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Abstract

We study Hermitian random matrix models with an external source matrix which has
equispaced eigenvalues, and with an external field such that the limiting mean density of
eigenvalues is supported on a single interval as the dimension tends to infinity. We obtain
strong asymptotics for the multiple orthogonal polynomials associated to these models, and
as a consequence for the average characteristic polynomials. One feature of the multiple
orthogonal polynomials analyzed in this paper is that the number of orthogonality weights
of the polynomials grows with the degree. Nevertheless we are able to characterize them
in terms of a pair of 2 × 1 vector-valued Riemann-Hilbert problems, and to perform an
asymptotic analysis of the Riemann-Hilbert problems.

1 Introduction

We consider random matrix ensembles under the influence of an external source matrix with
equidistant eigenvalues. The ensembles consist of the space of n× n Hermitian matrices with a
probability distribution of the form

1

Zn
exp(−nTr [V (M)−AM ])dM, (1.1)

where

dM =
∏
i<j

d<Mijd=Mij

n∏
j=1

dMjj . (1.2)

The external field V (x) is a real analytic function which has sufficiently fast growth at infinity,

lim
x→±∞

V (x)

|x|+ 1
= +∞, (1.3)

and the external source matrix A is a deterministic Hermitian matrix. Due to the unitary
invariance of the model, we assume, without loss of generality,

A = diag(a1, a2, . . . , an). (1.4)

In our paper, we further assume the eigenvalues of A are equispaced on a certain interval, such
that aj = a(j − 1)/n+ b where a and b are constants. By arguments of shifting and scaling, it
suffices to consider the case

aj =
j − 1

n
, where j = 1, 2, . . . , n, (1.5)
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and we work with the external source matrix A given by (1.4) and (1.5) throughout this paper.
The normalization constant Zn in (1.1) depends on n and V . In the simplest example we have

V (x) = x2

2 , which gives the Gaussian Unitary Ensemble (GUE) in external source A. If we allow
singularities of V , and let V (x) = (x − m

n log x)χx>0, we have the complex Wishart ensemble
that has wide applications in statistics and wireless communication, see e.g. [8].

Random matrix ensembles with external source were introduced in [18, 33], and are inti-
mately connected to multiple orthogonal polynomials [15]. If the external field is the classical

one V (x) = x2

2 or V (x) = (x− m
n log x)χx>0, i.e., the ensemble becomes the GUE with external

source or the complex Wishart ensemble, more techniques are available for asymptotic analy-
sis, and for a large class of external source matrices, including the equispaced one defined by
(1.4) and (1.5), the asymptotics can be obtained. See [22] for the complex Wishart ensemble.
However, when the external field V (x) is general, the asymptotic analysis of the random matrix
ensembles with external source has only had success for particular choices of external source
matrices. Asymptotics for large n have been studied in [14, 16, 5, 17, 4, 13, 6] in the case where
the external source matrix A has two different eigenvalues a and −a with equal multiplicity,
and in [9, 10, 11, 12] when A has a bounded, or slowly growing with n, number of non-zero
eigenvalues. Large n asymptotics for general external source matrices have been considered in
the physics literature, see e.g. [23], but rigorous asymptotic results have not been obtained to
the best of our knowledge except for the two above-mentioned cases. We remark that the GUE
with external source and the complex Wishart ensemble have other generalizations, the complex
Wigner matrix model with external source and the complex sample covariance matrix model
respectively. They have also been studied extensively, see e.g. [7].

Let us first recall some general properties about random matrix ensembles with external
source. An ensemble of the form (1.1) with eigenvalues of the external source matrix being
a1, . . . , an induces a probability distribution on the eigenvalues λ1, . . . , λn of the matrices given
by [18, 26, 27]

1

Z ′n
det(enaiλj )ni,j=1 ∆(λ)

n∏
j=1

e−nV (λj)
n∏
j=1

dλj , (1.6)

where Z ′n = const ·Zn ·∆(a), and ∆(λ) =
∏
i<j(λj − λi) and ∆(a) =

∏
i<j(aj − ai) are Vander-

monde determinants. A remarkable fact is that the average characteristic polynomial of such
an ensemble (1.1) satisfies orthogonality conditions: indeed, let

p(n)
n (z) := En(det(zI −M)) = E′n(

n∏
j=1

(z − λj)), (1.7)

where En is the average with respect to (1.1), and E′n is the average with respect to (1.6), then

it was proved in [15] that p
(n)
n is characterized as the unique monic polynomial of degree n

satisfying the orthogonality conditions∫
R
p(n)
n (x)enajxe−nV (x)dx = 0, for j = 1, . . . , n. (1.8)

These are the orthogonality conditions for the so-called type II multiple orthogonal polynomials
with respect to n different orthogonality weights enajxe−nV (x), j = 1, . . . , n. Specialized to our
situation aj = j−1

n for j = 1, . . . , n, the joint probability distribution of the eigenvalues takes
the form

1

Z ′n

∏
i<j

(λj − λi)
∏
i<j

(eλj − eλi)
n∏
j=1

e−nV (λj)
n∏
j=1

dλj , (1.9)
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and the monic type II multiple orthogonal polynomials p
(n)
j (x), where j = 0, 1, . . . is the degree,

are characterized by ∫
R
p

(n)
j (x)ekxe−nV (x)dx = 0, for k = 0, . . . , j − 1. (1.10)

It is well-known that the point process (1.6) is determinantal [33], and its two-point correla-
tion kernel can be written in terms of multiple orthogonal polynomials. If aj = j−1

n , the kernel
takes the form [15]

Kn(x, y) = e−
n
2

(V (x)+V (y))
n−1∑
j=0

1

h
(n)
j

p
(n)
j (x)Q

(n)
j (y), (1.11)

where p
(n)
j (x) are the type II monic multiple orthogonal polynomials characterized by (1.10),

and Q
(n)
j (y) = q

(n)
j (ey) are linear combinations of eky with k = 0, 1, 2, . . . , j, subjected to the

orthogonality conditions∫
R
xkq

(n)
j (ex)e−nV (x)dx = 0, for k = 0, . . . , j − 1, (1.12)

where q
(n)
j is a monic polynomial of degree j. Finally the constants h

(n)
j are given by

h
(n)
j =

∫
R
p

(n)
j (x)q

(n)
j (ex)e−nV (x)dx. (1.13)

The orthogonality conditions (1.10) and (1.12) for p
(n)
j and q

(n)
j can also be written at once as∫

R
p

(n)
j (x)q

(n)
k (ex)e−nV (x)dx = 0, for j 6= k ∈ N = {1, 2, . . .}. (1.14)

Note that the multiple weights ekxe−nV (x) constitute an AT system [30, Section 4.4], and hence

p
(n)
j and q

(n)
j are uniquely defined, and h

(n)
j 6= 0 [31].

Remark 1. As the counterpart of p
(n)
j (x), Q

(n)
j (x) is the j-th multiple orthogonal polynomial

of type I, up to the constant factor h
(n)
j . Generally the type I multiple orthogonal polynomials

are not polynomials, but in the present setting, Q
(n)
j (x) is a polynomial in ex.

Remark 2. If the external field V is a quadratic polynomial, distributions of the form (1.6)
can also be realized in models consisting of n non-intersecting Brownian motions. In particular,
(1.9) is the joint probability distribution at an intermediate time of n non-intersecting Brownian
motions starting at one point and ending at n equidistant points. Such a model has been studied
in [29]. Different endpoint configurations have been studied e.g. in [2, 3].

In analogy to (1.7), q
(n)
n can also be interpreted as an average over the determinantal point

process (1.9). We will prove the following result in Appendix A.1.

Proposition 1. Let V be real analytic satisfying (1.3). We have the identities

q(n)
n (ez) = En(det(ezI − eM )) = E′n(

n∏
j=1

(ez − eλj )), (1.15)

where En denotes the expectation associated to (1.1) with A given by (1.4)–(1.5), and E′n is the
expectation associated to (1.9).
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The main goal of this paper is to obtain asymptotics for the average characteristic polynomi-

als p
(n)
n of the random matrix ensemble as n→∞. In addition we will also obtain asymptotics

for the dual polynomials q
(n)
n . A key observation is that p

(n)
n+k and q

(n)
n+k can be characterized in

terms of 1× 2 vector-valued Riemann-Hilbert (RH) problems. These RH problems are different
from the known (n+ k + 1)× (n+ k + 1) RH problems characterizing the multiple orthogonal

polynomials p
(n)
n+k and q

(n)
n+k [32] and from the classical RH problem for orthogonal polynomials

[24]. Since n is a large parameter in our settings, the 1 × 2 RH problem will be much more
convenient for asymptotic analysis than a RH problem of large size. As a drawback, our RH
problem is non-standard in the sense that the entries of the solution live in different domains.
This requires a modification of the Deift/Zhou steepest descent method to analyze the RH prob-
lem asymptotically. The transformation J will play a crucial role here: it allows us to transform
the 1× 2 RH problem to a scalar shifted RH problem, and to obtain small norm estimates for
the solution to this RH problem.

A crucial role in the description of the asymptotic behavior of the polynomials will be played
by an equilibrium measure. By (1.9), the joint probability density function of eigenvalues is
maximal for the n-tuples (λ1, . . . , λn) for which

∑
i<j

log |λi − λj |−1 +
∑
i<j

log |eλi − eλj |−1 + n
n∑
j=1

V (λj) (1.16)

is minimal. As in [21, Section 6.1], one can then expect that the limiting mean distribution of
the eigenvalues of the random matrices is given by the equilibrium measure µV which minimizes
the energy functional

IV (µ) :=
1

2

∫∫
log|t− s|−1dµ(t)dµ(s) +

1

2

∫∫
log|et − es|−1dµ(t)dµ(s) +

∫
V (s)dµ(s), (1.17)

among all Borel probability measures µ supported on R. This is in analogy to the equilibrium
measure corresponding to a matrix model of the form (1.1) without external source, which is
given as the unique minimizer of the energy∫∫

log|t− s|−1dµ(t)dµ(s) +

∫
V (s)dµ(s). (1.18)

Following the proof in [21] of existence and uniqueness of the minimizer of (1.18), we will show
existence and uniqueness of the equilibrium measure minimizing (1.17).

Theorem 1. Let V be real analytic, satisfying the growth condition (1.3). Then there exists a
unique measure µ = µV with compact support which minimizes the functional (1.17) among all
probability measures on R.

Remark 3. It should be noted that the growth condition (1.3) is stronger than the usual loga-
rithmic growth needed to have a unique minimizer of the one-matrix logarithmic energy (1.18).
This is a consequence of the second term in (1.17).

The proof of this result will be given in Section 2 but it does not give any information about
the measure µV itself. For that reason, in what follows, we will restrict ourselves to a class of
external fields V for which the equilibrium measure behaves nicely and is supported on a single
interval.

We say that a real analytic external field V satisfying (1.3) is one-cut regular if there exists
an absolutely continuous measure dµV (x) = ψV (x)dx satisfying the properties
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(i) supp µV = [a, b] for a < b ∈ R, and
∫
dµV (x) = 1,

(ii) ψV (x) > 0 for x ∈ (a, b),

(iii) limx→a+
ψV (x)√
x−a and limx→b−

ψV (x)√
b−x exist and are different from zero,

(iv) for x ∈ [a, b], there exists a constant ` depending on V such that∫
log|t− x|−1dµV (t) +

∫
log|et − ex|−1dµV (t) + V (x) + ` = 0, (1.19)

(v) for x ∈ R \ [a, b], we have∫
log|t− x|−1dµV (t) +

∫
log|et − ex|−1dµV (t) + V (x) + ` > 0. (1.20)

Properties (iv) and (v) are variational conditions for µV , and it follows from standard arguments
that a measure satisfying (i), (ii), (iv) and (v) minimizes the energy functional (1.17). Under

the condition that V is one-cut regular, we obtain large n asymptotics for p
(n)
n (z) and q

(n)
n (ez)

defined by (1.14), and state it in the following theorem. For the purpose of a subsequent paper,

we give slightly more general asymptotics for p
(n)
n+k(z) and q

(n)
n+k(e

z), where k is a constant
integer.

