > e. The point x0(ac) is unique when ac /∈ JV .

Theorem 1.7 (critical case 2: jump transition). Let V be a potential such that ac <
1
2V
′(e).

Assume that ac /∈ JV and G′′(x0(ac); ac) 6= 0. Fix m ∈ {1, 2, · · · ,m} and suppose that

ak = ac − q̃m
log(K̃mn)

n
+
αk
n
, k = 1, · · · ,m, (64)

for distinct α1 > · · · > αm, where

q̃m :=
m− 2m+ 1

x0(ac)− c(ac)
(65)

and

K̃m :=

(
(m−m)!

(m− 1)!

(H′′(c(ac)))
m−m+1/2

(−G′′(x0(ac)))m−1/2

) 1
m−2m+1

. (66)

Assume the support of the equilibrium measure of V consists of a single interval. Then for any

T ∈ R, as n→∞ we have the following.

(a) For k = 1, · · · ,m− 1,

P(k)
n (a1, · · · ,am; JTn (x0(ac))) = p̃mG

(k)
m−1(T ) + (1− p̃m)G(k)

m (T ) + o(1). (67)

(b) For k = m,

P(k)
n (a1, · · · ,am; JTn (x0(ac))) =p̃m + (1− p̃m)G(m)

m (T ) + o(1), (68)

P(k)
n (a1, · · · ,am; ITn ) =p̃mF0(T ) + o(1). (69)

Here

p̃m :=
det[P̃m−1] det[Q̃m−1]

det[P̃m−1] det[Q̃m−1] + det[P̃m] det[Q̃m]
, (70)

where P̃` := (−i)m−`P
(x0(ac),`)
(c(ac),m−`) and Q̃` := Q(0,m−`),(x0(ac)−c(ac),`)(α1, · · · , αm). For each `,

det[P̃`] det[Q̃`] > 0, and hence p̃m ∈ (0, 1). The distribution functions G
(`)
k (T ) are defined in

(42), and F0(T ) is the Tracy-Widom distribution in (34).

Hence in this case, some eigenvalues are pulled off the edge of the equilibrium measure and

fluctuate as the eigenvalues of Gaussian unitary ensemble. The largest eigenvalue which is not

pulled off the edge of the equilibrium measure fluctuates as the Tracy-Widom distribution.

It can also be shown that the (m + j)-th eigenvalue has either the Tracy-Widom (j + 1)-th

eigenvalue distribution, or the Tracy-Widom j-th eigenvalue distribution as its limiting distribution,

with probability p̃m and 1− p̃m, respectively.

The proof of this theorem is very close to the proof of Theorem 1.5 and we skip it.

Remark 1.7. In this paper we only state limit theorems for individual top eigenvalues. The analysis

of this paper can be modified to obtain the limit theorems of joint distribution of top eigenvalues.

The result is what one would expect. We skip the detail.
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1.4 Comments on the proofs and organization of the paper

We prove the asymptotic results in Section 1.3 based on Theorem 1.1 and extensions of the asymp-

totic results for the rank one case of [7]. The latter are mostly routine and we do not give full

details. In employing the above strategy to prove Theorems 1.2 and 1.3, we need to prove the limit

of the determinant in the denominator of (11) is non-zero. This is done in Section 7. The proofs

of Theorems 1.4, 1.5 and 1.7 are more complicated since the denominator of (11) converges to

zero and hence we need to show that the numerator and the denominator have the same vanishing

factors in their asymptotics. This requires careful linear algebraic manipulations. After factoring

out the vanishing term, the denominator converges to a certain determinant which we show again

non-zero in Section 7. The proof of Theorem 1.6 also follows this general strategy but we use a

variation of Theorem 1.1 and the analysis is more involved. We skip the proof of Theorem 1.7 since

it is very close to that of Theorem 1.5.

The rest of the paper is organized as follows. Theorems 1.2–1.6 are proved in the Sections 2–6,

respectively. As mentioned in the above paragraph, in the proofs in these sections, we need to show

that a certain determinant is non-zero. This is done in Section 7 in a unifying way. The algebraic

theorem, Theorem 1.1, that relates the higher rank case to the rank one case is proved in Section

8.
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2 Proof of Theorem 1.2: sub-critical case

Recall that the sub-critical case is when

max{a1, · · · ,am} < ac. (71)

We also assume that aj ’s are all positive, distinct and fixed. In order to use Theorem 1.1, we need

the asymptotics of Γn−j(ak;n) and Ēn−j+1,n(ak; I
T
n ; s) =

En−j+1,n(ak;ITn ;s)

En−j+1(ITn ;s)
.

Asymptotics of Γn−j(ak;n)

From [7, Formula (92)] we have for all a ∈ (0,ac)

Γn−j(a;n) = C̃(a)M̃j,n(c(a))(1 + o(1)), (72)
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where

C̃(a) := −i
√

2π

n
e−n`/2

enH(c(a);a)√
H′′(c(a); a)

(73)

and M̃j,n(z) is a generalization to M̃j(z) in (62) when the support of the equilibrium measure

is a multi-interval (i.e. N > 0). The function M̃j,n(z) can be found in terms the solution to a

global Riemann-Hilbert problem in the analysis of orthogonal polynomials and is given explicitly

in terms of a Riemann theta function. See [7, Formula (312)]. Unless N = 0, M̃j,n(z) depends on

n. However it is uniformly bounded in n, together with its derivatives, in any compact subset of z.

Asymptotics of Ēn−j+1,n(ak; I
T
n ; s)

Recall from the usual invariant ensemble theory that (see e.g., [26])

En−j+1,n(E; s) = det(1− sχEKn−j+1,nχE), (74)

for any set E ⊂ R, where Kn−j+1,n is the standard Christoffel-Darboux kernel for the weight e−nV

(see e.g., [7, Formula (69)]). For E = ITn , the asymptotic result on invariant ensemble implies that

χITnKn−j+1,nχITn converges to χ[T,∞)KAiryχ[T,∞) in trace norm for each fixed j ([16], [15], see also

[7, Corollary 6.3]). Thus

det(1− sχITnKn−j,nχITn ) = det(1− sχ[T,∞)KAiryχ[T,∞))(1 + o(1)) (75)

and by (32)

En−j+1,n(ITn ; s) = F0(T ; s)(1 + o(1)). (76)

For the rank one case, the analogue of (74) is (see [7, Formula (73)]4)

En−j+1,n(a;E; s) = det(1− sχEK̃n−j+1,nχE) (77)

where K̃n−j+1,n = Kn−j,n + ψ̃n−j ⊗ψn−j . Here ψn−j is the orthogonal polynomial times e−
n
2
V and

ψ̃`(x) = ψ̃`(x; a;n) :=
1

Γ`(a;n)

(
en(ax−V (x)/2) −

∫
R
K`,n(x, y)eay−V (y)dy

)
. (78)

This implies that, for E ⊂ R, if 1− sχEKn−j,nχE is invertible,

En−j+1,n(a;E; s) = det(1− sχEKn−j,nχE)[1− s〈ψ̃n−j , χEψn−j〉
− s2〈(1− sχEKn−j,nχE)−1χEKn−j,nχEψ̃n−j , χEψn−j〉]. (79)

For E = ITn , 1 − sχEKn−j,nχE is invertible for all s close enough to s = 1.5 When E = ITn and

a ∈ (0,ac), the asymptotics of (79) for s = 1 was obtained in [7, Section 3.3] by analyzing each

4Only the s = 1 case is given in [7] but the same proof works for general s 6= 1.
5This is because χEKn−j,nχE converges to χ[T,∞)KAiryχ[T,∞) in operator norm when E = ITn and since

χ[T,∞)KAiryχ[T,∞) has its spectrum in [0, 1). This appears in several places in the subsequence sections and we

do not repeat this remark.
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term on the right-hand-side. It was shown that both inner products are O(n1/3) (see [7, Formulas

(128), (131) and (332)]). Hence from (75) we find that

En−j+1,n(a; ITn ; s) = det(1− sχ[T,∞)KAiryχ[T,∞))(1 + o(1)) = F0(T ; s)(1 + o(1)). (80)

Combining (76) and (80) we obtain, for a ∈ (0,ac),

Ēn−j+1,n(a; ITn ; s) = 1 + o(1), (81)

uniformly in s which is close to 1.

Inserting (81), (72) and (76) into the formula (11), we obtain

En(a1, · · · ,am; ITn ; s) =
det[M̃j,n(c(ak)) + o(1)]mj,k=1

det[M̃j,n(c(ak)) + o(1)]mj,k=1

F0(T ; s). (82)

Since M̃j,n(c(ak)) are bounded uniformly in n and the reciprocal of det[M̃j,n(c(ak))] is bounded

uniformly in n by Proposition 7.1(a), the ratio of the two determinants in (82) is 1 + o(1). Hence

we obtain Theorem 1.2.

3 Proof of Theorem 1.3: super-critical case 1, separated external

sources eigenvalues

Recall that we assume that there exists p ∈ {1, · · · ,m} such that the positive, distinct and fixed

numbers

aj > ac for j = 1, · · · , p,
aj < ac for j = p+ 1, · · · ,m.

(83)

We assume, without loss of generality, that a1 > a2 > · · · > ap. Furthermore, we assume that

aj /∈ JV and G′′(x0(aj)) 6= 0 for each j = 1, · · · , p, where x0(a) is defined in the paragraph

between (23) and (24) in Section 1.2.

To use Theorem 1.1, we need the asymptotics of Γn−j(ak;n), En−j+1,n(ak;E; s), and En−j+1(E; s)

for E = ITn and E = JTn (x∗) with x∗ > e.

Asymptotics of Γn−j(a;n)

By [7, Formula (93)], we find that if ac < a < 1
2V
′(e) and a 6∈ JV , then

Γn−j(a;n) = C(a)Mj,n(x0(a))(1 + o(1)), (84)

where

C(a) =

√
2π

n
e−n`/2

enG(x0(a);a)√
−G′′(x0(a); a)

(85)
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and Mj,n(z) is a generalization of Mj(z) in (45) when the support of the equilibrium measure is

multi-interval (i.e. N > 0). This again can be expressed explicitly in terms of a Riemann theta

function. See [7, Formula (311)]. Note that Mj,n(z) depends on n but is uniformly bounded in n,

together with its derivatives, in any compact subset in z. For a > 1
2V
′(e), we have the asymptotics

[7, Formula (188)] of Γn−j(a;n) which is an intermediate step toward the formula (84). It is

easy to further compute the formula [7, Formula (188)] asymptotically (using the asymptotics of

ϕn−j(y)) and we find that (84) holds for a > 1
2V
′(e) as well. The same applies to the case when

a = 1
2V
′(e) > ac from the remark in the first paragraph of [7, Section 5]. In conclusion, the formula

(84) is valid for all a > ac and a 6∈ JV .

Asymptotics of En−j+1,n(ak; J
T
n (x∗); s) and En−j+1(JTn (x∗); s) for x∗ > e.

Since x∗ > e, the Christoffel-Darboux kernel restricted on JTn (x∗) converges to 0 rapidly (see e.g.

[7, Formula (346)].) Hence we find from (74) that

En−j+1,n(JTn (x∗); s) = 1 + o(1) (86)

for all x∗ > e, T ∈ R and s close to 1.

We now evaluate En−j+1,n(a; JTn (x∗); s) for a = aj . From the assumption (83), there are two

cases. The first is when a > ac and a /∈ JV and the second is when a < ac. The formula (79) is

the starting point.

Let a > ac and satisfy a /∈ JV . For x∗ = x0(a), the asymptotics [7, Formula (137)] implies that

〈ψ̃n−j , χJTn (x0(a))ψn−j〉 equals 1−G(T )+o(1) where G(T ) is the c.d.f. of the normal distribution (36).

The estimates [7, Formulas (139) and (333)] implies that the other inner product is o(1). Therefore,

we find that

En−j+1,n(a; JTn (x0(a)); s) = 1− s(1−G(T )) + o(1) (87)

uniformly in s close to 1. The estimates [7, Formulas (137) and (139)] can be extended straightfor-

wardly to the set JTn (x∗) for x∗ not equal to x0(a) but still in (e,∞). Hence we obtain

En−j+1,n(a; JTn (x∗); s) =

{
1 + o(1), x∗ > x0(a),

1− s+ o(1), x∗ ∈ (e, x0(a)),
(88)

uniformly in s close to 1. This is what is expected from (87) by taking T =∞ for the first case and

taking T = −∞ the second case. Recall that these asymptotics are for a > ac such that a /∈ JV .