Suppose the equilibrium measure µV associated to V is supported on a single interval [a, b]
and the density function is ψV (x). In order to be able to formulate our results, let us define
c0 ∈ R and c1 ∈ R+ such that

c0 =
b+ a

2
, (1.21)

c1

√
1

4
+

1

c1
− log

√
1
4 + 1

c1
− 1

2√
1
4 + 1

c1
+ 1

2

=
b− a

2
. (1.22)

Note that c1 is well defined since as c1 runs from 0 to +∞, the left-hand side of (1.22) increases
monotonically from 0 to +∞. Then we define the transformation

J(s) = Jc1,c0(s) := c1s+ c0 − log
s− 1

2

s+ 1
2

(1.23)

for s ∈ C \ [−1
2 ,

1
2 ], where the logarithm corresponds to arguments between −π and π. For

s < −1
2 , Jc1,c0(s) has a maximum at sa, and for s > 1

2 , Jc1,c0(s) has a minimum at sb, where

sa = −
√

1

4
+

1

c1
, sb =

√
1

4
+

1

c1
. (1.24)

The extrema sa and sb are also characterized by identities a = Jc1,c0(sa) and b = Jc1,c0(sb).
In Section 3.2, a region D ⊂ C is defined by Proposition 2, and it is shown there that J maps

C \D biholomorphically into C \ [a, b], and maps D \ [−1
2 ,

1
2 ] biholomorphically into S \ [a, b],

where
S := {z ∈ C | −π < =z < π}. (1.25)
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Let the functions I1 and I2 be inverse functions of J for these two branches respectively: I1 is
the inverse map of Jc1,c0 from C\ [a, b] to C\D, and I2 is the inverse map of Jc1,c0 from S\ [a, b]
to D \ [−1

2 ,
1
2 ]:

I1(J(s)) = s, for s ∈ C \D, (1.26)

I2(J(s)) = s, for s ∈ D \ [−1

2
,
1

2
]. (1.27)

Writing, for x ∈ (a, b),

I+(x) := lim
ε→0+

I1(x+ iε) = lim
ε→0+

I2(x− iε), (1.28)

I−(x) := lim
ε→0+

I1(x− iε) = lim
ε→0+

I2(x+ iε), (1.29)

we have that I+(x) lies in the upper half plane, I−(x) in the lower half plane, and their loci are
the upper and lower boundaries of D (denoted as γ1 and γ2 in Proposition 2) respectively. The
mapping J outside and inside D is illustrated in Figures 1 and 2. The proof of Proposition 2 is
given in Appendix A.2. In Figure 3 we give two examples of γ1 and γ2 by numerical simulation.

sa sbD
a b

J
=⇒

Figure 1: Mapping J outside D.

sa sbD−1
2

1
2

a b

πi

−πi

J
=⇒

Figure 2: Mapping J inside D.

Let the functions Gk(s) and Ĝk(s) be defined as

Gk(s) := ck1
(s+ 1

2)(s− 1
2)k√

s2 − 1
4 − 1

c1

, Ĝk(s) := i
ek(

c1
2

+c0)

√
c1

(s− 1
2)−k√

s2 − 1
4 − 1

c1

, (1.30)

where the square root
√
s2 − 1

4 − 1
c1

has its branch cut along the upper edge of D (γ1 defined

in Proposition 2) in Gk(s), along the lower edge of D (γ2 defined in Proposition 2) in Ĝk(s),

and
√
s2 − 1

4 − 1
c1
∼ s as s→∞ in both cases. Further we define

rk(x) := 2|Gk(I+(x))|, θk(x) := arg(Gk,+(I+(x))), (1.31)

r̂k(x) := 2|Ĝk(I−(x))|, θ̂k(x) := arg(Ĝk,+(I−(x))), (1.32)
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Figure 3: The shapes of γ1 and γ2 when c1 = 1 (left) and c1 = 10 (right), where γ1 is the upper
boundary of the region and γ2 the lower boundary.

for x in (a, b). Here the argument of Gk,+(I+(x)) corresponds to its value as I+(x) ∈ γ1 is

approached from above, i.e. from the outside of D, and the argument of Ĝk,+(I−(x)) corresponds
to the limit as I−(x) ∈ γ2 is approached from above, i.e. from the inside of D.

We also need to define the functions

g(z) :=

∫ b

a
log(z − x)ψV (x)dx, g̃(z) :=

∫ b

a
log(ez − ex)ψV (x)dx, (1.33)

with the branch cut of the logarithms for z ∈ (−∞, x) and ez ∈ (0, ex), and ψV is the equilibrium
density. Let

φ(z) := g(z) + g̃(z)− V (z)− ` (1.34)

for z ∈ S \ (−∞, b), where ` is a constant to make φ(a) = φ(b) = 0 (see (1.19) and (3.8)). Then
we will see later on, see Section 4.4, that

fb(z) :=

(
−3

4
φ(z)

) 2
3

(1.35)

is a well defined analytic function in a certain neighborhood of b, with fb(b) = 0, f ′b(b) > 0.
Similarly,

fa(z) :=

(
−3

4
φ(z)± 3

2
πi

) 2
3

(1.36)

(where the sign is + in C+ and − in C−,) is a well defined analytic function in a certain
neighborhood of a, with fa(a) = 0, f ′a(a) < 0.

Since both p
(n)
j (z) and q

(n)
j (ez) are analytic functions that are real for z ∈ R, it suffices to

give their asymptotics in the upper half plane and the real line. For the ease of the statement of
the theorem, we divide the upper half plane into regions Aδ, Bδ, Cδ and Dδ where δ is a small
enough positive parameter, such that Cδ and Dδ are semicircles with radius δ and centered at
a and b respectively, Bδ consists of complex numbers not in Cδ or Dδ, with real part between
a and b and imaginary part between 0 and δ

2 , and Aδ = C+ \ (Bδ ∪ Cδ ∪Dδ). See Figure 4 for
the shapes of the four regions.

Theorem 2. Let V be one-cut regular. As n → ∞, we have the following asymptotics of

p
(n)
n+k(z) and q

(n)
n+k(e

z), k ∈ Z, uniform for z in regions Aδ, Bδ, Cδ and Dδ, if δ is small enough.

7



Aδ

BδCδ Dδ

a b

Figure 4: The four regions in the complex upper half plane where asymptotics for the multiple

orthogonal polynomials p
(n)
n+k(z) and q

(n)
n+k(e

z) will be given in different formulas.

(a) In region Aδ and on its boundary,

p
(n)
n+k(z) = (1 +O(n−1))Gk(I1(z))eng(z), (1.37)

q
(n)
n+k(e

z) = (1 +O(n−1))Ĝk(I2(z))eng̃(z), (1.38)

where (1.38) is valid for =z < π.

(b) In region Bδ,

p
(n)
n+k(z) = (1 +O(n−1))Gk(I1(z))eng(z) + (1 +O(n−1))Gk(I2(z))en(V (z)−g̃(z)+`), (1.39)

q
(n)
n+k(e

z) = (1 +O(n−1))Ĝk(I2(z))eng̃(z) + (1 +O(n−1))Ĝk(I1(z))en(V (z)−g(z)+`). (1.40)

If x ∈ (a, b) is on the boundary of region Bδ, then

p
(n)
n+k(x) = rk(x)en

∫
log |x−y|dµV (y)

[
cos

(
nπ

∫ b

x
dµV (t) + θk(x)

)
+O(n−1)

]
, (1.41)

q
(n)
n+k(e

x) = r̂k(x)en
∫

log|ex−ey |dµV (y)

[
cos

(
nπ

∫ b

x
dµV (t) + θ̂k(x)

)
+O(n−1)

]
. (1.42)

(c) In region Cδ, let Ai denote the Airy function [1]. Then

p
(n)
n+k(z) =

√
π

[(
(1 +O(n−1))Gk(I1(z))− (1 +O(n−1))iGk(I2(z))

)
n

1
6 f

1
4
a (z) Ai(n

2
3 fa(z))

−
(
(1 +O(n−1))Gk(I1(z)) + (1 +O(n−1))iGk(I2(z))

)
n−

1
6 f
− 1

4
a (z) Ai′(n

2
3 fa(z))

]
× en2 (g(z)−g̃(z)+V (z)+`), (1.43)

q
(n)
n+k(e

z) =
√
π

[(
(1 +O(n−1))Ĝk(I2(z))− (1 +O(n−1))iĜk(I1(z))

)
n

1
6 f

1
4
a (z) Ai(n

2
3 fa(z))

−
(

(1 +O(n−1))Ĝk(I2(z)) + (1 +O(n−1))iĜk(I1(z))
)
n−

1
6 f
− 1

4
a (z) Ai′(n

2
3 fa(z))

]
× en2 (g̃(z)−g(z)+V (z)+`), (1.44)

where f
1
4
a (z) has branch cut on (a, b), and f

1
4
a (x) > 0 for x < a. In particular, if z =

a+ f ′a(a)−1n−2/3t with t bounded, then

e
n
2

(g̃(z)−g(z)−V (z)−`)p(n)
n+k(z) =

(−1)k
√

2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
+

1

2

)k−1

c
k− 1

2
1 (−f ′a(a))

1
4n

1
6

(
Ai(t) +O(n−

1
3 )
)
,

(1.45)

8



e
n
2

(g(z)−g̃(z)−V (z)−`)q(n)
n+k(e

z) =

(−1)k
√

2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
+

1

2

)−k
ek(

c1
2

+c0)(−f ′a(a))
1
4n

1
6

(
Ai(t) +O(n−

1
3 )
)
.

(1.46)

(d) In region Dδ,

p
(n)
n+k(z) =

√
π

[(
(1 +O(n−1))Gk(I1(z))− (1 +O(n−1))iGk(I2(z))

)
n

1
6 f

1
4
b (z) Ai(n

2
3 fb(z))

−
(
(1 +O(n−1))Gk(I1(z)) + (1 +O(n−1))iGk(I2(z))

)
n−

1
6 f
− 1

4
b (z) Ai′(n

2
3 fb(z))

]
× en2 (g(z)−g̃(z)+V (z)+`), (1.47)

q
(n)
n+k(e

z) =
√
π

[(
(1 +O(n−1))Ĝk(I2(z))− (1 +O(n−1))iĜk(I1(z))

)
n

1
6 f

1
4
b (z) Ai(n

2
3 fb(z))

−
(

(1 +O(n−1))Ĝk(I2(z)) + (1 +O(n−1))iĜk(I1(z))
)
n−

1
6 f
− 1

4
b (z) Ai′(n

2
3 fb(z))

]
× en2 (g̃(z)−g(z)+V (z)+`). (1.48)

If z = b+ f ′b(b)
−1n−2/3t with t bounded, then

e
n
2

(g̃(z)−g(z)−V (z)−`)p(n)
n+k(z) =

√
2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
− 1

2

)k−1

c
k− 1

2
1 f ′b(b)

1
4n

1
6

(
Ai(t) +O(n−

1
3 )
)
, (1.49)

e
n
2

(g(z)−g̃(z)−V (z)−`)q(n)
n+k(e

z) =

√
2π

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
− 1

2

)−k
ek(

c1
2

+c0)f ′b(b)
1
4n

1
6

(
Ai(t) +O(n−

1
3 )
)
. (1.50)

(e) The inner product h
(n)
n+k of p

(n)
n+k(z) and q

(n)
n+k(e

z) defined in (1.13) has the asymptotics

h
(n)
n+k = 2πc

k+ 1
2

1 ek(
c1
2

+c0)en`(1 +O(n−1)). (1.51)

The above result is only valid if the equilibrium measure µV is supported on a single interval.
In the case of a multi-interval support, several non-trivial modifications are needed to make the
asymptotic analysis of the polynomials work. For instance, the mapping J would have to be
modified. In general it is not easy to determine whether an external field V is one-cut regular
or not, or to find the support [a, b] of the equilibrium measure and the density function ψV .
However, if the external field is strongly convex, i.e. V ′′(x) is bounded from below by a positive
constant for x ∈ R, then V is one-cut regular, and we can compute the support and density
function of the equilibrium measure explicitly in terms of the functions I± defined before.

Theorem 3. If V is a real analytic strongly convex function, then V is one-cut regular. More-
over, the quantities c0 and c1 that are related to the endpoints a, b of the support of the equilib-
rium measure by (1.21) and (1.22) are obtained by solving a pair of equations (3.2) and (3.3)
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expressed in V , and a, b are determined by c1 and c0 by (3.4), (1.21) and (1.22). The density
function ψV is given by

ψV (x) =
1

2π2

∫ b

a
V ′′(u) log

∣∣∣∣I+(u)− I−(x)

I+(u)− I+(x)

∣∣∣∣ du. (1.52)

Remark 4. The conditions of Theorem 3 are sufficient but far from necessary to have one-cut
regularity. See Example 2 in Appendix B for non-convex one-cut regular external fields.