The asymptotics (87) and (88) apply to a1, · · · ,ap.
On the other hand, for a < ac, an estimate similar to (80) implies that (note that JTn (x∗) ⊂ ITn

for any x∗ > e, (80) and F0(T ; s)→ 1 as T →∞)

En−j+1,n(a; JTn (x∗); s) = 1 + o(1) (89)

for s close to 1. This asymptotics applies to ap+1, · · · ,am.
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Now inserting the asymptotics (72), (84), (86), (87), (88) and (89) into (11), we obtain, for each

k = 1, · · · , p,

En(a1, · · · ,am; JTn (x0(ak)); s) =
(1− s+ sG(T ))(1− s)k−1 det[P + o(1)]

det[P + o(1)]
, (90)

where

P :=

M1,n(x0(a1)) · · · M1,n(x0(ap)) M̃1,n(c(ap+1)) · · · M̃1,n(c(am))
...

. . .
...

...
. . .

...

Mm,n(x0(a1)) · · · Mm,n(x0(ap)) M̃m,n(c(ap+1)) · · · M̃m,n(c(am))

 . (91)

The matrix P is the m×m matrix defined in (227) up to column changes and hence the reciprocal

of det[P] is bounded uniformly in n by Proposition 7.1(a). Also since the entries of P are bounded

uniformly in n, we find that

En(a1, · · · ,am; JTn (x0(ak)); s) = (1− s+ sG(T ))(1− s)k−1 + o(1) (92)

uniformly in s close to 1.

For each j ≥ 0,

(−1)j

j!

dj

dsj

∣∣∣∣
s=1

(1− s+ sG(T ))(1− s)k−1 =


0 if j 6= k − 1, k,

G(T ) if j = k − 1,

1−G(T ) if j = k.

(93)

Since the left-hand side of (92) is analytic in s, we obtain (38) by taking derivatives and using (8).

Asymptotics of En−j+1,n(ak; I
T
n ; s) and En−j+1(ITn ; s)

To prove (39), we repeat the above computation with JTn (x∗) replaced by ITn . Let a > ac and

assume a /∈ JV . Using asymptotics [7, Formulas (330) and (331)] of ψ, asymptotics [7, Formulas

(106) and (135)] of ψ̃ and asymptotics [7, Corollary 6.3] of Kn−j,n, by (79) we have that for s close

to 1 (cf. (88) with x∗ < x0(e))

En−j+1,n(a; ITn ; s) = det(1− sχITnKn−j,nχITn )(1− s+ o(1)) = F0(T ; s)(1− s+ o(1)). (94)

Hence by (76) we have for s close to 1

Ēn−j+1,n(a; ITn ; s) = 1− s+ o(1). (95)

This asymptotics and (84) are for a = a1, · · · ,ap.
For a = ap+1, · · · ,am which are all less than ac, we can use the asymptotics (72) and (81).

Inserting them into (11), we obtain for s close to 1

En(a1, · · · ,am; ITn ; s) =
(1− s)p det[P + o(1)]

det[P + o(1)]
F0(T ; s) = (1− s)pF0(T ; s) + o(1) (96)

where P is same as (91). We obtain (39) by taking derivatives on both sides of (96).
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4 Proof of Theorem 1.4: super-critical case 2, clustered external

source eigenvalues

Let a be a fixed number such that a > ac and a /∈ JV . Recall the definition x0(a) given in the

paragraph between (23) and (24). As usual we assume that G′′(x0(a)) 6= 0. Set

ak = a+
√
−G′′(x0(a))

αk√
n
, k = 1, · · · ,m, (97)

for fixed distinct α1, · · · , αm. To prove Theorem 1.4, we first evaluate the denominator of (11)

asymptotically and then the numerator when E = JTn (x0(a)).

4.1 Evaluation of det
[
Γn−j(ak;n)

]m
j,k=1

The asymptotics of Γn−j(a) were evaluated in [7, Formula (93)] when a is a constant. It is easy

to see from the proof that [7, Formula (93)] is indeed uniform for a in a compact subset of (ac,∞)

which is especially applicable when ak given by (97). It is clear that the leading order asymptotics

of Γn−j(ak) are same for all k = 1, · · · ,m. This implies that the determinant det[Γn−j(ak)]
m
j,k=1

converges to zero. Therefore, we need to evaluate the sub-leading terms in the asymptotics of

Γn−j(ak) in order to determine the asymptotics of det[Γn−j(ak)]
m
j,k=1.

The formula of Γn−j(ak) in (10) is in terms of an integral over R. This integral can be written

as a sum of two integrals, one over a contour Γ± in a complex plane and the other over the segment

(c,∞) for any constant c > e (see [7, Formula (85)]). For the case at hand, the integral over

the contours Γ± was shown to be exponentially smaller than the integral over (c,∞), and the

main contribution to the integral over (c,∞) comes from a small neighborhood of the critical point

x = x0(a). Hence from [7, Formula (90)] we have, for any ε > 0,

Γn−j(ak) = e−n`/2
∫ x0(a)+ε

x0(a)−ε
Mj,n(y)enG(y;ak)dy(1 +O(e−δn)) (98)

for some δ > 0. Here G(y; a) is the function defined in (21) and Mj,n(z) is an analytic function in

a neighborhood of z = x0(a).

By Taylor expansion,

Mj,n(z) =
m∑
i=1

1

(i− 1)!
M

(i−1)
j,n (x0(a))(z − x0(a))i−1 +O(|z − x0(a)|m) (99)

uniformly for z in a neighborhood of x0(a), where M
(i−1)
j,n is the (i − 1)th derivative. As n → ∞,

Mj,n(z) = Mj,n(z)(1 + O(n−1)) uniformly in z in the same neighborhood for another analytic

function Mj,n(z) which depends on quasi-periodically in n. (See [7, (319)]. This Mj,n(z) is the

same Mj,n(z) appearing in (84)). A key property for our purpose is that a certain determinant

involving Mj,n and its derivatives is non-zero, which is proved in Proposition 7.1(b) later. This is

used when we consider det[P̂] and det[P] below. Note that

M
(i−1)
j,n (x0(a)) =M(i−1)

j,n (x0(a))(1 +O(n−1)) (100)
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since both functions are analytic. Each of M
(i−1)
j,n (x0(a)) and M(i−1)

j,n (x0(a)) are O(1).

Inserting (99) into (98), we find

Γn−j(ak) = enG(x0(a);ak)−n`/2

(
m∑
i=1

(−nG′′(x0(a); a))−i/2

(i− 1)!
M

(i−1)
j,n (x0(a))Q(i, k) + n−

m+1
2 R(j, k)

)
,

(101)

where

Q(i, k) :=
(
−nG′′(x0(a); a)

)i/2 ∫ x0(a)+ε

x0(a)−ε
(y − x0(a))i−1en(G(y;ak)−G(x0(a);ak))dy (102)

and

R(j, k) = O

(
n

m+1
2

∫ x0(a)+ε

x0(a)−ε
|y − x0(a)|men(G(y;ak)−G(x0(a);ak))dy

)
+

∫ x0(a)+ε

x0(a)−ε
Mj,n(y)en(G(y;ak)−G(x0(a);ak))dy ·O(n

m+1
2 e−δn). (103)

From the definition of G and (97),

G(y; ak) = G(y; a) + αky

√
−G′′(x0(a); a)

n
. (104)

Hence Laplace’s method yields

Q(i, k) =

∫ ∞
−∞

ξi−1e−
1
2
ξ2+αkξdξ

(
1 + o(1)

)
. (105)

Similarly, we find

R(j, k) = O

(
n

m+1
2

∫ x0(a)+ε

x0(a)−ε
|y − x0(a)|menG(y;ak)dy

)
= O(1). (106)

Denote the m×m matrices

P̂ =
[
M

(i−1)
j,n (x0(a))

]m
j,i=1

, Q̂ = [Q(i, k)]mi,k=1 , R = [R(j, k)]mj,k=1 . (107)

Note that all entries of these matrices are O(1). We also set N to be an m ×m diagonal matrix

with entries

(N )ii =
1

(i− 1)!

(
−nG′′(x0(a); a)

)−i/2
. (108)

From (101), we have

det [Γn−j(ak;n)]mj,k=1 =

(
m∏
k=1

enG(x0(a);ak)−n`/2

)
det[P̂NQ̂+ n−

m+1
2 R]

=

(
m∏
k=1

enG(x0(a);ak)−n`/2 det[N ]

)
det[P̂Q̂+ n−

m+1
2 P̂N−1P̂−1R]

(109)
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if P̂ is invertible.

We now replace P̂ and Q̂ by matrices with entries given by the leading terms given in (100)

and (105). Define the m×m matrix

P =
[
M(i−1)

j,n (x0(a))
]m
j,i=1

. (110)

The entries of this matrix are the leading term of the entries of the matrix P̂ (see (100)). From the

general result Proposition 7.1(b) and by noting that P = P(x0(a),m) in the notation of Section 7,

we find that det[P] is non-zero. Moreover, 1/ det[P], which depends on n, is uniformly bounded.

This non-vanishing property is easy to check directly using the formula (45) when N = 0 but is

complicated when N > 0. Now as P̂ = P + o(1), we find that all entries of P̂−1 are O(1). Hence

noting that the explicit dependence on n of N , we find that all entries of n−
m+1

2 P̂N−1P̂−1R are

O(n−1/2).

We also define

Q =

[∫ ∞
−∞

ξi−1e−
1
2
ξ2+αkξdξ

]m

i,k=1

. (111)

Then Q̂ = Q+ o(1). Therefore, we find from (109) that

det [Γn−j(ak;n)]mj,k=1 =
m∏
k=1

enG(x0(a);ak)−n`/2 det[N ](det[P] det[Q] + o(1)). (112)

It is straightforward to check that

det[Q] =

∫
Rn

det[eαkξj ]
∏
i<j

(ξj − ξi)
n∏
j=1

e−
1
2
ξ2j dξ1 · · · dξm (113)

and this is non-zero when all αk’s are distinct.

4.2 Evaluation of det
[
Γn−j(ak;n)Ēn−j+1,n(ak; J

T
n (x0(a)); s)

]m
j,k=1

Note that since ak > ac, the asymptotics (86) applies. Hence from the definition (9) of Ē , we find

that

det
[
Γn−j(ak)Ēn−j+1,n(ak; J

T
n (x0(a)); s)

]m
j,k=1

= det

[
Γn−j(ak)

En−j+1,n(ak; J
T
n (x0(a)); s)

En−j,n(JTn (x0(a)); s)

]m

j,k=1

m∏
j=1

En−j,n(JTn (x0(a)); s)

En−j+1,n(JTn (x0(a)); s)

= det

[
Γn−j(ak)

En−j+1,n(ak; J
T
n (x0(a)); s)

En−j,n(JTn (x0(a)); s)

]m

j,k=1

(1 + o(1)).

(114)

We focus on the new determinant. As in the previous subsection, the determinant converges to

zero and hence we need to find the leading asymptotics.
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From (79), and (74), we find

En−j+1,n(ak;E; s)

En−j,n(E; s)
= 1− s〈ψ̃n−j(x; ak;n), ψn−j〉E

− s2〈(1− sχEKn−j,nχE)−1χEKn−j,nχEψ̃n−j(x; ak;n), ψn−j〉E , (115)

with E = JTn (x0(a)). Note that the interval E = JTn (x0(a)) is associated to a and ψ̃n−j is associated

to ak. When a and ak are the same and larger than e, the second inner product was shown to be

exponentially small in [7]: precisely in [7, Formula (139)] assuming a < 1
2V
′(e) and in [7, Sections

4 and 5] when a > 1
2V
′(e) and a = 1

2V
′(e). In our case, ak and a are different, but note that the

difference is O(n−1/2) by assumption (97). This corresponds to a small change in the domain of

the inner product which does not change the exponential decay of the inner product. Thus we have

En−j+1,n(ak; J
T
n (x0(a)); s)

En−j,n(JTn (x0(a)); s)
= 1− s〈ψ̃n−j(x; ak;n), ψn−j(x;n)〉JTn (x0(a)) +O(e−δ

′n). (116)

for some δ′ > 0 uniformly for s close to 1.

Now we evaluate the remaining inner product in (116). We actually evaluate the inner product

multiplied by Γn−j(ak;n), which is what we need in view of (115). The leading order asymptotics of

this quantity was evaluated in [7, Section 3.4]. Here we need the sub-leading terms and this follows

from a simple extension of the analysis for the leading term as follows. First, for all x ∈ JTn (x0(a)),

we have from [7, Formulas (106) and (330)] that

Γn−j(ak;n)ψ̃n−j(x; ak;n)ψn−j(x;n) = e−n`/2Mj,n(x)enG(x;ak)(1 +O(e−δ
′′n)). (117)

for some δ′′ > 0. This is same as [7, Formula (136)] (after substituting the asymptotics of Γn−j)

where the error term is only written as o(1) instead of an exponentially small term. Recalling that

G(x; a), x ∈ (e,∞), takes its unique maximum at x = a by the assumption a > ac and a /∈ JV ,

and noting that G(x; ak) is close to G(x; a) (see (104)), we find that for any ε > 0

Γn−j(ak;n)〈ψ̃n−j(x; ak;n), ψn−j(x;n)〉JTn (x0(a))

=

(
e−n`/2

∫
JTn (x0(a))

Mj,n(y)enG(y;ak)dy

)
(1 +O(e−δ

′′n))

=

(
e−n`/2

∫
ET,ε(x0(a))

Mj,n(y)enG(y;ak)dy)

)
(1 +O(e−δ

′′′n))

(118)

for some δ′′′ > 0 where ET,ε(x0(a)) is the interval

ET,ε(x0(a)) :=

(
x0(a) +

T√
−G′′(x0(a))n

, x0(a) + ε

)
. (119)

We now find from (116), (98), and (118) that

Γn−j(ak)
En−j+1,n(ak; J

T
n (x0(a)); s)

En−j,n(JTn (x0(a)); s)
=

e−n`/2
∫ x0(a)+ε

x0(a)−ε
Mj,n(y)enG(y;ak)(1− sχET,ε(x0(a))(y))dy(1 +O(e−δ̃n)), (120)
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where δ̃ = min{δ, δ′′′}. This formula is completely analogous to (98) in the previous subsection

except that there is the term (1 − sχET,ε(x0(a))(y)) in the integrand. We can now proceed exactly

as in the previous subsection to evaluate the determinant (114). The new term in the integrand

only changes that Q(i, k) in (102) contains the term (1− sχ(T,∞)(ξ)) in the integrand. Therefore,

we obtain, similarly to (112),

det

[
Γn−j(ak)

En−j+1,n(ak, J
T
n (x0(a); s)

En−j,n(JTn (x0(a)); s)

]m

j,k=1

=
m∏
k=1

enG(x0(a);ak)−n`/2 det[N ](det[P] det[QT ;s] + o(1)), (121)

where QT ;s is the m×m matrix with entries

QT ;s(i, k) =

∫ ∞
−∞

ξi−1e−
1
2
ξ2+αkξ(1− sχ(T,∞)(ξ))dξ. (122)

Combining (112), (114), (121) and Theorem 1.1, we find that (recall (40) for the definition of

Gk)

En(a1, · · · ,am; JTn (x0(a)); s) =
det[QT ;s]

det[Q]
(1 + o(1)) = Gk(T ;α1, · · · , αk; s) + o(1). (123)

Hence Theorem 1.4 is proved.

5 Proof of Theorem 1.5: secondary critical case

We assume that the support of the equilibrium measure associated to V consists of one interval.

Let a ∈ JV \ {ac}. Then G(x; a) attains its maximum in (c(a),∞) at more than one point. We

assume that the maximum is achieved at two points, which we denote by x1(a) < x2(a). We write

x1(a) as x1 and x2(a) as x2 for notational convenience if there is no confusion. Set

Gmax := G(x1; a) = G(x2; a). (124)

We assume, as usual, that G′′(x1; a) 6= 0 and G′′(x2; a) 6= 0.

Throughout this section, we fix m ∈ {1, 2, · · · ,m}. Recall the definitions

qm :=
m− 2m+ 1

x2(a)− x1(a)
, Km :=

(
(m−m)!

(m− 1)!

(−G′′(x1(a)))m−m+1/2

(−G′′(x2(a)))m−1/2

) 1
m−2m+1

. (125)

Set

a′ := a− qm
log(Kmn)

n
, (126)

and we assume that

ak = a− qm
log(Kmn)

n
+
αk
n

= a′ +
αk
n
, k = 1, · · · ,m, (127)

for fixed distinct α1 > · · · > αm.
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5.1 Evaluation of det
[
Γn−j(ak;n)

]m
j,k=1

The goal here is to prove the asymptotic formula (156) given at the end of this subsection.

Analysis in this section is similar to that of Section 4.1 but with the change that the main

contribution to the integral formula of Γn−j(ak;n) comes from two intervals (near x1(a) and x2(a))

instead of one interval as in (98). This is because of (124). We have a small enough ε > 0 and a

corresponding δ > 0 such that

en`/2Γn−j(ak;n) =

(∫
E1

Mj,n(y)enG(y;ak)dy +

∫
E2

Mj,n(y)enG(y;ak)dy

)
(1 +O(e−δn)). (128)

where

E1 := (x1 − ε, x1 + ε), E2 := (x2 − ε, x2 + ε). (129)

Since the two integrals are asymptotically of same order, the evaluation of the determinant det
[
Γn−j(ak;n)

]m
j,k=1

is more complicated.

Using the Andréief’s formula in random matrix theory (see e.g. [26]), we have(
m∏
k=1

enG(x1;ak)

)−1

det

[∫
E1∪E2

Mj,n(y)enG(y;ak)dy

]m

j,k=1

= det

[∫
E1∪E2

Mj,n(y)en(G(y;ak)−G(x1;ak))dy

]m

j,k=1

=
1

m!

∫
(E1∪E2)m

det[Mj,n(yk)] det[en(G(yk;aj)−G(x1;ak))]dy1 · · · dym.

(130)

For each variable yk, the integral in yk is over E1 ∪E2. Using the symmetry of the integrand in yk
in the last line of (130) is symmetric in yk, (130) equals

1

m!

m∑
`=0

(
m

`

)
I` (131)

where, for ` = 0, · · · ,m,

I` :=

∫
Em−`

1

dy1 · · · dym−`

∫
E`2

dym−`+1 · · · dym det[Mj,n(yk)] det[en(G(yk;aj)−G(x1;aj))]. (132)

We now evaluate the leading asymptotics of I` for each `. For t = (t1, · · · , tj), let ∆j(t) :=∏
1≤k<`≤j(t` − tk) denote the Vandermonde determinant. For each j, set

Zj :=

∫
Rj
|∆j(t)|2

j∏
k=1

e−
1
2
t2kdtk = (2π)n/2

j∏
k=1

k!. (133)

This is the partition function of the j-dimensional GUE. We have the following.

Lemma 5.1. For each ` = 0, 1, · · · ,m, we have

I` =
ωm−`

1 ω`2
((Kmn)qm(x2−x1))`

m−1−`∏
k=0

(
ωk1
k!

)2 `−1∏
k=0

(
ωk2
k!

)2

· det[P`] det[Q`]Zm−`Z`(1 + o(1)) (134)
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where Z` is defined in (133), P` and Q` are defined in Theorem 1.5, and

ωj := (−nG(xj ; a))−1/2, j = 1, 2. (135)

Proof. Since G(y; aj)−G(x1; aj) = G(y; a′)−G(x1; a′)+
αj
n (y−x1) and G(x1; a) = G(x2; a), (132)

equals

I` =

∫
Em−`

1 ×E`2
det[Mj,n(yk)] det[Qj(yk)]

m∏
k=1

enD(yk)dyk, (136)

where

Qk(y) :=

eαk(y−x1), y ∈ E1,
eαk(x2−x1)

(Kmn)qm(x2−x1)
eαk(y−x2), y ∈ E2,

(137)

and

D(y) :=

{
G(y; a′)−G(x1; a′), y ∈ E1,

G(y; a′)−G(x2; a′), y ∈ E2.
(138)

Note that first ` of yk are in E1 and the rest yk are in E2. Using the Taylor’s expansion, we

have for k = 1, · · · ,m− `,

Mj,n(yk) =

m−`∑
i=1

M
(i−1)
j,n (x1)

(i− 1)!
(yk − x1)i−1 +O(|yk − x1|m−`), (139)

and for k = m− `+ 1, · · · ,m,

Mj,n(yk) =
∑̀
i=1

M
(i−1)
j,n (x2)

(i− 1)!
(yk − x2)i−1 +O(|yk − x2|`). (140)

Let P̂` be the matrix defined similar to P` = P(x1(a),m−`),(x2(a),`) in the statement of the theorem

but with Mj replaced by Mj,n in the entries. By [7, Proposition 6.1] we have that M
(i)
j,n(x) =

M(i)
j (x)(1 +O(n−1) and they are bounded uniformly in n for any x in a compact subset of (e,∞).

(This was also discussed in the previous section in (100).) Since (−1)m(m−1)/2 det[P`] > 0 and

1/ det[P`] are bounded uniformly in n (by Proposition 7.1(b); see (46)), det[P̂`] = det[P`](1+o(1))

and the entries of P̂−1 is O(1) . Thus (140) implies that

det[Mj,n(yk)]
m
j,k=1 = det[P̂`V` + E(1)] = det[P`] · det[V` + P̂−1

` E(1)](1 + o(1)) (141)

where

V` :=



1 · · · 1 0 · · · 0

(y1 − x1) · · · (ym−` − x1) 0 · · · 0
...

. . .
...

...
. . .

...
(y1−x1)m−`−1

(m−`−1)! · · · (ym−`−x1)m−`−1

(m−`−1)! 0 · · · 0

0 · · · 0 1 · · · 1

0 · · · 0 (ym−`+1 − x2) · · · (ym − x2)
...

. . .
...

...
. . .

...

0 · · · 0
(ym−`+1−x2)`−1

(`−1)! · · · (ym−x2)`−1

(`−1)!


(142)
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and E(1) is a matrix with entries satisfying, for each j = 1, · · · ,m,

E
(1)
j,k =

{
O(|yk − x1|m−`−1), k = 1, · · · ,m− `,
O(|yk − x2|`−1), k = m− `+ 1, · · · ,m.

(143)

Similarly, we have the Taylor expansions

Qj(yk) =
m−`∑
i=1

αij(yk − x1)i

i!
+O(|yk − x1|m−`−1) (144)

for k = 1, · · · ,m− `, and

Qj(yk) =
eαk(x2−x1)

(Kmn)qm(x2−x1)

(∑̀
i=1

αij(yk − x2)i

i!
+O(|yk − x2|`−1

)
(145)

for k = m− `+ 1, · · · ,m. From the arguments above we find that

det[Qj(yk)]
m
j,k=1 =

1

(Kmn)qm(x2−x1)`
det[Q`] · det[V` + Q−1

` E(2)], (146)

where V` is same as in (142), Q` is defined in Theorem 1.5 and the error matrix E(2) satisfies the

same estimate (143) of E(1). Note that (−1)m(m−1)/2 det[Q`] > 0 for α1 > · · · > αm.

We now evaluate the integral in I` using the Laplace’s method with the change of variables

yk = x1 +
sk√

−nG(x1; a)
, k = 1, · · · ,m− `,

ym−`+k = x2 +
tk√

−nG(x2; a)
, k = 1, · · · , `.

(147)

Note that under this change of variables, with the notations ωj defined in (135), V` equals the

diagonal matrix diag(1, ω1, · · · , ωm−`−1
1

(m−`−1)! , 1, ω2, · · · , ω
`−1
2

`−1)!) times the matrix

∆m−`,`(s, t) :=



1 · · · 1 0 · · · 0

s1 · · · sm−` 0 · · · 0
...

. . .
...

...
. . .

...

sm−`−1
1 · · · sm−`−1

m−` 0 · · · 0

0 · · · 0 1 · · · 1

0 · · · 0 t1 · · · t`
...

. . .
...

...
. . .

...

0 · · · 0 t`−1
1 · · · t`−1

`


. (148)

Also for each j = 1, · · · ,m, (143) implies that

E
(1)
j,k =

{
O(n−(m−`)/2 · |sj |m−`), k = 1, · · · ,m− `,
O(n−`/2 · |tj |`), k = m− `+ 1, · · · ,m.

(149)

27



Hence

det[V` + P̂−1
` E(1)] =

m−`−1∏
k=0

ωk1
k!