For the random matrix model without external source, it is well known that

(1) the empirical distribution of the eigenvalues of the random matrix,

(2) the normalized counting measure of the n-Fekete set,

(3) the normalized counting measure of the zeros of the orthogonal polynomial (which is the
average characteristic polynomial of the random matrix),

all converge to the equilibrium measure as the dimension n → ∞. The counterpart of (3) in
our equispaced external source model, in case that the external field V is one-cut regular, is a
direct consequence of Theorem 2(b).

Corollary 1. Let V be one-cut regular, and p
(n)
n and q

(n)
n be defined by (1.10) and (1.12)

respectively. Suppose real numbers zj and ẑj are zeros of p
(n)
n (z) and q

(n)
n (ez) respectively, and

µn = 1
n

∑n
j=1 δzj and µ̂n = 1

n

∑n
j=1 δẑj respectively. Then as n→∞, µn and µ̂n converge weakly

to µV .

Counterparts of (1), (2) and (3) can also be proved by mimicking the arguments in [21,
Sections 6.3 and 6.4]. Although we are not going to pursue this approach, we remark that all
the counterparts of (1)–(3) should not rely on the assumption of one-cut regularity.

Outline

In Section 2, we prove the uniqueness and existence of the equilibrium measure, as stated in
Theorem 1. In Section 3, we explain in detail how one can construct the equilibrium measure
µV and its density in the case of a strongly convex external field V , by solving a scalar RH
problem and by using the transformation J. This also leads to the proof of Theorem 3. In

Section 4, we characterize the polynomials p
(n)
n+k in terms of a 1×2 RH problem, and we analyse

this RH problem asymptotically for large n. In Section 5, we formulate a similar RH problem

and perform a similar asymptotic analysis for the polynomials q
(n)
n+k. In Section 6, we use the

results obtained from the RH analysis to prove Theorem 2 and Corollary 1. In Appendix A,
we prove Proposition 1 and several technical lemmas used in this paper. In Appendix B we
give explicit formulas for the equilibrium measure for quadratic and quartic V as examples.

In Appendix C we derive the asymptotics for the polynomials p
(n)
n for quadratic V using an

integral representation and the classical steepest descent method. In this derivation we show
that the transformation J also arises in a more direct way in the equispaced external source
model.

The main novel feature of this paper is the successful asymptotic analysis of the non-standard
RH problem which characterizes the multiple orthogonal polynomials. Although the resulting
large n asymptotics for the polynomials resemble those for usual orthogonal polynomials rel-
evant in the one-matrix model without external source, the RH method used to obtain those
asymptotics had to be modified in a nontrivial way. We feel that the modification of the RH
method, with in particular the use of the transformation J, is the main contribution of the
present paper. We believe it is the first time that a RH analysis has been carried through for
multiple orthogonal polynomials with a growing number of orthogonality weights.
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2 Proof of Theorem 1

Following [21, Section 6.2] (see also [28]), one can prove the existence of a unique Borel proba-
bility measure minimizing the energy IV (µ) given in (1.17), which can conveniently be written
as

IV (µ) =

∫∫
kV (t, s)dµ(t)dµ(s), (2.1)

with

kV (t, s) =
1

2
log |t− s|−1 +

1

2
log |et − es|−1 +

1

2
V (t) +

1

2
V (s). (2.2)

From the inequality |v − u| ≤
√

1 + v2
√

1 + u2 for v, u ∈ R, we obtain

1

2
log |t− s|−1 +

1

2
log |et− es|−1 ≥ −1

4
log(1 + t2)− 1

4
log(1 + s2)− 1

4
log(1 + e2t)− 1

4
log(1 + e2s).

(2.3)
If V satisfies the growth condition (1.3), it easily follows that there exists a constant cV such
that kV (t, s) ≥ cV for all s, t ∈ R. Thus IV (µ) ≥ cV for any probability measure µ, which implies
that EV = inf{IV (µ)} ≥ cV , where the infimum is taken over all probability measures on R.
This is the crucial estimate for proving the existence of a unique equilibrium measure. The
existence follows, exactly as in [21, Section 6.2], from the construction of a vaguely convergent
tight sequence µn of measures with limit µ such that IV (µ) = EV , as well as the fact that any
minimizer must have compact support.

The uniqueness is slightly more complicated, and we need the following lemma for it:

Lemma 1. Let µ be a finite signed measure on R such that
∫
dµ = 0 and with compact support.

Then ∫∫
log |x− y|−1dµ(x)dµ(y) ≥ 0, (2.4)∫∫
log |ex − ey|−1dµ(x)dµ(y) ≥ 0. (2.5)

The first inequality was showed in [21, Lemma 6.41], and the second part can be proved by
replacing x 7→ ex and y 7→ ey in the proof.

Now assume that we have two measures µV and µ̃ such that IV (µV ) = IV (µ̃) = EV . Then,
for µt = µV + t(µ̃− µV ) and t ∈ [0, 1], we have

IV (µt) =
1

2
I(µV , µV ) +

1

2
Ĩ(µV , µV ) +

∫
V (x)dµV (x)

+ t

(
I(µV , µ̃− µV ) + Ĩ(µV , µ̃− µV ) +

∫
V (x)d(µ̃− µV )(x))

)
+ t2

(
1

2
I(µ̃− µV , µ̃− µV ) +

1

2
Ĩ(µ̃− µV , µ̃− µV )

)
, (2.6)

where

I(µ, ν) =

∫∫
log |x− y|−1dµ(x)dν(y), (2.7)

Ĩ(µ, ν) =

∫∫
log |ex − ey|−1dµ(x)dν(y). (2.8)
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The above lemma ensures that IV (µt) is a convex function of t. But since µt is a probability
measure, we have IV (µt) ≥ IV (µ0) = IV (µ1) = EV , and hence IV (µt) = EV for all t ∈ [0, 1]. In
particular this implies

1

2
I(µ̃− µV , µ̃− µV ) +

1

2
Ĩ(µ̃− µV , µ̃− µV ) = 0, (2.9)

and using a similar argument as in [21], this implies that µV = µ̃, which yields the uniqueness
of the equilibrium measure.

3 Construction of the equilibrium measure

In this section we assume the external field V is a convex real analytic function and V ′′(x) is
bounded below by a positive constant for all x ∈ R. We are going to show that V is one-cut
regular, by an explicit construction of its equilibrium measure. The strategy of our construction
is as follows. First in Section 3.1 we give the support of the equilibrium measure [a, b] without
proof. Then in Section 3.2 we compute the density of the equilibrium measure, based on the
information of the support. The density function is expressed in terms of the so-called g-
functions g(z), g̃(z) and their derivatives, which are characterized by a RH problem. At last in
Section 3.3 we verify that the measure with the support and the density obtained in the first
two steps satisfy the criteria of one-cut regularity, and conclude that it is the unique equilibrium
measure that we want to construct.

Remark 5. In what follows, it may seem that the values of the endpoints a and b appear out of
the blue, but if the external field V (x) is quadratic, the endpoints (as well as g(x) and g̃(x)) can
be computed by a classical steepest-descent method. This computation is shown in Appendix
C as our inspiration.

Remark 6. If an external field is non-convex but we know a priori that it is one-cut regular with
support [a, b], then the method in Section 3.2 can still be applied and allows us to obtain the
expression of the density function of the equilibrium measure.

3.1 The support of the equilibrium measure

Let Jx1,x0 be defined as before by

Jx1,x0(s) = x1s+ x0 − log
s− 1

2

s+ 1
2

, (3.1)

and let γ = J−1
x1,x0([a, b]), depending on x1, x0, be the boundary of the region D defined in the

Introduction, consisting of the curves γ1 and γ2, encircling the interval [−1
2 ,

1
2 ] in the counter-

clockwise direction, see also Proposition 2 below. Since Jx1,x0(s) ∈ [a, b] for s ∈ γ, V ′(Jc1,c0(s))
is well defined for s in a neighborhood of the curve γ, if V is real analytic.

Lemma 2. Given any strongly convex real analytic function V , i.e. such that V ′′(x) ≥ c > 0
for all x ∈ R, the system of equations with unknowns x0 and x1

x−1
1 =

1

2πi

∮
γ
V ′(Jx1,x0(s))ds, (3.2)

1 =
1

2πi

∮
γ

V ′(Jx1,x0(s))

s− 1
2

ds, (3.3)

has a solution x0 = c0 ∈ R and x1 = c1 ∈ R+.
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We will prove Lemma 2 in Appendix A. Based on this lemma, we construct the support, and
furthermore the density function, of the equilibrium measure. We do not prove the uniqueness of
the solution of equations (3.2) and (3.3), for this uniqueness is a consequence of the uniqueness
of the equilibrium measure by Theorem 1, as from different solutions we construct different
equilibrium measures.

Here and later we take the value of the parameters c0 and c1 as the pair of solutions of (3.2)
and (3.3). Then we claim that a and b, the two edges of the support of the equilibrium measure,
are given by

a = Jc1,c0(sa), b = Jc1,c0(sb), (3.4)

where sa = −
√

1
4 + 1

c1
, sb =

√
1
4 + 1

c1
. Then it is easy to verify that equations (1.21)–(1.22) are

satisfied.

3.2 The g-functions and the density function of the equilibrium measure

Under the assumption that the external field V is one-cut regular, with equilibrium measure
dµV (x) = ψV (x)dx supported on [a, b] as we claimed in (3.4), we construct two functions
g(z) =

∫
log(z − x)dµV (x) and g̃(z) =

∫
log(ez − ex)dµV (x) as in (1.33). To describe the

domain of the function eg̃(z), we introduce the notation of the cylinder Sc which is formed by
identifying the two edges of the strip S. If a function f(z) is defined for z ∈ S, the limits
f(x± πi) = limz→x±πi,z∈S f(z) exist point-wise, and furthermore f(x+ πi) = f(x− πi), we say
f is defined on Sc. The properties (i)–(v) in the Introduction satisfied by µV are then translated
into properties satisfied by g and g̃ as follows.

(i) For x ∈ (−∞, a),
g+(x) = g−(x) + 2πi, g̃+(x) = g̃−(x) + 2πi, (3.5)

and then eg(z) is analytic in C\ [a, b] and eg̃(z) is analytic on the cylinder with slit Sc\ [a, b];
eg(z) ∼ z as z →∞, eg̃(z) ∼ ez as <z → +∞ and eg̃(z) = O(1) as <z → −∞,

(ii) for x ∈ (a, b), we have

ψV (x) = − 1

2πi
(g′+(x)− g′−(x)) = − 1

2πi
(g̃′+(x)− g̃′−(x)) > 0, (3.6)

(iii) as z → a or z → b, the limits of g(z), g̃(z), g′(z) and g̃′(z) exist, and as x→ a+ or x→ b−
for x ∈ (a, b),

lim
x→a+

g′+(x)− g′−(x)√
x− a , lim

x→a+
g̃′+(x)− g̃′−(x)√

x− a , lim
x→b−

g′+(x)− g′−(x)√
b− x

, lim
x→b−

g̃′+(x)− g̃′−(x)√
b− x

(3.7)
all exist and are all different from zero,

(iv) for x ∈ [a, b], there exists a constant ` such that

g±(x) + g̃∓(x)− V (x)− ` = 0, (3.8)

(v) for x ∈ R \ [a, b], we have

g±(x) + g̃∓(x)− V (x)− ` < 0. (3.9)

Let us consider the derivatives

G(x) := g′(x) and G̃(x) := g̃′(x). (3.10)

The properties (i), (iii) and (iv) for g(x) and g̃(x) then imply that G and G̃ need to satisfy the
following RH problem:
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RH problem for G and G̃

(a) G is analytic in C \ [a, b], G̃ is analytic in Sc \ [a, b],

(b) for x ∈ [a, b], we have
G±(x) + G̃∓(x)− V ′(x) = 0, (3.11)

(c) we have the asymptotic conditions that G±(x) and G̃±(x) are bounded for all x ∈ [a, b],
and

G(z) =
1

z
+O(z−2), as z →∞, (3.12)

G̃(z) = 1 +O(e−z), as <z → +∞, (3.13)

G̃(z) = O(1), as <z → −∞. (3.14)

The main technical difficulty in solving the RH problem for G and G̃ lies in the fact that
the two functions live on different domains: G is defined in the complex plane with slit [a, b],
and G̃ is defined in the cylinder Sc with slit [a, b]. In order to resolve this problem, we will use
the transformation (1.23) J(s) that maps C \ [−1

2 ,
1
2 ] to both C and S. Recall that sa and sb

are the two critical points of J(s) given by (1.24) and that they satisfy the identity (3.4). The
following property will be used in the construction of G and G̃.

Proposition 2. There are an arc γ1 from sa to sb in the upper half plane, and an arc γ2 from
sa to sb in the lower half plane, such that

(a) J(γ1) = J(γ2) = [a, b], and the mapping is homeomorphic on these two curves.

(b) Denote the region enclosed by γ1 and γ2 by D. Then J(C\D̄) = C\ [a, b], and the mapping
is univalent.

(c) J(D \ [−1
2 ,

1
2 ]) = S \ [a, b], the mapping is univalent, and the upper and lower sides of

(−1
2 ,

1
2) are mapped to R− πi and R + πi respectively.

Let us now define the function M(s) by

M(s) :=

{
G(J(s)) for s ∈ C \ D̄,

G̃(J(s)) for s ∈ D \ [−1
2 ,

1
2 ],

(3.15)

so that M is analytic in C\ (γ1∪γ2∪ [−1
2 ,

1
2 ]). Note that the domain of G̃ can be extended from

S to Sc, so that M(s) can be analytically continued to (−1
2 ,

1
2) accordingly. The RH conditions

for G, G̃ are now transformed to the following conditions for M .

RH problem for M

(a) M is analytic in C \ (γ1 ∪ γ2 ∪ {−1
2 ,

1
2}),

(b) M satisfies the jump condition

M+(s) +M−(s) = V ′ (J(s)) , for s ∈ γ1 ∪ γ2, (3.16)
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(c) M±(s) is bounded on γ1 and γ2, and M has the asymptotics

M(s) =
1

c1s
+O(s−2), as s→∞, (3.17)

M(s) = 1 +O(s− 1

2
), as s→ 1

2
, (3.18)

M(s) = O(1), as s→ −1

2
. (3.19)

It is straightforward to solve this scalar RH problem. We write

U(s) = V ′(J(s)), (3.20)

and note that U is analytic in a neighborhood of γ1 ∪ γ2, since V is real analytic. Then it is
readily verified that the unique solution M to the above RH problem for M is given by

M(s) =


− 1

2πi

∮
γ

U(ξ)

ξ − sdξ, for s ∈ C \D,
1

2πi

∮
γ

U(ξ)

ξ − sdξ, for s ∈ D,
(3.21)

where γ is the closed curve which is the union of γ1 and γ2 and has counterclockwise orientation.
In particular, (3.17) and (3.18) follow from the system of equations (3.2) and (3.3) in Lemma 2
satisfied by c0, c1.

Now we can give an expression for g(z), g̃(z) and the density function ψV (x) of the equi-
librium measure, under the assumption that the support of the equilibrium measure is known.
Recall that I1 is the inverse map of J from C \ [a, b] to C \D, I2 is the inverse map of J from
S \ [a, b] to D \ [−1

2 ,
1
2 ], and their boundary values define I±(x), see (1.26)–(1.29). We have

I+(x) ∈ γ1, I−(x) ∈ γ2, and I−(x) = I+(x). To obtain a formula for the density ψV (x) of the
equilibrium measure, note that it follows from (3.6) and the identities G = g′, G̃ = g̃′ that

ψV (x) = − 1

2πi
(G+(x)−G−(x)) = − 1

2πi
(G̃+(x)− G̃−(x)), for x ∈ [a, b]. (3.22)

From (3.22) and (3.15), we obtain

ψV (x) = − 1

2πi
(M+(I+(x))−M−(I−(x))) = − 1

2πi
(M+(I−(x))−M−(I+(x))), for x ∈ [a, b],

(3.23)
where the boundary values of M correspond to the orientations of γ1 and γ2, from left to right.
Applying the first identity in (3.23) and the formula (3.21) for M(s), we let z = x + iε, ε > 0,
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approach x from above and have

ψV (x) = lim
ε→0

−1

4π2

∮
γ
U(ξ)

(
1

ξ − I1(z)
− 1

ξ − I1(z)

)
dξ

= lim
ε→0

1

4π2

∫ b

a
V ′(u)

(
I′+(u)

I+(u)− I1(z)
− I′+(u)

I+(u)− I1(z)
− I′−(u)

I−(u)− I1(z)
+

I′−(u)

I−(u)− I1(z)

)
du

= lim
ε→0

1

2π2

∫ b

a
V ′(u)<

(
I′+(u)

I+(u)− I1(z)
− I′+(u)

I+(u)− I1(z)

)
du

= lim
ε→0

−1

2π2

∫ b

a
V ′(u)< d

du
log

(
I+(u)− I1(z)

I+(u)− I1(z)

)
du

= lim
ε→0

1

2π2

∫ b

a
V ′′(u)< log

(
I+(u)− I1(z)

I+(u)− I1(z)

)
du

=
1

2π2

∫ b

a
V ′′(u) log

∣∣∣∣I+(u)− I−(x)

I+(u)− I+(x)

∣∣∣∣ du.
(3.24)

3.3 Proof of Theorem 3

We showed so far that the equilibrium measure associated to the external field V has the density
function ψV as we have constructed in Section 3.2, as long as it is supported on the single interval
[a, b] that is given by (3.4). However, we have not proved that [a, b] is the correct support yet.
We will show that the measure with support [a, b] and density function ψV (x) satisfies the
properties (i)–(v) stated in the Introduction for one-cut regular equilibrium measures, which
implies that the constructed measure is indeed the true equilibrium measure. Note that these
properties are equivalent to properties (i)–(v) in Section 3.2.

From the construction of ψV (x), it is normalized, i.e.,
∫ b
a ψV (x)dx = 1. This follows from

the asymptotics of G and G̃, given in (3.12) and (3.13), and the definitions of g and g̃, the
antiderivatives of G and G̃.

For x ∈ (a, b), it is geometrically obvious that |I+(u) − I−(x)| > |I+(u) − I+(x)|, and then
< log((I+(u) − I−(x))/(I+(u) − I+(x))) > 0 for all u ∈ (a, b). Substituting this inequality into
(3.24) and noting that V ′′ is positive, we have that ψV (x) > 0 for all x ∈ (a, b). Similarly we
have ψV (x)→ 0 for x→ a+ and x→ b−.

The identity (1.19) that gives condition (iv) in the Introduction, or equivalently the identity
(3.8) that gives condition (iv) in Section 3.2, is obvious from the construction of ψV . Thus we
only need to prove the remaining two properties for the equilibrium measure hold, i.e., ψV (x)
vanishes like a square root as x→ a+ or x→ b−, and G+(x) + G̃−(x)− V (x) < ` for x < a or
x > b.

Let the function H be defined by

H(z) =
(
G(z) + G̃(z)− V ′(z)

)2
. (3.25)

It is well defined where G, G̃, V are defined, and it can only be discontinuous on [a, b]. However,
by (3.6) and (3.8),

H+(x) = (G̃+ − G̃−)2 = −4π2ψV (x)2 = (G− −G+)2 = H−(x). (3.26)
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Hence H(z) can be defined on (a, b) so that a, b become isolated singularities. If we express
G(z) and G̃(z) in terms of M(s) and then by the contour integral as in (3.15) and (3.21), we
find that G(z) and G̃(z) grows at most logarithmically at a and b. Thus a and b are removable
singularities of H(z), and H(z) can be defined analytically in S where V is defined, i.e., an open
region containing the real line. Furthermore, by (3.26) and the fact that ψV (x)→ 0 as x→ a+

or x→ b−, we have that H(a) = H(b) = 0.
To show that ψV (x) vanishes like a square root at a and b, by (3.26) it suffices to show

that a, b are simple zeros of H(z). We consider b first. From (3.26) and (3.25), we see that
H(x) changes sign as the real variable x increases around b, so if b is not a simple zero, it has
multiplicity at least 3, and then d

dx

√
H(x), which is well defined for x ∈ (b,∞), would tend to

0 as x→ b+. But we have for all x > b

d

dx

(
G(x) + G̃(x)− V ′(x)

)
= g′′(x) + g̃′′(x)− V ′′(x)

= −
∫ b

a
ψV (s)

(
1

(x− s)2
+

exes

(ex − es)2

)
ds− V ′′(x) < −V ′′(x).

(3.27)

Since V ′′(x) is bounded below by a positive constant, d
dx

√
H(x) cannot approach 0. Thus b is

a simple zero of H(z). Similarly a is a simple zero.
To show that G+(x)+G̃−(x)−V (x) < ` for x > b, we need only that G+(x)+G̃−(x)−V (x)

is decreasing, since at x = b the identity G+(x) + G̃−(x) − V (x) = ` holds. The decreasing
property is given by the negative derivative shown in (3.27). Similarly we can show that
G+(x) + G̃−(x)− V (x) < ` for x < a.

Now we have proved that the measure ψV (x) on [a, b] satisfies all the properties for one-
cut regular equilibrium measures, so it is the unique equilibrium measure associated to V .
Combining the results we have obtained in this section, we prove Theorem 3.

4 Asymptotic analysis for the type II multiple orthogonal poly-
nomials

In this section, we write p
(n)
j (x), the monic multiple orthogonal polynomials of type II satisfying

orthogonality relations (1.10), as pj(x) if there is no confusion.

4.1 RH problem characterizing the polynomials

Recall that the j-th degree monic polynomial pj(x) = p
(n)
j (x) is characterized by the orthogo-

nality (1.10). Consider the following modified Cauchy transform of pj :

C̃pj(z) :=
1

2πi

∫
R

pj(x)

ex − ez e
−nV (x)dx, (4.1)

which is well-defined for z ∈ S \ R. Since e−nV (x) is real analytic and vanishes rapidly as
x → ±∞, for any polynomial p(x), we have the following asymptotic expansion for C̃p(z) as
z ∈ S and <z → +∞:

C̃p(z) =
−1

2πiez

∫
R

p(x)

1− ex/ez e
−nV (x)dx

=
−1

2πi

M∑
k=0

(∫
R
p(x)ekxe−nV (x)dx

)
e−(k+1)z +O(e−(M+2)z),

(4.2)
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for any M ∈ N, uniformly in =z. Thus due to the orthogonality,

C̃pj(z) =
−h(n)

j

2πi
e−(j+1)z +O(e−(j+2)z), (4.3)

where h
(n)
j is given by (1.13). For x ∈ R, a residue argument shows that

(C̃pj)+(x)− (C̃pj)−(x) = pj(x)e−nV (x)e−x. (4.4)

Hence we conclude that if we consider pj(x) and C̃pj(x) together and write them in vector form

Y (z) = Y (j,n)(z) := (pj(z), C̃pj(z)), (4.5)

they satisfy the conditions

RH problem for Y

(a) Y = (Y1, Y2), where Y1 is an analytic function defined on C, and Y2 is an analytic function
on Sc \ R,

(b) Y has continuous boundary values Y± when approaching the real line from above and
below, and we have

Y+(x) = Y−(x)

(
1 e−xe−nV (x)

0 1

)
, for x ∈ R, (4.6)

(c1) as z →∞, Y1 behaves as Y1(z) = zj +O(zj−1),

(c2) as ez → ∞ (i.e., <z → +∞), Y2 behaves as Y2(z) = O(e−(j+1)z); as ez → 0 (i.e.,
<z → −∞), Y2(z) remains bounded.

Conversely, the RH problem for Y has a unique solution given by (4.5). We give a proof
of the uniqueness of the RH problem for Y based on the uniqueness of the multiple orthogonal
polynomials pj .

Theorem 4. The solution to the RH problem for Y above has a unique solution, given by
Y1(z) = pj(z) and Y2(z) = C̃pj(z), where pj(z) is the monic multiple orthogonal polynomial of
type II defined by (1.10), and C̃pj(z) is given in (4.1).

Proof. First, (4.6) in the jump condition (b) implies that Y1 is an entire function, and condition
(c1) implies that Y1 grows like zj as z →∞. So Y1 =: p is a monic polynomial of degree j.