`−1∏
k=0

ωk2
k!
· det

[
∆m−`,`(s, t) +O(

maxk |sk|m−` + maxk |tk|`√
n

)

]
. (150)

The determinant of V` + Q−1
` E(2) has the same asymptotics. Also note that for k = 1, · · · ,m− `,

the term enD(yk)dyk in the integral (136) becomes, under the change of variables (147),

enD(yk)dyk = en(G(yk;a)−G(x1;a)−qm log(Kmn)
n

(y−x1))dyk = ω1e
− 1

2
s2k+O(|sk|3/

√
n)+O( logn√

n
|sk|)dsk. (151)

The term for k = m − ` + 1, · · · ,m is also similar. Therefore, we find by applying the Laplace’s

method to (136) and using (141), (146), (150) that

I` =
ωm−`

1 ω`2
(Kmn)qm(x2−x1)`

m−`−1∏
k=0

(
ωk1
k!

)2 `−1∏
k=0

(
ωk2
k!

)2

· det[P`] det[Q`]

×
[ ∫

Rm−`
|∆m−`(s)|2

m−`∏
j=1

e−
1
2
s2jdsj

][ ∫
R`
|∆`(t)|2e−

1
2
t2kdtk

]
(1 + o(1))

=
ωm−`

1 ω`2
(Kmn)qm(x2−x1)`

m−`−1∏
k=0

(
ωk1
k!

)2 `−1∏
k=0

(
ωk2
k!

)2

· det[P`] det[Q`] · Zm−`Z`(1 + o(1)).

(152)

We now evaluate the asymptotics of the sum in (131) using the above lemma. Since
√
nωi,

(
√
nωi)

−1, det[Q`] det[P`] and its reciprocal are all O(1), we find from Lemma 5.1 that

Ij
Ik

= O

(
n−

1
2

(m2−2mj+2j2)−qm(x2−x1)j

n−
1
2

(m2−2mk+2k2)−qm(x2−x1)k

)
= O(n(k−m+ 1

2
)2−(j−m+ 1

2
)2) (153)

for all j, k ∈ {0, · · · ,m}, by using the definition (50) of qm. Hence Im−1 and Im are of same order

and the other I` are of smaller orders (at least by factor n2). This implies that (131) becomes

1

m!

[(
m

m− 1

)
Im−1 +

(
m

m

)
Im

]
(1 + o(1)). (154)

Thus, from (128) and (130), we have

det
[
Γn−j(ak;n)

]m
j,k=1

=

(
m∏
k=1

enG(x1;ak)

)
1

m!

[(
m

m− 1

)
Im−1 +

(
m

m

)
Im

]
(1 + o(1)). (155)

Therefore, using the asymptotics (134) of I`, the value of Zj in (133), and the definition of Km

in (49), we obtain

det[Γn−j(ak;n)]mj,k=1 =

(
m∏
k=1

enG(x1;ak)−n`/2

) (
m
m−1

)
m!

Im−1

[
1 +

det[Pm] det[Qm]

det[Pm−1] det[Qm−1]

]
(1 + o(1)).

(156)
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5.2 Evaluation of det
[
Γn−j(ak;n)Ēn−j+1,n(ak; J

T
n (xi); s)

]m
j,k=1

, i = 1, 2

The analysis in this subsection is similar to Section 4.2 but as in Section 5.1 the main contribution

to involved integrals comes from neighborhoods of two points x1 and x2.

We consider the interval JTn (x2) first. From (114) in Section 4.2,

det
[
Γn−j(ak;n)Ēn−j+1,n(ak; J

T
n (x2); s)

]m
j,k=1

= det

[
Γn−j(ak;n)

En−j+1,n(ak; J
T
n (x2); s)

En−j,n(JTn (x2); s)

]m

j,k=1

(1 + o(1)). (157)

Now (120) is changed to, as it happened to (128),

en`/2Γn−j(ak)
En−j+1(ak; J

T
n (x2); s)

En−j(JTn (x2); s)
=

[ ∫
E1

Mj,n(y)enG(y;ak)dy

+

∫
E2

Mj,n(y)enG(y;ak)(1− sχET,ε(x2)(y))dy

]
(1 +O(e−δn)) (158)

for some ε > 0 and δ > 0, where Ei are in (129) and ET,ε(x2) is the interval

ET,ε(x2) := (x2 + T/
√
−G′′(x2)n, x2 + ε). (159)

Now the analysis of Section 5.1 goes through with the change that the measure dy is changed to

(1− sχET,ε(x2)(y))dy for y ∈ E2. Thus we find (cf. (131) and (132))

det

[ ∫
E1

Mj,n(y)enG(y;ak)dy +

∫
E2

Mj,n(y)enG(y;ak)(1− sχET,ε(x2)(y))dy

]m

j,k=1

=(
m∏
k=1

enG(x1;ak)

)
1

m!

m∑
`=0

(
m

`

)
I`(T ; s) (160)

where

I`(T ; s) :=

∫
Em−`

1 ×E`2
det[Mj,n(yk)] det[Qj(yk)]

m∏
k=1

enD(yk)dµ(yk) (161)

with

dµ(yk) =

{
dyk, k = 1, · · · ,m− `,
(1− sχET,ε(x2)(yk))dyk, k = m− `+ 1, · · · ,m.

(162)

The analysis that yields Lemma 5.1 applies with trivial modifications and we obtain (cf. (134))

I`(T ; s) =
ωm−`

1 ω`2
((Kmn)qm(x2−x1))`

m−1−`∏
k=0

(
ωk1
k!

)2 `−1∏
k=0

(
ωk2
k!

)2

· det[P`] det[Q`]Zm−` · Z`(T ; s)(1 + o(1))

(163)

where

Zi(T ; s) :=

∫
Ri
|∆i(t)|2

i∏
j=1

e−
1
2
t2j (1− sχ(T,∞)(tj))dtj . (164)

29



Therefore, we obtain, as in (156),

det

[
Γn−j(ak;n)

En−j+1,n(ak; J
T
n (x2); s)

En−j,n(JTn (x2); s)

]m

j,k=1

=

m∏
k=1

enG(x1;ak)−n`/2

×
(

m
m−1

)
m!

Im−1(T ; s)

[
1 +

Zm−1

Zm

Zm(T ; s)

Zm−1(T ; s)

det[Pm] det[Qm]

det[Pm−1] det[Qm−1]

]
(1 + o(1)). (165)

For the interval JTn (x1), (158) is changed to

en`/2Γn−j(ak)
En−j+1(ak; J

T
n (x1); s)

En−j(JTn (x1); s)
=

[ ∫
E1

Mj,n(y)enG(y;ak)(1− sχET,ε(x1)(y))dy+∫
E2

Mj,n(y)enG(y;ak)(1− s)dy
]
(1 +O(e−δn)). (166)

Corresponding to (131) and (160), we have

det

[ ∫
E1

Mj,n(y)enG(y;ak)(1− sχET,ε(x1)(y))dy +

∫
E2

Mj,n(y)enG(y;ak)(1− s)dy
]m

j,k=1

=(
m∏
k=1

enG(x1;ak)

)
1

m!

m∑
`=0

(
m

`

)
Ĩ`(T ; s) (167)

where Ĩ`(T ; s) are defined analogously to I` in (136) and (161), and it is straightforward to obtain

Ĩ`(T ; s) =
ωm−`

1 ω`2
((Kmn)qm(x2−x1))`

m−1−`∏
k=0

(
ωk1
k!

)2 `−1∏
k=0

(
ωk2
k!

)2

· det[P`] det[Q`]

× Zm−`(T ; s) · (1− s)`Z`(1 + o(1)). (168)

The difference from (163) for I`(T ; s) is that we now have Zm−`(T ; s) and(1 − s)`Z` in place of

Zm−` and Z`(T ; s), respectively. Therefore, we obtain (cf. (165))

det

[
Γn−j(ak;n)

En−j+1,n(ak; J
T
n (x1); s)

En−j,n(JTn (x1); s)

]m

j,k=1

=
m∏
k=1

enG(x1;ak)−n`/2

×
(

m
m−1

)
m!

Ĩm−1(T ; s)

[
1 + (1− s)Zm−m+1

Zm−m

Zm−m(T ; s)

Zm−m+1(T ; s)

det[Pm] det[Qm]

det[Pm−1] det[Qm−1]

]
× (1 + o(1)). (169)

Combining (165) and (156), we obtain

En(a1, · · ·am; JTn (x2); s) =
det[Pm−1] det[Qm−1]Zm−1(T ;s)

Zm−1
+ det[Pm] det[Qm]Zm(T ;s)

Zm

det[Pm−1] det[Qm−1] + det[Pm] det[Qm]
+o(1) (170)
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and from (169) and (156) we obtain

En(a1, · · ·am; JTn (x1); s) =

det[Pm−1] det[Qm−1]Zm−m+1(T ;s)
Zm−m+1

(1− s)m−1 + det[Pm] det[Qm]Zm−m(T ;s)
Zm−m

(1− s)m

det[Pm−1] det[Qm−1] + det[Pm] det[Qm]
+ o(1), (171)

where we use the convention that Z0(T ;s)
Z0

= 1. It is easy to check that the convergences in (170)

and (171) are all uniform for s which is close to 1. Since Z`(T ;s)
Z`

= G`(T ; 0, · · · , 0; s) (see (40)),

Theorem 1.5 follows from (42).

6 Proof of Theorem 1.6: critical case 1, continuous transition

We assume that the critical value ac = 1
2V
′(e) and suppose that ac /∈ JV . Let

ak =
1

2
V ′(e) +

βαk
n1/3

, k = 1, · · · ,m, (172)

for fixed, distinct real numbers α1, · · · , αm. Here β is a positive constant defined in (17). The proof

of this critical case is more involved than other cases. We first need to perform some algebraic

manipulations of the determinant in Theorem 1.1 to make it asymptotically easy to evaluate.

We start with a formula that is equivalent to but slightly different from Theorem 1.1. From

Lemma 8.1, which is an intermediate step toward the proof of Theorem 1.1,

En(a1, · · · ,am;E; s)

En(E; s)
=

1

det[Γn−j(ak)]
m
j,k=1

det

[
〈ψn−j ,vt−sχE(1−sχEKn,nχE)−1wt〉

]m

j=1

(173)

where 〈, 〉 is the real inner product on R andK`,n(x, y) = (p0(x)p0(y)+· · · p`−1(x)p`−1(y))e−
n
2

(V (x)+V (y))

is the usual Crhistroffel-Darboux kernel. Here p`(x) = p`(x;n) is the orthonormal polynomial with

respect to the (varying) measure e−nV (x)dx on R, and ψ`(x) := p`(x)e−
n
2
V (x). The column vector

v(x) := (v1(x), · · · , vm(x))t is defined by

vk(x) := en(akx−V (x)/2), (174)

and the column vector w(x) := (w1(x), · · · , wm(x))t is given by

wk(x) := ((1−Kn,n)vk)(x). (175)

Note that the kernel Kn,n in (173) is independent of j. This is the difference from the for-

mula (11): in terms of ψ` and K`,n, the formula (11) becomes (278) in which the Christoffel-Darboux

kernel appears as Kn−j+1,n, depending on the row index j. This change makes the following com-

putation easier.

We use the three-term recurrence relation of orthonormal polynomials (see e.g., [24]) repeatedly

below. In terms of ψ`(x) = p`(x)e−
n
2
V (x),

xψ`(x) = b`ψ`+1(x) + a`ψ`(x) + b`−1ψ`−1(x), ` ≥ 1 (176)
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for some constants a` and for positive constants

b` =
γ`
γ`+1

, (177)

where γ` is the leading coefficient of p`(x).

6.1 Evaluation of det
[
Γn−j(ak)

]m
j,k=1

Using the notations above, we have (see (10))

det
[
Γn−j(ak)

]m
j,k=1

= det
[
〈ψn−j ,vt〉

]m
j=1

. (178)

By taking a linear combination of the last three rows and using the three term recurrence rela-

tion (176), we can replace the last row in the above matrix by the vector

1

bn−m
〈(x− e)ψn−m+1(x),vt(x)〉. (179)

We then can replace the (m− 1)-th row similarly by using the two rows above. By repeating this

process up to the third row, we obtain

( n−3∏
`=n−m

b`

)
det
[
Γn−j(ak)

]m
j,k=1

= det


〈ψn−1,v

t〉
〈ψn−2,v

t〉
〈(x− e)ψn−2(x),vt〉

...

〈(x− e)ψn−m+1(x),vt〉

 . (180)

Now we can change the last row of this new matrix to

1

bn−m+1
〈(x− e)2ψn−m+2(x),vt〉 (181)

without changing the determinant, by using a linear combination of the last three rows and the

three-term recurrence relation again. We repeat this process up to the fifth row and obtain

( n−4∏
`=n−m+1

b`

)( n−3∏
`=n−m

b`

)
det
[
Γn−j(ak)

]m
j,k=1

= det



〈ψn−1,v
t〉

〈ψn−2,v
t〉

〈(x− e)ψn−2(x),vt〉
〈(x− e)ψn−3(x),vt〉
〈(x− e)2ψn−3(x),vt〉

...