Now we show that if Y = (Y1, Y2) satisfies all the conditions (a)–(c2) of the RH problem,
then Y2 is given in terms of Y1 = p by

Y2(z) =
1

2πi

∫
R

p(s)

es − ez e
−nV (s)ds. (4.7)

By condition (b), Y2 satisfies

Y2,+(x)− Y2,−(x) = p(x)e−nV (x)−x. (4.8)

Consider the function

U(u) = Y2(log u)− 1

2πi

∫
R

Y1(s)

es − ue
−nV (s)ds, (4.9)
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where we take the principal branch of the logarithm with branch cut on R−. Obviously U(u) is
analytic for u ∈ C\R. By the jump condition Y2 on the real line given by (4.6) and the property
that Y2(x+ πi) = Y2(x− πi), we verify that U+(u) = U−(u) for u ∈ (0,∞) or u ∈ (−∞, 0), so
that U is an analytic function for u ∈ C \ {0}. Note that since p is a polynomial and e−nV (s)

vanishes rapidly as s→ ±∞, we have

1

2πi

∫
R

p(s)

es − ue
−nV (s)ds = O(1) as u→ 0, (4.10)

1

2πi

∫
R

p(s)

es − ue
−nV (s)ds = O(u−1) as u→∞. (4.11)

From (4.10) we find that 0 is a removable singularity of U(u) and then U(u) is an entire function.
Then from (4.11) we have U(u) = 0 by Liouville’s theorem. Therefore (4.7) is proved.

At last we apply the expansion (4.2) for M = j − 1 to Y2 given in (4.7). We see that the
asymptotic condition Y2 = O(e−(j+1)z) implies that∫

R
p(x)ekxe−nV (x)dx = 0, k = 0, . . . , j − 1. (4.12)

Comparing this with (1.10), we see that p = Y1 is indeed the monic multiple orthogonal poly-
nomial pj .

Below we take j = n+k where k a constant integer, and our goal is to obtain the asymptotics
for Y = Y (n+k,n) as n→∞.

4.2 First transformation Y 7→ T

Recall g(z) and g̃(z) defined in (1.33) on C \ (−∞, b] and S \ (−∞, b]. Denote Y = Y (n+k,n)

and define T as follows:

T (z) := e−
n`
2 Y (z)

(
e−ng(z) 0

0 eng̃(z)

)
e
n`
2
σ3 , (4.13)

where ` is the constant appearing in (1.19) and (3.8), and σ3 =
(

1 0
0 −1

)
. Then T satisfies a RH

problem with the same domain of analyticity as Y , but with a different asymptotic behavior
and a different jump relation.

RH problem for T

(a) T = (T1, T2), where T1 is analytic in C \ R, and T2 is analytic in Sc \ R,

(b) T satisfies the jump relation

T+(x) = T−(x)JT (x), for x ∈ R, (4.14)

with

JT (x) =

(
en(g−(x)−g+(x)) en(g−(x)+g̃+(x)−V (z)−`)−x

0 en(g̃+(x)−g̃−(x))

)
, (4.15)

(c1) as z →∞, T1 behaves as T1(z) = zk +O(zk−1),

(c2) as ez →∞, T2 behaves as T2(z) = O(e−(k+1)z), and as ez → 0, T2 behaves as T2 = O(1).
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4.3 Second transformation T 7→ S

For x ∈ R\[a, b], it follows from the analyticity of eg and (3.9) that the jump matrix JT (x) tends
to the identity matrix exponentially fast in the limit n→∞. For x ∈ (a, b), we decompose the
jump matrix into

JT (x) =

(
1 0

e−nφ−(x)+x 1

)(
0 en(g−(x)+g̃+(x)−V (x)−`)−x

−en(−g+(x)−g̃−(x)+V (x)+`)+x 0

)
×
(

1 0

e−nφ+(x)+x 1

)
, (4.16)

where the function φ(z) = g(z) + g̃(z)− V (z)− ` is defined as in (1.34). The function φ(x) has
discontinuity on (−∞, b]), and by (3.5) and (3.8) it satisfies

φ+(x) = φ−(x) + 4πi for x < a, (4.17)

φ+(x) = − φ−(x) for x ∈ (a, b). (4.18)

a b
Σ1

Σ2

Figure 5: The lens ΣS .

Then we “open the lens”, where the lens ΣS is a contour consisting of the real axis and
two arcs from a to b. We assume that one of the two arcs lies in the upper half plane and
denote it by Σ1, the other lies in the lower half plane and denote it by Σ2, see Figure 5. We do
not fix the shape of ΣS at this stage, but only require that ΣS is in S and V is analytic in a
simply-connected region containing ΣS .

Define

S(z) :=



T (z) outside of the lens,

T (z)

(
1 0

e−nφ(z)+z 1

)
in the lower part of the lens,

T (z)

(
1 0

−e−nφ(z)+z 1

)
in the upper part of the lens.

(4.19)

From the definition of S, we see that S is discontinuous on the upper and lower arcs with jump
matrix

(
1 0

e−nφ(z)+z 1

)
. On (a, b), it follows from (3.8) and (4.16) that the jump matrix for S takes

the form
(

0 e−x
−ex 0

)
. Summarizing, we have the following RH problem for S.

RH problem for S

(a) S = (S1, S2), where S1 is analytic in C \ ΣS , and S2 is analytic in Sc \ ΣS , and ΣS =
R ∪ Σ1 ∪ Σ2 is the contour depicted in Figure 5,

(b) we have
S+(z) = S−(z)JS(z), for z ∈ ΣS , (4.20)
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where (note that eφ(z) is well defined for z ∈ (−∞, a) by (4.17))

JS(z) =



(
1 0

e−nφ(z)+z 1

)
, for z ∈ Σ1 ∪ Σ2,(

0 e−z

−ez 0

)
, for z ∈ (a, b),(

1 enφ(z)−z

0 1

)
, for z ∈ R \ [a, b].

(4.21)

(c1) as z →∞, S1(z) = zk +O(zk−1),

(c2) as ez → ∞, S2 behaves as S2(z) = O(e−(k+1)z), and as ez → 0, S2 behaves as S2(z) =
O(1).

By (3.8), we have, for x ∈ (a, b),

φ′±(x) = g′±(x) + g̃′±(x)− V ′(x) = g′±(x)− g′∓(x) = ∓2πiψV (x). (4.22)

Since ψV (x) > 0 for all x ∈ (a, b), it follows from the Cauchy-Riemann conditions that

<φ(z) = < (g(x) + g̃(x)− V (x)− `) > 0 (4.23)

on both the upper arc and the lower arc, if these arcs are chosen sufficiently close to (a, b). As
a consequence, the jump matrices for S on the lenses tend to the identity matrix as n → ∞.
Uniform convergence breaks down when x approaches the endpoints a and b. We need to
construct local parametrices near those points.

4.4 Construction of local parametrices near a and b

Define
yj := yj(ζ) = ωj Ai(ωjζ), for j = 0, 1, 2, (4.24)

where ω = e
2πi
3 and Ai is the Airy function.

( 1 0
1 1 )( 0 1

−1 0 )
( 1 0
1 1 )

( 1 0
1 1 )

Figure 6: The contour Γ and the jump matrices for A.

Let
Γ := e−

2πi
3 R+ ∪ e 2πi

3 R+ ∪ R (4.25)

be the contour consisting of four rays oriented each from the left to the right shown in Figure
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6, and define the 2× 2 matrix-valued function A in C \ Γ as

A(ζ) :=



√
2πe−

πi
4

(
y0 −y2

y′0 −y′2

)
, for 0 < arg ζ < 2π

3 ,

√
2πe−

πi
4

(
−y1 −y2

−y′1 −y′2

)
, for 2π

3 < arg ζ < π,

√
2πe−

πi
4

(
−y2 y1

−y′2 y′1

)
, for −π < arg ζ < −2π

3 ,

√
2πe−

πi
4

(
y0 y1

y′0 y′1

)
, for −2π

3 < arg ζ < 0.

(4.26)

Using the identity y0 +y1 +y2 = 0, the fact that the Airy function is an entire function, and the
asymptotics as ζ →∞ of the Airy function, one verifies that A satisfies the following model RH
problem. This RH problem (and equivalent forms of it) appeared many times in the literature
and is often referred to as “the Airy RH problem”, see for example [20, 21].

RH problem for A

(a) A is a 2× 2 matrix-valued function analytic in C \ Γ.

(b) A satisfies the following jump relations on Γ,

A+(ζ) = A−(ζ)

(
1 1
0 1

)
, for arg ζ = 0, (4.27)

A+(ζ) = A−(ζ)

(
1 0
1 1

)
, for arg ζ =

2π

3
or arg ζ =

−2π

3
, (4.28)

A+(ζ) = A−(ζ)

(
0 1
−1 0

)
, for arg ζ = π. (4.29)

(c) A has the following behavior at infinity,

A(ζ) =
1√
2
ζ−

1
4
σ3

(
1 1
−1 1

)
e−

πi
4
σ3(I +O(ζ−3/2))e−

2
3
ζ3/2σ3 , as ζ →∞, (4.30)

uniformly for ζ ∈ C \ Γ.

Using the regularity condition which says that limx→b−
ψV (x)√
b−x exists and is positive, and the

formulas of g(z) and g̃(z), and noting in addition that φ(b) = 0, we obtain the following local
behavior for φ near b,

φ(z) = −c(z − b)3/2 +O(|z − b|5/2), as z → b, where c > 0. (4.31)

Then in a neighborhood Ub of b, there is a unique analytic function fb satisfying fb(b) = 0,
f ′b(b) > 0 and

2

3
fb(z)

3/2 = −1

2
φ(z). (4.32)

Now we choose the lens ΣS in such a way that fb(z) maps the jump contour Ub ∩ ΣS for S
on the jump contour Γ for A, and we define the 2× 2 matrix-valued function P (b)(z) on Ub \ΣS

as
P (b)(z) := A(n2/3fb(z))e

− 1
2

(nφ(z)−z)σ3 . (4.33)
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Using the jump relations (4.27)–(4.29) for A and (4.17) and (4.18) for φ(z), one verifies that

P
(b)
+ (z) = P

(b)
− (z)JS(z), for z ∈ Ub ∩ ΣS , (4.34)

where JS is given in (4.21). Since the determinant of A is identically equal to 1, A is invertible,
and so is P (b)(z) for z ∈ Ub ∩ ΣS . By (4.34) and (4.20), we have

S+(z)P
(b)
+ (z)−1 = S−(z)P

(b)
− (z)−1, for z ∈ Ub ∩ ΣS . (4.35)

Similarly, near a,

φ(z) = −c̃(a− z)3/2 +O(|a− z|5/2)± 2πi, as z → a, c̃ > 0, (4.36)

where the sign of ±2πi depends on whether z is in the upper or lower half plane. In a neigh-
borhood Ua of a, there is a unique analytic function fa satisfying fa(a) = 0, f ′a(a) < 0, and

2

3
fa(z)

3/2 = −1

2
φ(z)± πi. (4.37)

Again we can choose the lens ΣS in such a way that fa(z) maps the jump contour Ua∩ΣS for S
on the jump contour Γ for A. Then define the 2× 2 matrix-valued function P (a)(z) on Ua \ΣS

as
P (a)(z) := σ3A(n2/3fa(z))e

− 1
2

(nφ(z)−z)σ3σ3. (4.38)

Similarly to (4.34) and (4.35), we have

S+(z)P
(a)
+ (z)−1 = S−(z)P

(a)
− (z)−1, for z ∈ Ua ∩ ΣS . (4.39)

Remark 7. Usually, a local parametrix serves as a local approximation to the solution of the RH
problem. Since S is vector-valued and our local parametrices P (a) and P (b) are 2 × 2-valued,
this is not quite true in our situation, but it will turn out later that large n asymptotics for
S near a and b can be expressed in terms of P (b) and P (a), and thus in terms of the Airy
function. Later in Section 4.6, we will build a vector-valued “global parametrix” P (∞), which
approximates S away from the endpoints a and b. Before introducing P (∞), we perform one
more transformation of the RH problem for S in the next subsection.

4.5 Third transformation S 7→ P

The following transformation will modify the jumps in the vicinity of a and b: the jumps on Σ1

and Σ2 will be removed in Ua and Ub. As a drawback, a discontinuity will appear on ∂Ua and
∂Ub, but the jump matrices on these boundaries will be close to the identity matrix for large n.

Define

P (z) :=



S(z) for z ∈ C \ (Ua ∪ Ub ∪ ΣS),

S(z)P (a)(z)−1 1√
2
(n2/3fa(z))

− 1
4
σ3

(
1 1

−1 1

)
e−(πi

4
− z

2
)σ3 for z ∈ Ua \ ΣS ,

S(z)P (b)(z)−1 1√
2
(n2/3fb(z))

− 1
4
σ3

(
1 1

−1 1

)
e−(πi

4
− z

2
)σ3 for z ∈ Ub \ ΣS .