〈(x− e)2ψn−m+1(x),vt〉


. (182)

We repeat the process and obtain, for even m,

( [m/2]−1∏
`=1

(bn−2−`bn−m−1+`)
`

)
det
[
Γn−j(ak)

]m
j,k=1

= det

 R1

...

R[m/2]

 . (183)
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where each R` is a 2×m matrix defined by

R` =

[
〈(x− e)`−1ψn−`(x),vt〉
〈(x− e)`−1ψn−`−1(x),vt〉

]
. (184)

The determinant in (183) is unchanged if we add the second row of R` by a constant multiple of

the first row. Hence we can change the matrices R` in (183) to

R` =

[
〈(x− e)`−1ψn−`(x),vt〉

〈(x− e)`−1(ψn−`−1(x)− B`+1,n(e)
B`,n(e) ψn−`(x)),vt〉

]
(185)

where Bj,n(e) is the value of Bj,n(z) at z = e, and the function Bj,n(z) is a function defined in [7,

Proposition 6.1(b)] which appears in the asymptotic of orthonormal polynomial near the edge e of

the support of the equilibrium measure. From the asymptotics of Bj,n(z) [7, Formulas (323) and

(313)], it was shown that Bj,n(z) and its reciprocal are uniformly bounded in a neighborhood of

z = e.

When m is odd, we need to add an extra row 〈(x− e)[m/2]ψn−[m/2]−1(x),vt〉 to the matrix to

the right-hand side of (183) and the extra term b
[m/2]
n−[m/2]−1 needs to be multiplied on the left hand

side. In the remaining part of this section, we only consider even m since the odd m case can be

solved by the same method.

We now evaluate the asymptotics of R`+1 for each ` = 0, 1, · · · . First consider the top row of

R`+1. We consider a slightly more general quantity

〈(x− e)`ψn−j(x), en(akx−V (x)/2)〉 (186)

for a later use. Observe that ψn−` is changed to ψn−j . Note from (10) with a = ak, Γn−j(ak) =

〈ψn−j(x), en(akx−V (x)/2)〉. The asymptotics of this inner product at the critical case was obtained

in [7, Section 5.1] and the asymptotics of (186) is very similar. Namely setting

ϕn−j(x) := ψn−j(x)e−
n
2
V (x), (187)

we see that (186) equals∫
Σ+∪Σ−

(Cϕn−j)(z)(z − e)`enakzdz +

∫ ∞
e

ϕn−j(z)(z − e)`enakydz (188)

where (Cϕn−j)(z) is the Cauchy transform of ϕn−j(x) and Σ+ and Σ− are certain contours from e

to ∞ lying in C+ and C−, respectively (see [7, Figure 9]). When ` = 0, it was shown in [7, Section

5.1] that, under the criticality assumption the main contribution to the above integrals comes from

a neighborhood of the point z = e and an appropriate change of variable is ξ = (z − e)βn2/3. The

presence of the term (z−e)` above does not change the analysis except for an inclusion of an extra

term ( ξ
βn2/3 )` in [7, Formula (222)] and we obtain6

〈(x− e)`ψn−j(x), en(akx−V (x)/2)〉

=
Qn(ak)

β
√
n(βn2/3)`

(
Bj,n(e)

∫ ∞
0

ξ` Ai(ξ)(eαkξ + eωαkξ + eω
2αkξ)dξ + o(1)

)
. (189)

6The result of [7] involves Bj,n(e) in place of Bj,n(e). But as Bj,n(z) = Bj,n(z)(1 + O(n−1)) from [7, Formula

(323)] and 1/Bj,n(e) is uniformly bounded, the above statement follows.
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where (see [7, Formula (206)])

Qn(ak) = en(− 1
2
V (e)+ake) = en(H(e;ak)−`/2) = en(G(e;ak)−`/2). (190)

Now observe that (see [7, Formula (223)])∫ ∞
0

Ai(ξ)(eαωξ + eαω
2ξ + eαξ)dξ = eα

3/3. (191)

By taking the derivatives of this identity with respect to α, we find that∫ ∞
0

ξ` Ai(ξ)(ω`eαωξ + ω2`eαω
2ξ + eαξ)dξ =

(
d

dα

)`
eα

3/3. (192)

Hence we obtain

〈(x− e)`ψn−j(x), en(akx−V (x)/2)〉 =
Qn(ak)

β
√
n(βn2/3)`

Bj,n(e)

(
d

dαk

)`
eα

3
k/3(1 + o(1)). (193)

Now we consider the second row of R`+1. Again we consider a slightly more general quantity

〈(x− e)`(ψn−j−1(x)− Bj+1,n(e)

Bj,n(e)
ψn−j(x)), en(akx−V (x)/2)〉. (194)

This can be written as the sum of the integrals (188) with the terms (Cϕn−j)(z) and ϕn−j(z)

replaced by ϕn−j−1(z) − Bj+1,n(e)
Bj,n(e) ϕn−j(z) and ϕn−j−1(z) − Bj+1,n(e)

Bj,n(e) ϕn−j(z), respectively. Then

again the main contribution to the integrals come near z = e. The precise behaviors of the

integrands near z are well-known (see [7, Formula (322)]). First,

ϕn−j−1(z)− Bj+1,n(e)

Bj,n(e)
ϕn−j(z) =

(
n1/6 Ai(Φ(z))c1(z) + n−1/6 Ai′(Φ(z))c2(z)

)
e−

n
2
V (z) (195)

for z near e. Second,

(Cϕn−j−1)(z)− Bj+1,n(e)

Bj,n(e)
(Cϕn−j)(z) =

e
πi
3

(
n1/6 Ai(ω2Φ(z))c1(z) + n−1/6ω2 Ai′(ω2Φ(z))c2(z)

)
e−

n
2
V (z) (196)

for z near e with z ∈ C+. Finally,

(Cϕn−j−1)(z)− Bj+1,n(e)

Bj,n(e)
(Cϕn−j)(z) =

− eπi3
(
n1/6ω2 Ai(ωΦ(z))c1(z) + n−1/6 Ai′(ωΦ(z))c2(z)

)
e−

n
2
V (z) (197)

for z near e with z ∈ C−. Here Φ(z) is a function that satisfies Φ(z) = βn2/3(z− e)(1 +O(|z− e|))
as z → e and is defined by [7, Formula (309)]). The functions c1(z) and c2(z) are given by

c1(z) := Bj+1,n(z)− Bj+1,n(e)

Bj,n(e)
Bj,n(z), c2(z) := Dj+1,n(z)− Bj+1,n(e)

Bj,n(e)
Dj,n(z). (198)
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As B`,n(z) is analytic at z = e and its reciprocal is uniformly away from zero in a neighborhood of

e, we have

c1(z) = O(z − e) for z near e. (199)

Also Bj,n(z)Dj+1,n(z)−Bj+1,n(z)Dj,n(z) is shown to be independent of z (see [7, Formula (329)])

and equal to
γn−j
γn−j−1

where γ` is the leading coefficient of p`(z). Hence

c2(e) = − κj,n
Bj,n(e)

, κj,n := − γn−j
γn−j−1

. (200)

We note that from the explicit asymptotics [7, Formula (303), (304)] of γn−j , κj,n and its reciprocal

are bounded uniformly in n.

From this we can find the asymptotics of (194) in a similar form as (189). The resulting formula

contains two integrals, one involving Ai and the other Ai′, since each of (195), (196), and (197)

contains such two terms. Now notice that due to (199) and the change of variables ξ = (z−e)βn2/3,

the integral involving Ai is smaller than the integral involving Ai′ by the factor O(n−1/3). Thus we

find that

〈(x− e)`(ψn−j−1(x)− Bj+1,n(e)

Bj,n(e)
ψn−j(x)), en(akx−V (x)/2)〉

= − Qn(ak)κj,n

βn5/6(βn2/3)`Bj,n(e)

(∫ ∞
0

ξ` Ai′(ξ)(eαkξ + ω2ω`eωαkξ + ωω2`eω
2αkξ)dξ + o(1)

)
. (201)

The integral above can be simplified by the identity∫ ∞
0

ξ` Ai′(ξ)(ω2ω`eαωξ + ωω2`eαω
2ξ + eαξ)dξ =

(
d

dα

)`
(−αeα3/3). (202)

This identity is obtained by taking derivatives with respect to α of the identity∫ ∞
0

Ai′(ξ)(ω2eαωξ + ωeαω
2ξ + eαξ)dξ = −αeα3/3, (203)

which follows from (191) after integrating by parts. Hence we obtain

〈(x− e)`(ψn−j−1(x)− Bj+1,n(e)

Bj,n(e)
ψn−j(x)), en(akx−V (x)/2)〉

=
Qn(ak)κj,n

βn5/6(βn2/3)`Bj,n(e)

(
d

dαk

)`
(αke

α3
k/3) + o(1). (204)

Inserting (193) and (204) (with ` 7→ ` − 1 and j = `) into (185), we obtain that (183) equals,

when m is even,

[m/2]∏
`=1

κ`,n

(βn2/3)2`

m∏
k=1

Qn(ak)


det



eα
3
1/3 · · · eα

3
m/3

α1e
α3
1/3 · · · αme

α3
m/3

d
dα1

eα
3
1/3 · · · d

dαm
eα

3
m/3

d
dα1

(α1e
α3
1/3) · · · d

dαm
(αme

α3
m/3)(

d
dα1

)2
eα

3
1/3 · · ·

(
d

dαm

)2
eα

3
m/3(

d
dα1

)2
(α1e

α3
1/3) · · ·

(
d

dαm

)2
(αme

α3
m/3)

...
...

...


+ o(1)


. (205)
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Note that the (j, k) entry of the determinant on the right-hand side of (205) is of the form

Pj(αk)e
α3
k/3 for some polynomial Pj(x) of degree j − 1 with leading coefficient 1, (i.e., Pj(x) =

xj−1 + · · · ,) which are defined by the conditions

Pj(α) =

{
e−α

3/3
(
d
dα

)i
eα

3/3 if j = 2i,

e−α
3/3
(
d
dα

)i
(αeα

3/3) if j = 2i+ 1.
(206)

Therefore, by elementary row operations we find that the determinant is same as the determinant

of the matrix (αj−1
k eα

3
k/3)m

j,k=1. The determinant of this matrix is
∏

1≤j<k≤m(αk − αj)
∏m
k=1 e

α3
k/3

and this is non-zero. Therefore, when m is even,

[ [m/2]−1∏
`=1

(bn−2−`bn−m+`)
`

]
det
(
Γn−j(ak)

)m
j,k=1

=

[m/2]∏
`=1

κ`,n

(βn2/3)2`

m∏
k=1

Qn(ak)e
α3
k/3

∏
1≤j<k≤m

(αk − αj)(1 + o(1)). (207)

We have a similar result when m is odd.

6.2 Evaluation of det
[
〈ψn−j,vt − sχITn (1− sχITnKn,nχITn )−1wt〉

]m
j=1

We now evaluate the numerator of (173) when E = ITn . Note that ψn−j is the only term that

depends on j. Hence by using the same row operations as in Section 6.1 that lead to (183) and

(185), we find that, when m is even,

[ [m/2]−1∏
`=1

(bn−2−`bn−m+`)
`

]
det

[
〈ψn−j ,vt − sχITn (1− sχITnKn,nχITn )−1wt〉

]m

j=1

= det

 S1

...

S[m/2]

 ,
(208)

where S` is a 2×m matrix given by

S` =

[
〈(x− e)`−1ψn−`(x),vt − sχITn (1− sχITnKn,nχITn )−1wt〉

〈(x− e)`−1(ψn−`−1(x)− B`+1,n(e)
B`,n(e) ψn−`(x)),vt − sχITn (1− sχITnKn,nχITn )−1wt〉

]
. (209)

We can write this as

S` = R` −
[
U`−1,`

V`−1,`

]
(210)

where U`,j = (U`,j(a1), · · · ,U`,j(am)) and V`,j = (V`,j(a1), · · · ,V`,j(am)) with

U`,j(ak) := 〈(x− e)`ψn−j(x), sχITn (1− sχITnKn,nχITn )−1wk〉

V`,j(ak) := 〈(x− e)`(ψn−j−1(x)− B`+1,n(e)

B`,n(e)
ψn−j(x)), sχITn (1− sχITnKn,nχITn )−1wk〉.

(211)
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The asymptotics of ψ̃n(x; ak) = wk(x)
Γn(ak) were obtained [7, Lemma 5.2]. From this the asymptotics

of U`,j/Γn(ak) when ` = 0 and s = 1 were obtained in [7, Section 5.1.3]. It is straightforward to

extend this to other ` and s as in the previous subsection. We can follow the arguments in [7,

Sections 5.1.2 and 5.1.3] almost verbatim and find

U`,j(ak)

Γn(ak)
= 〈(x− e)`ψn−j(x), sχET,ε(1− χITnKn,nχITn )−1ψ̃n−j(x; ak)〉(1 + o(1))

=
1

(βn2/3)`
〈ξ` Ai(ξ), sχ[T,∞)(1− sχ[T,∞)KAiryχ[T,∞))

−1C−αk(ξ)〉(1 + o(1)),

(212)

where ET,ε = ITn \ (e + ε,∞) with a small enough constant ε and

C−α(ξ) =
1

2π

∫
ei

1
3
z3+iξz dz

−α+ iz
(213)

is defined in (56). Using the asymptotics [7, Formula (197)] of Γn(ak)
7, this implies that

U`,j(ak) =
Qn(ak)Bj,n(e)

β
√
n(βn2/3)`

eα
3
k/3〈ξ` Ai(ξ), sχ[T,∞)(1− sχ[T,∞)KAiryχ[T,∞))

−1C−αk〉(1 +o(1)). (214)

Similarly, as in the argument for the asymptotics (201), we find that

V`,j(ak) = − Qn(ak)κj,n

βn5/6(βn2/3)`Bj,n(e)
eα

3
k/3〈ξ` Ai′(ξ), s(1− sχ[T,∞)KAiryχ[T,∞))

−1C−αk〉(1 + o(1)).

(215)

Recall the polynomials Pj(α) defined in (206). We claim that

ξi Ai(ξ) = P2i(−
d

dξ
) Ai(ξ), −ξi Ai′(ξ) = P2i+1(− d

dξ
) Ai(ξ). (216)

To see this, note that successive integrations by parts of the integral representation of the Airy

function Ai(ξ) = 1
2π
√
−1

∫∞eπi/3
∞e−πi/3 e

−ξs+ 1
3
s3ds imply that, for any i,

Ai(ξ) =
1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

1

ξi
e−ξs

[(
d

ds

)i
e

1
3
s3
]
ds =

1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

1

ξi
e−ξsP2i(s)e

1
3
s3ds. (217)

Hence

ξi Ai(ξ) =
1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

P2i(s)e
−ξse

1
3
s3ds

=
1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

[
P2i(−

d

dξ
)e−ξs

]
e

1
3
s3ds = P2i(−

d

dξ
) Ai(ξ),

(218)

which proves the first identity of (216). Similarly, for any i,

−ξi Ai′(ξ) = ξi
1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

se−ξs+
1
3
s3ds =

1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

e−ξs
[(

d

ds

)i
(se

1
3
s3)

]
ds

=
1

2π
√
−1

∫ ∞eπi/3
∞e−πi/3

e−ξsP2i+1(s)e
1
3
s3ds = P2i+1(− d

dξ
) Ai(ξ),

(219)

7It was given in terms of Bj,n(e) but we can change it to Bj,n(e). See Footnote 6.
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which proves the second identity.

We insert (216) into (214) and (215). This gives the asymptotics of the second matrix in the

definition of S`. For R`, we use the asymptotics (193) and (204) and insert (206). We obtain Then

we obtain, when m is even,

(−1)[m/2]

[m/2]∏
`=1

κ`,n

(βn2/3)2`

m∏
k=1

Qn(ak)e
α3
k/3

× det

[
Pj−1(αk)− 〈Pj−1(− d

dξ
) Ai(ξ), sχ[T,∞)(1− sχ[T,∞)KAiryχ[T,∞))

−1C−αk〉+ o(1)

]m

j,k=1

.

(220)

Simple row operations then imply that the last determinant, without o(1) term, equals

det

[
αj−1
k − 〈(− d

dξ
)j−1 Ai(ξ), sχ[T,∞)(1− sχ[T,∞)KAiryχ[T,∞))

−1C−αk〉
]m

j,k=1

. (221)

6.3 Proof of Theorem 1.6

From (173), (207), and (221), we find that

En(a1, · · · ,am; ITn ; s)

F0(x)
=

det[Dm(s)]∏
1≤j<k≤m(αk − αj)

+ o(1) (222)

where

Dm(s) :=

[
(−αk)j−1 − 〈( d

dξ
)j−1 Ai(ξ), sχ[T,∞)(1− sχ[T,∞)KAiryχ[T,∞))

−1C−αk〉
]m

j,k=1

. (223)

When s = 1, Dm(s) is precisely the matrix M defined in [2, Formula (3.36)] with wk = −αk
(see [2, Formula (3.9)] for the definition of Ew and [2, Formulas (3.4) and (1.10)] for the definition

of T1). A different formula of det(M) was then obtained [2, Formula (3.46)] in terms of function

f(x;w). Comparing with the case of k = 1 of [2, Formula (1.16)], this function f(x,w) = F1(x;w)
F0(x)

and this implies that

det[Dm(1)] = det

[
(−αk +

d

dT
)j−1F1(T ;−αk; 1)

F0(T )

]
. (224)

When s 6= 1, the only difference of Dm(s) from M is that the function Ew (defined in [2,

Formula (3.9)] is changed to Esw(u) := s
(

1
1−sAx C̃w

)
(u). The proof of [2, Formula (3.46)] goes

through without any changes and we obtain

det[Dm(s)] = det

[
(−αk +

d

dT
)j−1F1(T ;αk; s)

F0(T ; s)

]
. (225)

From the definition of Fk (58), we obtain (61).
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7 Non-vanishing property of some determinants

As discussed in Section 1.4, in each of the Sections 2-5 we need the fact that the determinant

of a certain matrix is non-zero and is uniformly bounded away from zero. Specifically, we need

this property for the following four matrices [M̃j,n(c(ak))]
m
j,k=1 in (82) of Section 2, P in (91) of

Section 3, P = [M(i−1)
j,n (x0(a))]mj,i=1 in (110) of Section 4, and P` = P(a,m−j),(b,j) in (46) (see also

the discussion after (140) in Section 5).

In this section, we prove that the determinants of these matrices are uniformly away from zero

in a unifying way. This was obtained by considering a more general matrix which includes the

above matrices as special cases. We can show the non-vanishing property from a direct algebraic

manipulation of the determinant when the support of the equilibrium measure consists of a single

interval (i.e. N = 0) since in this case the entries of the matrix do not depend on n and are

expressed in terms of a simple rational function. However, when the support consists of multiple

intervals (i.e. N > 0), the entries involve a Riemann theta function and it is not easy to check

directly that the determinant is non-zero.

Instead we proceed as follows. The entries of the desired matrix are expressed in terms of

the solution of the so-called ‘global parametrix’ Riemann-Hilbert problem (RHP) for orthogonal

polynomials. Using this, we show that the desired determinant itself can be expressed as a product

of the solutions of different Riemann-Hilbert problems, which are a Darboux-type transformation

of the above global parametrix RHP. We exploit a relationship between the original RHP and its

transformation in order to prove the non-vanishing property.

We now introduce the general matrix which we analyze. LetMj,n(z) and M̃j,n(z) be defined in

[7, Formula (311) and (312)]. They are expressed in terms of the solution to the global parametrix

RHP: see (229) and (232) below for the explicit formula. We note that they are analytic, in

particular, for z ∈ (e,∞). We also note that when N = 0, (see (45))

Mj,n(z) =

√
2

π(e− ẽ)

γ(z) + γ(z)−1

2

(
γ(z)− γ(z)−1

γ(z) + γ(z)−1

)j
, z ∈ C \ (−∞, e] (226)

for z in C \ (−∞, e].

Let {c1, · · · , cp} be a set distinct real numbers in (e,∞) and let {d1, · · · , dq} be another set of

distinct real numbers in z ∈ (e,∞) for some non-negative integers p and q. For each n, we define

the (p+ q)× (p+ q) matrix

P
c1,··· ,cp
d1,··· ,dq :=

 M̃1,n(d1) · · · M̃1,n(dq) M1,n(c1) · · · M1,n(cp)
...

. . .
...

...
. . .

...

M̃p+q,n(d1) · · · M̃p+q,n(dq) Mp+q,n(c1) · · · Mp+q,n(cp)

 . (227)

Special cases of this matrix appeared in the proofs of Theorem 1.2 in Section 2 and of Theorem 1.3

in Section 3.

We also consider a slight extension of the above matrix whose special cases appeared in the

proofs of Theorem 1.4 in Section 4 and of Theorem 1.5 in Section 5. Let m1, · · · ,mp and n1, · · · , nq

39



be positive integers, and set s := m1 + · · · + mp and t = n1 + · · · + nq. For each n, define the

(s + t)× (s + t) matrix P
(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq) by the entries, for each j = 1, · · · , s + t,

(
P

(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq)

)
j,k

:=



M̃(k−1)
j,n (d1) for k = 1, · · · , n1,

M̃(k−n1−1)
j,n (d2) for k = n1 + 1, · · · , n1 + n2,

...

M̃(k−t+nq−1)
j,n (dq) for k = t− nq + 1, · · · , t,

M(k−t−1)
j,n (d1) for k = t + 1, · · · , t +m1,

...

M(k−s−t+mp−1)
j,n (cp) for k = s + t−mq + 1, · · · , s + t.

(228)

Note that P
c1,··· ,cp
d1,··· ,dq is a special case of P

(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq) when all mj = 1 and nj = 1. The main

result of this section is the following proposition.

Proposition 7.1. Let p, q be non-negative integers, c1, · · · , cp be a set of distinct real numbers in

(e,∞) and d1, · · · , dq be another set of distinct real numbers in (e,∞).

(a) Let P
c1,··· ,cp
d1,··· ,dq be defined in (227). Then for all positive integer n, det[P

c1,··· ,cp
d1,··· ,dq ] 6= 0. Also both

det[P
c1,··· ,cp
d1,··· ,dq ] and its reciprocal are bounded uniformly in n. Moreover, if c1 < · · · < cp and

d1 < · · · < dq, then (−1)pq+p(p−1)/2(−i)q det[P
c1,··· ,cp
d1,··· ,dq ] > 0.

(b) Let m1, · · · ,mp and n1, · · · , nq be positive integers and let P
(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq) be defined by

(228). Then for all positive integer n, det[P
(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq) ] 6= 0. Also both det[P

(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq) ]

and its reciprocal are bounded uniformly in n. Moreover, if c1 < · · · < cp and d1 < · · · < dq,

then (−1)st+s(s−1)/2(−i)t det[P
(c1,m1),··· ,(cp,mp)
(d1,n1),··· ,(dq ,nq) ] > 0, where s = m1 + · · · + mp and t =

n1 + · · ·+ nq.

Even though Proposition 7.1 (a) is a special case of Proposition 7.1 (b), we state these results

separately for the ease of citation.

The idea of this proof is motivated by the paper [5] which evaluates the orthogonal polynomials

and their Cauchy transforms with respect to a weight which is a multiplication of a given weight

by a rational function. This procedure bears resemblance to the Darboux tranformation in spectral

theory.

Remark 7.1. In this section, we use the abbreviation ‘fn � O(1) uniformly in n’ to mean that for

a sequence fn, both fn and 1
fn

are bounded uniformly in n.

7.1 Proof of Proposition 7.1

We first prove part (a).

Let J :=
⋃N
j=0(bj , aj+1), b0 < a1 < · · · < aN+1, be the support of the equilibrium measure given

in (15). From [7, Formulas (311) and (312)],

Mk,n(z) = Ck,n · [Mk]11(z), M̃k,n(z) = Ck,n · [Mk]12(z) (229)
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for any z ∈ C \ (b0, aN+1), where the constant Ck,n := γ̂n−ke
n`/2 and the 2 × 2 matrix Mk(z) :=

M
(∞)
k,n (z) satisfy the following properties.

First, the positive number γ̂n−k is defined in [7, Formula (304)] in terms of the Riemann theta

function θ. This particular theta function satisfies the property that θ(V ) 6= 0 for all real vector

V from (the proof of) [17, Formula (3.38)]. Hence due to the periodicity of the Riemann theta

function, |θ(V )| is uniformly bounded below and above for real vectors V . Since all the arguments

of the Riemann theta functions in the definition of γ̂n−k are real, we find that

Ck,n � O(1) (230)

uniformly in n.