(4.40)
Then P is constructed in such a way that it has jumps on a contour

ΣP := (ΣS \ (Ua ∪ Ub)) ∪ ∂Ua ∪ ∂Ub ∪ [a, b] (4.41)
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as shown in Figure 7. We define (n2/3fb(z))
− 1

4
σ3 and (n2/3fa(z))

− 1
4
σ3 in such a way that

they have branch cuts on [a, b] and they are positive on (b,∞) and (−∞, a) respectively. The
jumps inside the disks on R \ [a, b] and the lips Σ1,Σ2 are equal to the identity matrix since
S(z)P (b)(z)−1 and S(z)P (a)(z)−1 are analytic there, but there is a jump on (a, b) due to the

branch cuts of (n2/3fb(z))
− 1

4
σ3 and (n2/3fa(z))

− 1
4
σ3 . Also note that, unlike Y, T, S whose entries

are all bounded in any bounded region of their domains, P (z) has inverse fourth root singularities
at a and b.

RH problem for P

(a) P = (P1, P2), where P1 is analytic in C \ ΣP , and P2 is analytic in Sc \ ΣP ,

(b) we have
P+(z) = P−(z)JP (z), for z ∈ ΣP , (4.42)

where

JP (z) =



JS(z) for z ∈ ΣS \ (Ua ∪ Ub),
1√
2
e(πi

4
− z

2
)σ3

(
1 −1

1 1

)
(n2/3fa(z))

1
4
σ3P (a)(z) for z ∈ ∂Ua,

1√
2
e(πi

4
− z

2
)σ3

(
1 −1

1 1

)
(n2/3fb(z))

1
4
σ3P (b)(z) for z ∈ ∂Ub,(

0 e−z

−ez 0

)
for z ∈ (a, b),

(4.43)

(c1) as z →∞, P1(z) = zk +O(zk−1),

(c2) as ez → +∞, P2 behaves as P2(z) = O(e−(k+1)z), and as ez → 0, P2 behaves as P2(z) =
O(1).

(c3)

P (z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (4.44)

P (z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (4.45)

a b

Figure 7: The contour ΣP . On the boldface part of the contour, JP =
(

0 e−z
−ez 0

)
and on the

other parts, JP → I uniformly. Note that ΣP divides the complex plane into six regions: the
two “edge regions” Ua and Ub, the two “bulk regions” in the upper and lower parts of the lens
and not in Ua or Ub, and the two “outside regions”. The dashed lines that belong to ΣS but
not to ΣP , together with the interval (a, b), divide each edge region into four subregions, two
inside the lens and two out of the lens.
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4.6 Construction of the outer parametrix

For z ∈ ∂Ua ∪ ∂Ub, the definition of the local parametrices (4.33) and (4.38) together with the
asymptotics (4.30) for A imply that JP (z) = I +O(n−1) as n→∞. For z ∈ ΣS \ [a, b] and not
included in Ua or Ub, by the asymptotics of φ(z) given in (4.23) and (3.9), we have that JP (z)
decays exponentially as n→∞. Thus, in some sense, it is expected that

P (z)→ P (∞)(z), (4.46)

where P (∞)(z) has the same analyticity, asymptotic, and periodicity properties, and has the
jump condition

P
(∞)
+ (x) = P

(∞)
− (x)

(
0 e−x

−ex 0

)
, for x ∈ (a, b). (4.47)

We would like to construct a solution to the following RH problem:

RH problem for P (∞)

(a) P (∞) = (P
(∞)
1 , P

(∞)
2 ), where P

(∞)
1 is an analytic function in C \ [a, b], and P

(∞)
2 is an

analytic function in Sc \ [a, b],

(b) P (∞) satisfies the jump relation (4.47),

(c1) as z →∞, P
(∞)
1 (z) = zk +O(zk−1),

(c2) as ez → +∞, P
(∞)
2 behaves as P

(∞)
2 (z) = O(e−(k+1)z), and as ez → 0, P

(∞)
2 behaves as

P
(∞)
2 (z) = O(1),

(c3)

P (∞)(z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (4.48)

P (∞)(z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (4.49)

After the construction of P (∞), we will prove the convergence (4.46).
We use the transformation Jc1,c0 defined before in (1.23), where the parameters c1 and c0

depend on a and b, the endpoints of the support of the equilibrium measure. Recall sa and sb
defined in (1.24) and the relation (3.4) between sa, sb and a, b. Below we write Jc1,c0 as J if
there is no confusion.

By Proposition 2, J maps C \ D̄ conformally to C \ [J(sa),J(sb)], and maps D \ [−1
2 ,

1
2 ]

conformally to S\ [J(sa),J(sb)], so that we can define the function F (s) on C\(γ1∪γ2∪ [−1
2 ,

1
2 ])

by

F (s) :=

{
P

(∞)
1 (J(s)) for s ∈ C \ D̄,

P
(∞)
2 (J(s)) for s ∈ D \ [−1

2 ,
1
2 ].

(4.50)

Since P
(∞)
2 is defined on Sc, that is, it satisfies a periodic boundary condition on S, we have

that the definition of F (s) can be extended to (−1
2 ,

1
2). In this way the transformation from

P (∞) to F is invertible: we can recover the outside parametrix P (∞) by the formula

P
(∞)
1 (z) = F (I1(z)), for z ∈ C \ [a, b], (4.51)

P
(∞)
2 (z) = F (I2(z)), for z ∈ S \ [a, b], (4.52)

where I1 and I2 are, as defined in (1.26) and (1.27), the inverses of J mapping C\ [a, b] to C\D
and to D \ [−1

2 ,
1
2 ] respectively. All information about the vector-valued function P (∞) is now

carried by the single complex-valued function F , which is discontinuous on γ1∪γ2 by definition.
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From condition (c2) of the RH problem for P (∞) and the definition of J, it follows that F
has a removable singularity at −1

2 , and that F has a zero of multiplicity k + 1 at 1
2 if k ≥ 0, a

removable singularity if k = −1, and a pole of order −k − 1 if k < −1. The inverse fourth root
singularities of P (∞) at a, b are transformed into inverse square root singularities of F at sa, sb,
because J′(s) has simple zeros at sa and sb. In order to compute the jump relation satisfied by
F , note that

eJ(s) = ec1s+c0
s+ 1

2

s− 1
2

, (4.53)

and

F+(s) = P
(∞)
1,+ (J(s)), F−(s) = P

(∞)
2,− (J(s)), for s ∈ γ1, (4.54)

F+(s) = P
(∞)
2,+ (J(s)), F−(s) = P

(∞)
1,− (J(s)), for s ∈ γ2. (4.55)

It is now straightforward to verify the following RH conditions for F .

RH problem for F

(a) F is analytic in C \ (γ1 ∪ γ2) if k ≥ −1, and analytic in C \ (γ1 ∪ γ2 ∪ {1
2}) if k < −1,

(b) for s ∈ γ1 ∪ γ2, we have

F+(s) =− ec1s+c0 s+ 1
2

s− 1
2

F−(s), for s ∈ γ1, (4.56)

F+(s) =e−c1s−c0
s− 1

2

s+ 1
2

F−(s), for s ∈ γ2, (4.57)

(c) we have the asymptotic conditions

F (s) = ck1s
k +O(sk−1), as s→∞, (4.58)

F (s) = O((s− 1

2
)k+1), as s→ 1

2
, (4.59)

F (s) = O(|s− sa|−
1
2 ) as s→ sa, (4.60)

F (s) = O(|s− sb|−
1
2 ) as s→ sb. (4.61)

One can explicitly construct a solution F to the above RH problem:

F (s) =

c
k
1

(s+ 1
2

)(s− 1
2

)k√
(s−sa)(s−sb)

for s ∈ C \ D̄,

ck1(s− 1
2)k+1 e−c1s−c0√

(s−sa)(s−sb)
for s ∈ D.

(4.62)

where
√

(s− sa)(s− sb) is taken to be continuous in C\γ1 and
√

(s− sa)(s− sb) ∼ s as s→∞.
Note that F (s) and the function Gk(z) defined in (1.30) are related by (upon expressing sa

and sb by (1.24))

Gk(s) =

{
F (s) if s ∈ C \D,

eJ(s)F (s) if s ∈ D.
(4.63)
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sa sb−1
2

1
2

γ1

γ2

Figure 8: The contour J−1(ΣP ). The boldface part consists of γ1 and γ2, the solid part is Σ′

and the dashed part is Σ′′.

4.7 The convergence of P → P (∞)

We will now apply the same idea as in the construction of the outer parametrix to P , and want
to transform the RH problem to the s-plane using the transformation z = J(s), in such a way
that P = (P1, P2) is transformed to a single complex-valued function F . Therefore we define F
on C \ J−1(ΣP ) analogous to (4.50):

F(s) :=

{
P1(J(s)) if s ∈ C \ D̄ and J(s) /∈ ΣP ,

P2(J(s)) if s ∈ D \ [−1
2 ,

1
2 ] and J(s) /∈ ΣP .

(4.64)

The inverse of this transformation is given by

P1(z) = F(I1(z)), for z ∈ C \ ΣP , (4.65)

P2(z) = F(I2(z)), for z ∈ S \ ΣP . (4.66)

The jump contour of F will consist of the inverse image of ΣP under J. We can decompose this
jump contour J−1(ΣP ) into three different parts: γ1 ∪ γ2, the part in D and the part in C \D
as follows, see Figure 8:

J−1(ΣP ) = Σ′ ∪ Σ′′ ∪ (γ1 ∪ γ2), where Σ′ = I1(ΣP \ [a, b]), Σ′′ = I2(ΣP \ [a, b]). (4.67)

Similar to F (s), the definition of F(s) can be extended to [−1
2 ,

1
2) because of the periodicity of

P2 and its behavior as <z → −∞. The RH problem for P , however, no longer transforms to a
scalar RH problem for F(s). For s ∈ γ1 ∪ γ2, we still have the scalar jump conditions

F+(s) = − eJ(s)F−(s), for s ∈ γ1, (4.68)

F+(s) = e−J(s)F−(s), for s ∈ γ2, (4.69)

but on the other parts of the jump contour, the jump conditions become non-local. Since
F±(s) = P1,±(J(s)) for s ∈ Σ′ and F±(s) = P2,±(J(s)) for s ∈ Σ′′, where the orientation for
Σ′ and Σ′′ is that inherited from the orientation on ΣP through I1 and I2, the jump conditions
(4.42) for P transform into

F+(s) = JP,11(J(s))F−(s) + JP,21(J(s))F−(I2(J(s))), for s ∈ Σ′, (4.70)

F+(s) = JP,12(J(s))F−(I1(J(s))) + JP,22(J(s))F−(s), for s ∈ Σ′′, (4.71)

where JP is the 2 × 2 jump matrix defined in (4.43). In other words, the boundary value
F+(I1(z)) depends not only on F−(I1(z)), but also on F−(I2(z)), and vice versa for F+(I2(z)).
For this reason, we will call the jump relations (4.70)–(4.71) “shifted” jump relations, and the
RH problem for F a shifted RH problem, following the terminology of [25]. The asymptotic
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conditions for F are the same as the ones for F . By conditions (c1)–(c3) of the RH problem
for P , we have analogous to (4.58)–(4.61) that

F(s) = ck1s
k +O(sk−1), as s→∞, (4.72)

F(s) = O((s− 1

2
)k+1), as s→ 1

2
. (4.73)

F(s) = O(|s− sa|−1/2), as s→ sa, (4.74)

F(s) = O(|s− sb|−1/2), as s→ sb. (4.75)

Since F (s) 6= 0 for all s ∈ C \ (γ1 ∪ γ2 ∪{1
2}), while at 1

2 the order of the pole of F(s) is at most
equal to that of F (s), we can define the analytic function

R(s) :=
F(s)

F (s)
, for s ∈ C \ J−1(ΣP ). (4.76)

By (4.68), (4.69) and (4.56), (4.57), it follows that R is analytic across (γ1 ∪ γ2). Furthermore,
the RH problem for F (s) and the shifted RH problem for F(s) yield the following shifted RH
conditions satisfied by R.

Shifted RH problem for R

(a) R is analytic in C \ (Σ′ ∪ Σ′′),

(b) R has the jump conditions

R+(s) = JR,11(s)R−(s) + JR,21(s)R−(I2(J(s))), for s ∈ Σ′, (4.77)

R+(s) = JR,12(s)R−(I1(J(s))) + JR,22(s)R−(s), for s ∈ Σ′′, (4.78)

where

JR,11(s) = JP,11(J(s)), JR,21(s) = JP,21(J(s))
F (I2(J(s)))

F (s)
, (4.79)

JR,12(s) = JP,12(J(s))
F (I1(J(s)))

F (s)
, JR,22(s) = JP,22(J(s)), (4.80)

(c) R is bounded, and R(s) = 1 +O(s−1) as s→∞.

Substituting the asymptotic properties of JP stated in the beginning of Section 4.6 and the
formula (4.62) of F (s) into (4.79) and (4.80), as n → ∞, we have the uniform asymptotic
estimates

JR,11(s) = 1 +O(n−1), JR,21(s) = O(n−1), for s ∈ Σ′, (4.81)

JR,12(s) = O(n−1), JR,22(s) = 1 +O(n−1), for s ∈ Σ′′. (4.82)

Moreover, for s on the real parts of Σ′ and Σ′′, JR,21 vanishes identically: by (4.43) and (4.21),
we have

JR,21(s) = 0, for s ∈ (Σ′ ∪ Σ′′) ∩ R. (4.83)

To obtain asymptotics for R(s), we introduce an operator ∆R that acts on functions defined
on ΣR = Σ′ ∪Σ′′. Let f be a complex-valued function defined on ΣR. Then we define g = ∆Rf
by

g(s) = [JR,11(s)− 1]f(s) + JR,21(s)f(I2(J(s))), for s ∈ Σ′, (4.84)

g(s) = JR,12(s)f(I1(J(s))) + [JR,22(s)− 1]f(s), for s ∈ Σ′′. (4.85)
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For bounded function f(s), g(s) is also bounded and decays rapidly as |s| → ∞. If we regard ∆R

as a linear operator from L2(ΣR) to itself, we will see that it is bounded and that its operator
norm is O(n−1) as n→∞. For that purpose, note first that, by (4.84) and (4.85),

‖∆Rf‖L2(ΣR) ≤ ‖[JR,11 − 1]f‖L2(Σ′) + ‖JR,21f(I2(J))‖L2(Σ′)

+ ‖JR,12f(I1(J))‖L2(Σ′′) + ‖[JR,22 − 1]f‖L2(Σ′). (4.86)

Using the fact that JR,11 − 1 and JR,22 − 1 are uniformly O(n−1) on Σ′ and Σ′′ as n→∞, see
(4.81)–(4.82), we obtain that there exists a constant c > 0 such that

‖∆Rf‖L2(ΣR) ≤
c

n
‖f‖L2(ΣR) + ‖JR,21f(I2(J))‖L2(Σ′) + ‖JR,12f(I1(J))‖L2(Σ′′). (4.87)

For the second term on the right-hand side, we have

‖JR,21f(I2(J))‖2L2(Σ′) =

∫
Σ′
|f(I2(J(s)))|2|JR,21(s)|2ds

=

∫
Σ′′
|f(u)|2|JR,21(I1(J(u)))|2|(I1(J))′(u)|du

≤ sup
u∈Σ′′

(
|JR,21(I1(J(u)))|2|(I1(J))′(u)|

)
· ‖f‖2L2(ΣR).

(4.88)

For u ∈ Σ′′ bounded away from ±1/2, it is straightforward to verify by (4.81) and properties
of the transformation J that |JR,21(I1(J(u)))|2|(I1(J))′(u)| is O(n−2) as n → ∞, uniformly in
u. For u ∈ Σ′′ close to ±1/2, we observe by (4.83) that JR,21(I1(J(u))) = 0, which implies the
existence of a constant c′ such that

‖JR,21f(I2(J))‖L2(Σ′) ≤
c′

n
‖f‖L2(ΣR). (4.89)

Regarding the last term in (4.87),

‖JR,12f(I1(J))‖2L2(Σ′′) =

∫
Σ′′
|f(I1(J(s)))|2|JR,21(s)|2ds

=

∫
Σ′
|f(u)|2|JR,12(I2(J(u)))|2|(I2(J))′(u)|du

≤ sup
u∈Σ′

(
|JR,12(I2(J(u)))|2|(I2(J))′(u)|

)
· ‖f‖2L2(ΣR),

(4.90)

and it follows from (4.82) that

‖JR,12f(I1(J))‖L2(Σ′′) ≤
c′′

n
‖f‖L2(ΣR). (4.91)

From the above estimates, it follows that there exists a constant M > 0 such that

‖∆Rf‖L2(ΣR) ≤
M

n
‖f‖L2(ΣR), ‖∆R‖L2(ΣR) ≤

M

n
. (4.92)

Next, we define another bounded linear operator C∆R
from L2(ΣR) to itself, by

C∆R
(f) := C−(∆R(f)), where C−g(s) =

1

2πi
lim
s′→s−

∫
ΣR

g(ξ)

ξ − s′dξ, (4.93)

and the limit s′ → s− is taken when approaching the contour from the minus side. The operator
norm of C∆R

is also uniformly O(n−1) as n → ∞ since the Cauchy operator C− is bounded.
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Thus (1 − C∆R
) can be inverted by a Neumann series for n sufficiently large. We claim now

that R satisfies the integral equation

R(s) = 1 + C(∆RR−)(s), where Cg(s) =
1

2πi

∫
ΣR

g(ξ)

ξ − sdξ. (4.94)

To prove this claim, note that the solution to the RH problem for R is unique because it is
equivalent to the uniquely solvable RH problem for Y . This means that it is sufficient to prove
that the right-hand side of (4.94), which we will denote by R̃ for simplicity, satisfies the RH
conditions for R. Obviously R̃(z) is bounded and tends to 1 as z →∞, and it suffices to prove
that the solution R̃ satisfies the jump relations (4.77) and (4.78). Using the Cauchy operator
identity C+ − C− = 1, it follows that

R̃+ − R̃− = (1 + C+(∆RR̃−))− (1 + C−(∆RR̃−)) = (C+ − C−)(∆RR̃−) = ∆RR̃−, (4.95)

which implies indeed that R̃ satisfies the jump relations (4.77) and (4.78) for R. Hence we
conclude that R = R̃, and (4.94) is proved. Since R satisfies (4.94), we have, taking the limit
where s approaches the minus side of ΣR,

R− − 1 = C−(∆RR−) = C∆R
(R− − 1) + C−(∆R(1)). (4.96)

By the invertibility of (1− C∆R
), (4.96) implies

R− = 1 + (1− C∆R
)−1C−(∆R(1)). (4.97)

This further implies that

‖R− − 1‖L2(ΣR) = O(n−1), as n→∞. (4.98)

Substituting (4.97) into (4.94), we obtain an expression for R:

R = 1 + C(∆R(1 + (1− C∆R
)−1C−(∆R(1)))). (4.99)

For s at a small distance δ > 0 away from the contour ΣR, (4.94) reads

R(s)− 1 =
1

2πi

∫
ΣR

∆R(R− − 1)(ξ)

ξ − s dξ +
1

2πi

∫
ΣR

∆R(1)(ξ)

ξ − s dξ. (4.100)

The second term at the right-hand side of the above equation can be estimated by O(δ−1n−1),
using the definition of the operator ∆R and asymptotic properties of JR. Using in addition
the Cauchy-Schwarz inequality applied on the first term on the right-hand side of the above
equation, by (4.98) we obtain

|R(s)− 1| ≤ 1

2π
‖∆R(R− − 1)‖L2(ΣR) · ‖

1

ξ − s‖L2(ΣR) +O(δ−1n−1)

≤ 1

2π
‖∆R‖L2(ΣR) · ‖R− − 1‖L2(ΣR) · ‖

1

ξ − s‖L2(ΣR) +O(δ−1n−1)

= O(δ−1n−1) +O(δ−1n−1).

(4.101)

Although the estimate (4.101) does not work well for s in a δ-neighborhood of ΣR, we note that
for such s, given that δ is small enough, the jump contour ΣR can always be deformed in such
a way that s lies at a distance δ away from it. After this deformation, the above argument can
be applied to obtain the uniform estimate

R(s)− 1 = O(n−1), as n→∞, s ∈ C \ ΣR. (4.102)
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Through (4.76), (4.51), and (4.65), the uniform estimate (4.102) yields

P1(z) = (1 +O(n−1))P
(∞)
1 (z), as n→∞, for z ∈ C \ ΣP , (4.103)

P2(z) = (1 +O(n−1))P
(∞)
2 (z), as n→∞, for z ∈ Sc \ ΣP . (4.104)

The asymptotics for R can be used to obtain asymptotics for the polynomials p
(n)
n by inverting

the transformations
Y 7→ T 7→ S 7→ P 7→ R. (4.105)

We will do this in Section 6.

5 Asymptotic analysis for the type I multiple orthogonal poly-
nomials

In a similar way as for the type II multiple orthogonal polynomials p
(n)
j (z), in this section we

construct a RH problem for q
(n)
j (ez), and we analyze this RH problem asymptotically when

j = n+ k. Both the RH problem and the asymptotic analysis show many similarities with the
ones for the type II polynomials, and once again the use of the transformation J will turn out
to be crucial.

In this section, we write q
(n)
j (x), the monic polynomials that define the multiple orthogonal

polynomials of type I and satisfy the orthogonality relations (1.12), as qj(x) if there is no
confusion.

5.1 RH problem characterizing the polynomials

Consider the Cauchy transform of qj(e
z),

Cqj(z) :=
1

2πi

∫
R

qj(e
s)

s− z e
−nV (s)ds. (5.1)

Due to the orthogonality (1.12), as z →∞,

Cqj(z) =
−1

2πiz

∫
R

qj(e
s)

1− s/z e
−nV (s)ds

=
−1

2πiz

∫
R

(
1 +

s

z
+
s2

z2
+ · · ·

)
qj(e

s)e−nV (s)ds

= O(z−j−1).

(5.2)

For x ∈ R, Cauchy’s theorem implies

(Cqj)+(x)− (Cqj)−(x) =
1

2πi

∫
R

qj(e
s)e−nV (s)

s− x+
ds− 1

2πi

∫
R

qj(e
s)e−nV (s)

s− x−
ds = qj(e

x)e−nV (x).

(5.3)
Similar to (4.5), let

X(z) = X(j,n)(z) := (qj(e
z), Cqj(z)). (5.4)

One verifies that X satisfies the following RH problem.
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RH problem for X

(a) X = (X1, X2), where X2 is an analytic function defined on C \ R and X1 is an analytic
function on Sc,

(b) X has continuous boundary values X± when approaching the real line from above and
below, and we have

X+(x) = X−(x)

(
1 e−nV (x)

0 1

)
, for x ∈ R, (5.5)

(c1) as z →∞, X2 behaves as X2(z) = O(z−j−1),

(c2) as ez → ∞ (i.e., <z → +∞), X1 behaves as X1(z) = ejz + O(e(j−1)z); as ez → 0 (i.e.,
<z → −∞), X1 remains bounded.

In an analogous way as for the RH problem for Y in Section 4.1, it can be shown that X = X(j,n)

given by (5.4) is the unique solution to this RH problem.
We will now perform an asymptotic analysis of the RH problem for X = X(n+k,n) as n→∞,

with k a constant integer. This method will be to a large extent analogous to the nonlinear
steepest descent method done in the previous section. Again we will construct a series of
transformations of X and end up with a shifted small-norm RH problem. In order to emphasize
the analogies with the previous section, we will use notations T̂ , Ŝ, P̂ , R̂, . . . for the counterparts
of the functions T, S, P,R, . . . used before.