The matrix Mk(z) := M
(∞)
k,n (z) is explicitly defined in [7, Formulas (300) and (301)]) in terms

of a Riemann theta function. However, we do not use this formula; instead we use the follow-

ing Riemann-Hibert characterization given in [7, Formulas (295)–(297)]. Let v(x) for x ∈ Σ :=

(b0, aN+1) \ {b1, · · · , bN , a1, · · · , aN} be the jump matrix defined by

v(x) :=



[
e−inΩj 0

0 einΩj

]
, for x ∈ (aj , bj), j = 1, · · · , N ,[

0 1

−1 0

]
, for x ∈ J ,

(231)

where Ωj , j = 1, · · · , N , are real constants defined in [16, Formula (1.21)] (see also [7, Table 1]).

Then for k ∈ Z, Mk(z) := M
(∞)
k,n (z) solves the following RHP:

Mk(z) is analytic in C \ Σ and is continuous up to the boundary,

[Mk]+(x) = [Mk]−(x)v(x) for x ∈ Σ,

Mk(z) = [I2×2 +O(z−1)]

[
z−k 0

0 zk

]
as z →∞.

(232)

Let us denote

Mk(z) =

[
ξ

(1)
k (z) η

(1)
k (z)

ξ
(2)
k (z) η

(2)
k (z)

]
(233)

so that (229) become

Mk,n(z) = Ck,nξ
(1)
k (z), M̃k,n(z) = Ck,nη

(1)
k (z). (234)

Note that even though we do not explicitly indicate it, ξ
(1)
k (z) and η

(1)
k (z) depend on n.

From the hypothesis of Proposition 7.1(a), c1, · · · , cp are distinct real numbers and d1, · · · , dq
is another set of distinct real numbers, all in (e,∞). For integers 0 ≤ s ≤ p and 0 ≤ t ≤ q, let
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(Mk)
c1,··· ,cs
d1,··· ,dt(z) be the 2× 2 matrix whose entries are defined by, for each i = 1, 2,

[(Mk)
c1,··· ,cs
d1,··· ,dt ]i1(z) :=

s∏
j=1

1

cj − z

× det


ξ

(i)
k−s(c1) · · · ξ

(i)
k−s(cs) η

(i)
k−s(d1) · · · η

(i)
k−s(dt) ξ

(i)
k−s(z)

ξ
(i)
k−s+1(c1) · · · ξ

(i)
k−s+1(cs) η

(i)
k−s+1(d1) · · · η

(i)
k−s+1(dt) ξ

(i)
k−s+1(z)

...
...

...
...

...

ξ
(i)
k+t(c1) · · · ξ

(i)
k+t(cs) η

(i)
k+t(d1) · · · η

(i)
k+t(dt) ξ

(i)
k+t(z)

 , (235)

and

[(Mk)
c1,··· ,cs
d1,··· ,dt ]i2(z) :=

t∏
j=1

1

dj − z

× det


ξ

(i)
k−s(c1) · · · ξ

(i)
k−s(cs) η

(i)
k−s(d1) · · · η

(i)
k−s(dt) η

(i)
k−s(z)

ξ
(i)
k−s+1(c1) · · · ξ

(i)
k−s+1(cs) η

(i)
k−s+1(d1) · · · η

(i)
k−s+1(dt) η

(i)
k−s+1(z)

...
...

...
...

...

ξ
(i)
k+t(c1) · · · ξ

(i)
k+t(cs) η

(i)
k+t(d1) · · · η

(i)
k+t(dt) η

(i)
k+t(z)

 . (236)

Now we proceed to prove Proposition 7.1(a) as follows. We only consider the case when q > 0.

The proof is completely analogous when q = 0. When q > 0, from (234) and (236), we have

det[P
c1,··· ,cp
d1,··· ,dq ] = (−1)pq

p+q∏
j=1

Cj,n

(q−1∏
`=1

(d` − dq)
)

((Mp+1)
c1,··· ,cp
d1,··· ,dq−1

)12(dq). (237)

To show that det[P
c1,··· ,cp
d1,··· ,dq ] � O(1), we only need to prove that [(Mp+1)

c1,··· ,cp
d1,··· ,dq−1

]12(dq) � O(1)

uniformly in n due to (230). We prove this by showing that for all s ∈ {0, 1, · · · , p} and t ∈
{0, 1, · · · , q},

[(Mk)
c1,··· ,cs
d1,··· ,dt ]i,j(x) � O(1) (238)

uniformly in n for each i, j = 1, 2, for each integer k, and for each real number x ∈ (e,∞), using

an induction in s and t.

When s = t = 0, Mk(z) has an explicit formulas in terms of the Riemann theta function θ [7,

Formulas (300) and (301)]. Note that for x ∈ (e,∞), u±(x) is a real vector by the construction of

u defined in [17, Formula (1.29)] and [16, Formula (1.29)]. Since all the arguments of the Riemann

theta functions are real vectors, we find, as in the discussion above (230), that [Mk]ij(x) � O(1)

for each i, j = 1, 2, for each integer k, and for each real number x ∈ (e,∞)

To complete the induction step, it is enough to show that if (238) holds for s = ` and t = `′,

then it holds for s = ` + 1, t = `′, and also for s = `, t = `′ + 1. Recall that the (j, `)-minor of a

square matrix is the determinant of the matrix formed by removing the j-th row and `-th column

from the original matrix. For i = 1, 2, we denote the (1, s+ t+ 1)-minor of the matrix on the right
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hand side of (235) by Ai1. We also denote the (s+ t+ 1, s+ t+ 1)-minor of the matrix on the right

hand side of (236) by Ai2. It is easy to see from the definition that and when t > 0,

Ai1 =[(Mk+1)c1,··· ,csd1,··· ,dt−1
]i2(dt)

t−1∏
j=1

(dj − dt), (239)

Ai2 =[(Mk)
c1,··· ,cs
d1,··· ,dt−1

]i2(dt)

t−1∏
j=1

(dj − dt), (240)

and when t = 0,

Ai1 =[(Mk)
c1,··· ,cs−1 ]i1(cs)

s−1∏
j=1

(cj − cs), (241)

Ai2 =[(Mk−1)c1,··· ,cs−1 ]i1(cs)
s−1∏
j=1

(cj − cs). (242)

Now let (M̂k)
c1,··· ,cs
d1,··· ,dt(z) be the solution to the RHP (232) where the jump matrix is changed to

v̂(x) which is given by v̂(x) = v(x) for x ∈ Σ \ J , and

v̂(x) =

[
0 (c1−x)···(cs−x)

(d1−x)···(dt−x)

− (d1−x)···(dt−x)
(c1−x)···(cs−x) 0

]
, for x ∈ J . (243)

The existence of the solution to this RHP is given in the next subsection. The uniqueness follows

from the fact that det v̂ ≡ 1.

Lemma 7.1. (a) For s > 0, if ((Mk)
c1,··· ,cs−1)11(cs) 6= 0 and ((Mk−1)c1,··· ,cs−1)21(cs) 6= 0, then

(Mk)
c1,··· ,cs(z) = diag(A11,A22)(M̂k)

c1,··· ,cs(z), (244)

where A11 and A22 are given in (241) and (242).

(b) For t > 0, if ((Mk+1)c1,··· ,csd1,··· ,dt−1
)12(dt) 6= 0 and ((Mk)

c1,··· ,cs
d1,··· ,dt−1

)22(dt) 6= 0, then

(Mk)
c1,··· ,cs
d1,··· ,dt(z) = (−1)t diag(A11,A22)(M̂k)

c1,··· ,cs
d1,··· ,dt(z), (245)

where A11 and A22 are given in (239) and (240).

Proof. This is straightforward to check.

From the RHP, we can show the non-vanishing property of the entries of (M̂k)
c1,··· ,cs
d1,··· ,dt .

Lemma 7.2. For any integer k, real number x ∈ (e,∞), s ∈ {0, 1, · · · , p} and t ∈ {0, 1, · · · , q},

[(M̂k)
c1,··· ,cs
d1,··· ,dt ]ij(x) � O(1), i, j = 1, 2, (246)

uniformly in n and [(M̂k)
c1,··· ,cs
d1,··· ,dt ]11(x), [(M̂k)

c1,··· ,cs
d1,··· ,dt ]22(x), [−i(M̂k)

c1,··· ,cs
d1,··· ,dt ]12(x) and i[(M̂k)

c1,··· ,cs
d1,··· ,dt ]21(x)

are all positive.
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Proof. The proof will be given in Subsection 7.2.

Thus Lemma 7.1 and Lemma 7.2 imply that if (238) holds for s = ` and t = `′, and so does for

s = `+ 1, t = `′, and also for s = `, t = `′ + 1. The induction step of the proof is complete and we

obtain det[P
c1,··· ,cp
d1,··· ,dq ] � O(1).

If we take inductive steps, in particular, as (s, t) = (0, 0), (1, 0), · · · , (p, 0), (p, 1), · · · , (p, q− 1),

then we find an explicit formula of [(Mp+1)
c1,··· ,cp
d1,··· ,dq−1

]12(dq), which implies from (237) that

(−1)pq
(∏p+q

j=1 C
−1
j,n

)
det[P

c1,··· ,cp
d1,··· ,dq ](∏

1≤j<k≤p(cj − ck)
)(∏

1≤j<k≤q−1(dk − dj)
)

=

q∏
t=1

[(M̂p+1)
c1,··· ,cp
d1,··· ,dt−1

]12(dt)

p∏
s=1

[(M̂s)
c1,··· ,cs−1 ]11(cs). (247)

From this formula and the signs of [(M̂k)
c1,··· ,cs
d1,··· ,dt ]i,j(x) i n Lemma 7.2, we find that if cj and dj are

both in ascending orders, then (−1)pq+p(p−1)/2(−i)q det[P
c1,··· ,cp
d1,··· ,dq ] > 0. This complete a proof of

Proposition 7.1(a).

We now consider Proposition 7.1(b). Note that the identity (247) is analytic in cj ’s and dj ’s.

Hence if we take the limit so that some of cj are identical and some of dj are identical, then by

l’Hôpital’s rule, we obtain Proposition 7.1(b).

7.2 Evaluation of (M̂k)
c1,··· ,cs
d1,··· ,dt

In this subsection we prove Lemma 7.2 by finding an explicit formula of (M̂k)
c1,··· ,cs
d1,··· ,dt(z), which is

obtained by solving a RHP in terms of a Riemann theta function

We can consider the following slightly more general RHP. Let Σ := (b0, aN+1)\{b1, · · · , bN , a1, · · · , aN}
and J =

⋃N
j=0(bj , aj+1) as in (232). Let f(x) be a positive real analytic function on J̄ . Let the

2× 2 matrix N(z) be the solution to the following RHP:

N(z) is analytic in C \ Σ and is continuous up to the boundary,

N+(x) = N−(x)

[
e−inΩj 0

0 einΩj

]
for x ∈ Σ \ J,

N+(x) = N−(x)

[
0 f(x)

−1/f(x) 0

]
for x ∈ J,

N(z) = [I2×2 +O(z−1)]

[
z−k 0

0 zk

]
as z →∞.

(248)

The matrix (M̂k)
c1,··· ,cs
d1,··· ,dt(z) is the special case of N(z) when f(x) is rational.

We now solve the the above RHP for N(z) explicitly. This is done by finding an algebraic

transformation of N so that the jump matrix on J becomes
(

0 1
−1 0

)
while the jump matrix on

Σ \ J remains similar to the original one except that each Ωj changes to a different constant. The
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asymptotic condition as z → ∞ is unchanged. The solution to the resulting RHP is well-known

[16].

For constants t1, · · · , tN , let D(z) be a solution to the following scalar RHP:

D(z) is analytic in C \ Σ and is continuous up to the boundary,

D(z) 6= 0 for all z ∈ C \ Σ,

D+(x)D−(x) = f(x) for x ∈ J,
D+(x) = D−(x)eitj for x ∈ (aj , bj), j = 1, · · · , N,
D(∞) := limz→∞D(z) exists and is non-zero.

(249)

For most choices of t1, · · · , tN , there is no solution to this RHP. Below we construct a (unique)

array of t1, · · · , tN for which D(z) exists. Note that D(z) is unique if it exists.

Set

L(z) = logD(z), z ∈ C \ Σ (250)

where log is defined on the principal branch of logarithm. The RHP for D(z) implies that L(z) is

a well defined analytic function in C \ Σ. Set q(z) :=
∏N
j=0(z − bj)(z − aj+1). Define the square

root
√
q(z) to be analytic in C \ J̄ and satisfy

√
q(z) ∼ zN as z →∞. Then the function

L̃(z) =
L(z)√
q(z)

(251)

satisfies the following scalar RHP: L̃(z) is analytic in z ∈ C \Σ, continuous up to the boundary of

Σ, and L̃(z) = O((z − bj)−1/2 and L̃(z) = O((z − aj+1))−1/2 for j = 0, · · · , N , and also
L̃+(x) = L̃−(x) + log f(x)

(
√
q(x))+

for x ∈ J ,

L̃+(x) = L̃−(x) + itj for x ∈ (aj , bj), j = 1, · · · , N ,

L̃(z) = O(z−N−1) as z →∞.

(252)

The additive jump conditions imply that, from the Plemelj formula,

L̃(z) =
1

2πi

 N∑
j=0

∫ aj+1

bj

log f(s)

(
√
q(s)+)

ds

s− z +
N∑
j=1

itj

∫ bj

aj

ds

s− z

+ E(z) (253)

for an entire function E(z). Now in order to satisfy the asymptotic condition L̃(z) = O(z−N−1) as

z →∞, we must have that E(z) ≡ 0 and

N∑
j=0

∫ aj+1

bj

log f(s)

i(
√
q(s)+)

skds+
N∑
j=1

tj

∫ bj

aj

skds = 0 for k = 0, · · · , N − 1. (254)

We regard (254) as a system of N linear equations for t1, · · · , tN . This system has a unique solution

since its Jacobian is

det

(∫ bj

aj

s`−1ds

)N
j,`=1

=

∫ b1

a1

ds1 · · ·
∫ bN

aN

dsN det(s`−1
j )Nj,`=1, (255)
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which is positive. For this particular tj , the RHP (252) has a solution, and accordingly the RHP

(249) have a solution. Note that since i(
√
q(s)+) is real for s ∈ J , the above system of equations

has real coefficients and hence the solution tj are real. From this and (253), we find that D(x) > 0

for all x ∈ (e,∞).

Set

Ñ(z) :=

[
D(∞)−1 0

0 D(∞)

]
N(z)

[
D(z) 0

0 D(z)−1

]
, (256)

for z ∈ Σ \ J . It is easy to check using (249) that Ñ satisfies the same analytic and asymptotic

condition as the RHP (248) and it satisfies the jump condition
Ñ+(x) = Ñ−(x)

[
e−i(nΩj−tj) 0

0 ei(nΩj−tj)

]
for x ∈ Σ \ J,

Ñ+(x) = Ñ−(x)

[
0 1

−1 0

]
for x ∈ J.

(257)

This is the same RHP (232) for Mk with the changes Ωj 7→ Ωj − 1
n tj . Hence the solution Ñ(z) is

given by the usual Riemann theta function construction. Since tj ’s are real, we find, as in the case

of Mk, from the property of the theta function that for any x ∈ (e,∞), [Ñ]ij(x) � O(1) uniformly

in n, i, j = 1, 2. Also from the explicit formula of Ñ(z), we find that [Ñ]11(x) > 0, −i[Ñ]12(x) > 0.

Since D(x) > 0 for x ∈ (e,∞), we find by (256) that [N]ij(x) � O(1) uniformly in n, i, j = 1, 2,

and [N]11(x) > 0, −i[N]12(x) > 0.

Thus, as a special case, we obtain Lemma 7.2.

8 Proof of Theorem 1.1

Theorem 1.1 is an algebraic relation that reduce the higher rank case to the rank one case. We give

an elementary proof of this theorem in this section. A different, more conceptual proof based on

the integrable structure of the Hermitian matrix model with external source can be found in [8].

Since the proof is purely algebraic, we drop the dependence on n in the density function (5)

and consider the following matrix model. Let W (x) is a non-negative function on the real line

such that logW (x) grows faster than any linear function as |x| → ∞. We also assume that the

orthonormal polynomials p0(x), p1(x), · · · with respect to the weight W (x) exist. Fix the matrix

A = diag(a1, · · · , ad), and consider the following measure on the set Hd of d× d Hermitian matrix

M :

fd(M)dM :=
1

Z
det(W (M))eTr(AM)dM. (258)

Here W (M) is defined in terms of the continuous functional calculus of Hermitian matrices, and Z

is the normalization constant. We emphasize that d is the dimension of both the random matrix

M and the external source matrix A.
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For a subset E ⊂ R and s ∈ C, define

Ed(a1, · · · , ad;E; s) :=

∫
Hd

d∏
j=1

(1− sχE(λj))fd(M)dM, (259)

where λ1, · · · , λd are the eigenvalues of M . When A = diag(a1, · · · , am, 0, · · · , 0︸ ︷︷ ︸
d−m

) for some m ≤ d,

we suppress the zero eigenvalues of the external source matrix A denote (259) by

Ed(a1, · · · , am;E; s). (260)

We also set

Ēd(a1, · · · , am;E; s) :=
Ed(a1, · · · , am;E; s)

Ed(E; s)
. (261)

where Ed(E; s) is (259) when A = 0. For a real number a, define (cf. (10))

Γj(a) :=

∫
R
pj(s)e

asW (s)ds. (262)

Theorem 1.1 follows from the following proposition when W (x) = e−nV (x) and A = nAd =

diag(na1, · · · , nam, 0, · · · , 0).

Proposition 8.1. We have, assuming that a1, · · · , am are non-zero and distinct,

Ēd(a1, · · · , am;E; s) =
det
[
Γd−j(ak)Ēd−j+1(ak;E; s)

]m
j,k=1

det[Γd−j(ak)]
m
j,k=1

. (263)

Proof. The density function of the unordered eigenvalues λ1, · · · , λd ∈ R of M induced from (258)

is a symmetric function and is given by

1

Z ′
det[λj−1

i ]di,j=1

det[eaiλj ]di,j=1

det[aj−1
i ]di,j=1

d∏
i=1

W (λi), (λ1, · · · , λd) ∈ Rd (264)

where Z ′ is the normalization constant. Here the ratio det[eaiλj ]

det[aj−1
i ]

is evaluated using l’Hôpital’s

rule as am+1 = · · · = ad = 1. Recall that a1, · · · , am are non-zero and distinct by assump-

tion. From the usual random matrix theory, the eigenvalues form a determinantal point process

whose kernel K̃d obtained from the bi-orthonomal system constructed from {1, x, x2, · · · , xd−1} and

{1, x, · · · , xd−m−1, ea1x, · · · , eamx}. Then

Ed(a1, · · · , am;E; s) = det[1− sPK̃dP ] (265)

where P denote the projection operator on the set E.

Let Kd(x, y) =
∑n−1

j=0 pj(x)pj(y)W (x)1/2W (y)1/2 be the usual Christoffel-Darboux kernel when

A = 0. Hence Ed(E; s) = det[1− sPK̃P ] and Ēd(a1, · · · , am;E; s) = det[1−sPK̃dP ]
det[1−sPKdP ] .
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Note that the first d − m terms of the bi-orthogonal functions for K̃d are the orthonormal

polynomials pj(x). It was shown in [3] that K̃d is a rank m perturbation of Kd as follows. Define

the column vectors

t̂(x) := (pd−m(x)W (x)1/2, · · · , pd−1(x)W (x)1/2)t,

v̂(x) := (ea1xW (x)1/2, · · · , eamxW (x)1/2)t,
(266)

and define an m×m matrix (the second equality follows from (262))

B :=

∫
R

t̂(s)v̂(s)tds =
[
Γd−m+j−1(ak)

]m
j,k=1

. (267)

Set

ŵ(z) := v̂(z)−
∫
R
Kd(s, z)v̂(s)ds =

[
(1−Kd)Rv̂

]
(z). (268)

Then8

K̃d = Kd +
m∑
j=1

ŵj ⊗ (B−1t̂)j . (269)

We now derive (263) from (269). Let 〈, 〉 be the real inner product over R. Then (269) implies

that

Ēd(a1, · · · , am;E; s) = det

[
1− s

m∑
j=1

((1− sPKdP )−1ŵ)j ⊗ (B−1t̂)jP

]

= det

[
I− s〈(B−1t̂P, (1− sPKdP )−1ŵt〉

]
=

1

det[B]
det

[
B− s〈t̂, P (1− sPKdP )−1ŵt〉

]
.

(270)

Set ψk(x) := pk(x)W (x)1/2. Then t̂j = ψd−j . By using the definition (268) of ŵ, we find that

Ēd(a1, · · · , am;E; s) =
1

det[B]
det

[
〈ψd−m+j−1, (1− sP (1− sPKdP )−1(1−Kd))v̂k〉

]m

j,k=1

(271)

where v̂k is the kth component of v̂. By arranging the columns backward and using (267), we

obtain

Lemma 8.1. We have

Ed(a1, · · · , am;E; s)

Ed(E; s)
=

1

det[Γd−j(ak)]
m
j,k=1

det

[
〈ψd−j , (1− sP (1− sPKdP )−1(1−Kd))v̂k〉

]m

j,k=1

.

(272)

Now the following lemma shows that the subscript d of Kd in the right-hand side of (272) can

be replaced by d− j + 1.

8The formula is equivalent to [3, Theorem 1] once one changes the monic orthogonal polynomials πj(x) to the

orthonormal polynomials pj(x), and conjugate both sides of [3, Formula (19)] by W (x)1/2 = e−
1
2
V (x).
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Lemma 8.2. We have

det

[
〈ψd−j , (1− sP (1− sPKdP )−1(1−Kd))v̂k〉

]m

j,k=1

= det

[
〈ψd−j , (1− sP (1− sPKd−j+1P )−1(1−Kd−j+1))v̂k〉

]m

j,k=1

.

(273)

Proof of Lemma 8.2. We first observe the following general identity: for an operator A, if B =

A+ f ⊗ f and if P is a projection, then

(1− sPAP )−1(1−A)− (1− sPBP )−1(1−B)

= (1− sPAP )−1f ⊗ f + ((1− sPAP )−1 − (1− sPBP )−1)(1−B)

= (1− sPAP )−1f ⊗ f − s(1− sPAP )−1Pf ⊗ fP (1− sPBP )−1(1−B)

= (1− sPAP )−1f ⊗ f(1− sP (1− sPBP )−1(1−B)).

(274)

Hence for any square integrable functions g and h,

〈g, (1− sPAP )−1(1−A)h〉 =

〈g, (1− sPBP )−1(1−B)h〉+ 〈g, (1− sPAP )−1f〉〈f, (1− sP (1− sPBP )−1(1−B))h〉. (275)

Also observe that since Kk = ψ0⊗ψ0+· · ·+ψk−1⊗ψk−1, we have Kd−j+1 = Kd−j+ψd−j⊗ψd−j .
We denote the matrix on each side of the identity (273) as L and R. Consider Rij . Apply-

ing (275) to A = Kd−j+1, B = Kd−j+2, g = ψd−j and h = v̂k, we obtain

Rjk = 〈ψd−j , (1− sP (1− sPKd−j+2P )−1(1−Kd−j+2))v̂k〉
+ 〈ψd−j , (1− sP (1− sPKd−j+1P )−1)ψd−j+1〉Rj−1,k.

(276)

If we apply (275) again with A = Kd−j+2, B = Kd−j+3, g = ψd−j and h := v̂k, then we obtain

Rjk = 〈ψd−j , (1− sP (1− sPKd−j+3P )−1(1−Kd−j+3))v̂k〉
+ 〈ψd−j , (1− sP (1− sPKd−j+2P )−1)ψd−j+2〉Rj−2,k

+ 〈ψd−j , (1− sP (1− sPKd−j+1P )−1)ψd−j+1〉Rj−1,k.

(277)

Repeating this procedure j times, we obtain that Rjk equals Ljk plus a linear combination of

Rj−1,k, · · · , R1,k. This implies that the determinant of R equals the determinant of L.

For the spiked model of dimension d− j + 1 with the single spiked eigenvalue ak, (272) implies

that

Ēd−j+1(ak;E; s) =
1

Γd−j(ak)
〈ψd−j , (1− sP (1− sPKd−j+1P )−1(1−Kd−j+1))v̂k〉. (278)

Comparing with the right-hand side of (273), we obtain Proposition 8.1.
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[23] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices.

Probab. Theory Related Fields, 134(1):127–173, 2006.
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