5.2 First transformation X 7→ T̂

Recall the functions g(z) and g̃(z) defined in (1.33), and define

T̂ (z) := e−
n`
2 X(z)

(
e−ng̃(z) 0

0 eng(z)

)
e
n`
2
σ3 . (5.6)

Analogously to T in Section 4.2, T̂ satisfies the RH problem

RH problem for T̂

(a) T̂ = (T̂1, T̂2), where T̂2 is analytic on C \ R and T̂1 is defined and analytic in Sc \ R,

(b) T̂ satisfies the jump relation

T̂+(x) = T̂−(x)JT̂ (x), for x ∈ R. (5.7)

with

JT̂ (x) =

(
en(g̃−(x)−g̃+(x)) en(g̃−(x)+g+(x)−V (x)−`)

0 en(g+(x)−g−(x))

)
, (5.8)

(c1) as z →∞, T̂2 behaves as T̂2(z) = O(z−(k+1)),

(c2) as ez → ∞, T̂1 behaves as T̂1(z) = ekz + O(e(k−1)z), and as ez → 0, T̂1 behaves as
T̂1(z) = O(1).
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5.3 Second transformation T̂ 7→ Ŝ

By (3.8), we have, like (4.16), the following factorization on [a, b]:

JT̂ (x) =

(
1 0

e−nφ−(x) 1

)(
0 1
−1 0

)(
1 0

e−nφ+(x) 1

)
, (5.9)

where φ is defined in (1.34), Recall the lens ΣS defined in Section 4.3 and shown in Figure 5.
Similarly as in (4.19) for S, let us define Ŝ by

Ŝ(z) :=



T̂ (z) outside of the lens,

T̂ (z)

(
1 0

e−nφ(z) 1

)
in the lower part of the lens,

T̂ (z)

(
1 0

−e−nφ(z) 1

)
in the upper part of the lens,

(5.10)

where φ(z) is defined in (1.34). Then similar to the RH conditions satisfied by S in Section 4.3,
we have the RH problem for Ŝ as follows.

RH problem for Ŝ

(a) Ŝ = (Ŝ1, Ŝ2), where Ŝ2 is analytic in C \ ΣS , and Ŝ1 is analytic in Sc \ ΣS ,

(b) we have
Ŝ+(z) = Ŝ−(z)JŜ(z), for z ∈ ΣS , (5.11)

where

JŜ(z) =



(
1 0

e−nφ(z) 1

)
, for z ∈ Σ1 ∪ Σ2,(

0 1

−1 0

)
, for z ∈ (a, b),(

1 enφ(z)

0 1

)
, for z ∈ R \ [a, b],

(5.12)

(c1) as z →∞, Ŝ2 behaves as Ŝ2(z) = O(z−(k+1)),

(c2) as ez → ∞, Ŝ1 behaves as Ŝ1(z) = ekz + O(e(k−1)z), and as ez → 0, Ŝ1 behaves as
Ŝ1(z) = O(1).

5.4 Construction of local parametrices near a and b

In a similar way as for the construction of P (a) and P (b) in Section 4.4, we can construct local
parametrices P̂ (a) and P̂ (b) in sufficiently small neighborhoods Ua and Ub of the endpoints a
and b in such a way that they satisfy exactly the jump conditions

P̂
(a)
+ (z) = P̂

(a)
− (z)JŜ(z), z ∈ ΣS ∩ Ua, (5.13)

P̂
(b)
+ (z) = P̂

(b)
− (z)JŜ(z), z ∈ ΣS ∩ Ub. (5.14)

Similar to the P (a)(z) and P (b)(z) defined in (4.38) and (4.33) respectively, the local parametrices
P̂ (a)(z) and P̂ (b)(z) are expressed by

P̂ (a)(z) := σ3A(n2/3fa(z))e
−n

2
φ(z)σ3σ3, (5.15)

P̂ (b)(z) := A(n2/3fb(z))e
−n

2
φ(z)σ3 , (5.16)
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where the functions fa and fb are as in (4.32) and (4.37), A is as in (4.26), and the neighborhoods
Ua and Ub as well as the contour ΣS can be taken the same as in (4.38) and (4.33). We omit
the details of the verification of (5.13) and (5.14) here, since almost identical arguments were
used in Section 4.4.

5.5 Third transformation Ŝ 7→ P̂

Define analogously to P (z) in (4.40),

P̂ (z) =



Ŝ(z) for z ∈ C \ (Ua ∪ Ub ∪ ΣS),

Ŝ(z)P̂ (a)(z)−1 1√
2
(n2/3fa(z))

− 1
4
σ3

(
1 1

−1 1

)
e−

πi
4
σ3 for z ∈ Ua \ ΣS ,

Ŝ(z)P̂ (b)(z)−1 1√
2
(n2/3fb(z))

− 1
4
σ3

(
1 1

−1 1

)
e−

πi
4
σ3 for z ∈ Ub \ ΣS .

(5.17)
Then like the RH conditions satisfied by P , P̂ satisfies the following RH conditions.

RH problem for P̂

(a) P̂ = (P̂1, P̂2), where P̂2 is analytic in C \ ΣP , and P̂1 is analytic in Sc \ ΣP ,

(b) we have
P̂+(z) = P̂−(z)JP̂ (z), for z ∈ ΣP , (5.18)

where ΣP is the same as in (4.41), and

JP̂ (z) =



JŜ(z) for z ∈ ΣS \ (Ua ∪ Ub),
1√
2
e
πi
4
σ3

(
1 −1

1 1

)
(n2/3fa(z))

1
4
σ3P (a)(z) for z ∈ ∂Ua,

1√
2
e
πi
4
σ3

(
1 −1

1 1

)
(n2/3fb(z))

1
4
σ3P (b)(z) for z ∈ ∂Ub,(

0 1

−1 0

)
for z ∈ (a, b),

(5.19)

(c1) as z →∞, P̂2(z) = O(z−(k+1)),

(c2) as ez → ∞, P̂1 behaves as P̂1(z) = ekz + O(e(k−1)z), and as ez → 0, P̂1 behaves as
P̂1(z) = O(1).

(c3)

P̂ (z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (5.20)

P̂ (z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (5.21)

5.6 Construction of the outer parametrix

The RH problem for P̂ has, as P , the property that its jump matrix tends to the identity matrix
uniformly as n → ∞, except on [a, b]. We will first construct a solution to the following RH
problem for P̂ (∞), which is the limiting RH problem (formally, ignoring small neighborhoods of
a and b) for P̂ as n→∞.
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RH problem for P̂ (∞)

(a) P̂ (∞) = (P̂
(∞)
1 , P̂

(∞)
2 ), where P̂

(∞)
2 is an analytic function in C \ [a, b], and P̂

(∞)
1 is an

analytic function in Sc \ [a, b],

(b) P̂ (∞) satisfies the jump relation

P̂
(∞)
+ (x) = P̂

(∞)
− (x)

(
0 1
−1 0

)
, for x ∈ (a, b), (5.22)

(c1) as z →∞, P̂
(∞)
2 (z) = O(z−(k+1)),

(c2) as ez → +∞, P̂
(∞)
1 behaves as P̂

(∞)
1 (z) = ekz +O(e(k−1)z), and as ez → 0, P̂

(∞)
1 behaves

as P̂
(∞)
1 (z) = O(1).

(c3)

P̂ (∞)(z) = (O(|z − a|−1/4),O(|z − a|−1/4)) as z → a, (5.23)

P̂ (∞)(z) = (O(|z − b|−1/4),O(|z − b|−1/4)) as z → b. (5.24)

Inspired by the construction of P (∞) in Section 4.6, we search for P̂ (∞) in the form P̂ (∞)(z) =
(F̂ (I2(z)), F̂ (I1(z))), where I1 and I2 are, as before, the two inverses of the map J defined in
(1.26) and (1.27). Hence

F̂ (s) :=

{
P̂

(∞)
2 (J(s)) for s ∈ C \ D̄,

P̂
(∞)
1 (J(s)) for s ∈ D \ [−1

2 ,
1
2 ],

(5.25)

and like F (s) in Section 4.6, F̂ can be analytically continued to [−1
2 ,

1
2). At 1

2 , F̂ has a pole of
order k if k > 0, a removable singularity if k = 0 and a zero of multiplicity −k if k < 0. From
the RH conditions for P̂ (∞), we deduce the following RH problem for F̂ .

RH problem for F̂

(a) F̂ is analytic in C \ (γ1 ∪ γ2) if k ≤ 0, and analytic in C \ (γ1 ∪ γ2 ∪ {1
2}) if k > 0,

(b) for s ∈ γ1 ∪ γ2, we have

F̂+(s) = F̂−(s), for s ∈ γ1, (5.26)

F̂+(s) = − F̂−(s), for s ∈ γ2, (5.27)

(c) we have the asymptotic conditions

F̂ (s) = O(s−(k+1)), as s→∞, (5.28)

F̂ (s) = ek( 1
2
c1+c0)(s− 1

2
)−k +O((s− 1

2
)−k+1), as s→ 1

2
, (5.29)

F̂ (s) = O(|s− sa|−
1
2 ), as s→ sa, (5.30)

F̂ (s) = O(|s− sb|−
1
2 ), as s→ sb. (5.31)

It is verified directly that

F̂ (s) =

√
(1

2 − sa)(1
2 − sb)√

(s− sa)(s− sb)
ek( 1

2
c1+c0)(s− 1

2
)−k, for s ∈ C \ γ2, (5.32)

solves the above RH problem. Here we choose the branch of the square root
√

(z − sa)(z − sb)
that is analytic except on γ2 and close to z as z →∞,
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5.7 The convergence of P̂ → P̂ (∞)

Define analogous to F(s) in (4.64)

F̂(s) :=

{
P̂2(J(s)) if s ∈ C \ D̄ and J(s) /∈ ΣP ,

P̂1(J(s)) if s ∈ D \ [−1
2 ,

1
2 ] and J(s) /∈ ΣP .

(5.33)

We have the scalar jump conditions

F̂+(s) = F̂−(s), for s ∈ γ1, (5.34)

F̂+(s) = − F̂−(s), for s ∈ γ2, (5.35)

and the shifted jump conditions

F̂+(s) = JP̂ ,11(J(s))F̂−(s) + JP̂ ,21(J(s))F̂−(I1(J(s))), for s ∈ Σ′′, (5.36)

F̂+(s) = JP̂ ,12(J(s))F̂−((I2(J(s)))) + JP̂ ,22(J(s))F̂−(s), for s ∈ Σ′. (5.37)

The asymptotic conditions are the same as those for F̂ (s)

F̂(s) = O(s−(k+1)), as s→∞, (5.38)

F̂(s) = ek( 1
2
c1+c0)(s− 1

2
)−k +O((s− 1

2
)−k+1), as s→ 1

2
, (5.39)

F̂(s) = O(|s− sa|−1/2), as s→ sa, (5.40)

F̂(s) = O(|s− sb|−1/2), as s→ sb. (5.41)

Next we define, analogous to R(s) in (4.76),

R̂(s) :=
F̂(s)

F̂ (s)
, for s ∈ C \ J−1(ΣP ). (5.42)

Then like R, R̂ is analytic at 1
2 and across (γ1 ∪ γ2), and satisfies the following shifted RH

problem.

Shifted RH problem for R̂

(a) R̂ is analytic in C \ (Σ′ ∪ Σ′′), where Σ′ and Σ′′ are defined in (4.67),

(b) R̂ has the jump conditions

R̂+(s) = JR̂,11(s)R̂−(s) + JR̂,21(s)R̂−(I1(J(s))), for s ∈ Σ′′, (5.43)

R̂+(s) = JR̂,12(s)R̂−(I2(J(s))) + JR̂,22(s)R̂−(s), for s ∈ Σ′, (5.44)

where

JR̂,11(s) = JP̂ ,11(J(s)), JR̂,21(s) = JP̂ ,21(J(s))
F̂ (I1(J(s)))

F̂ (s)
, (5.45)

JR̂,12(s) = JP̂ ,12(J(s))
F̂ (I2(J(s)))

F̂ (s)
, JR̂,22(s) = JP̂ ,22(J(s)). (5.46)

(c) R̂ is bounded, and R̂(s) = 1 +O(s−1) as s→∞.
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As n→∞, we have the uniform asymptotic estimates analogous to (4.81) and (4.82)

JR̂,11(s) = 1 +O(n−1), JR̂,21(s) = O(n−1), for s ∈ Σ′′, (5.47)

JR̂,12(s) = O(n−1), JR̂,22(s) = 1 +O(n−1), for s ∈ Σ′, (5.48)

These estimates imply, in a similar way as (4.81) and (4.82) do in Section 4.7, the uniform
convergence of R̂ to 1:

R̂(s) = 1 +O(n−1), as n→∞, for s ∈ C \
(
Σ′ ∪ Σ′′

)
. (5.49)

Hence, by (5.42), (5.25), and (5.33), we have, like (4.103) and (4.104),

P̂1(z) = (1 +O(n−1))P̂
(∞)
1 (z), as n→∞, for z ∈ Sc \ ΣP , (5.50)

P̂2(z) = (1 +O(n−1))P̂
(∞)
2 (z), as n→∞, for z ∈ C \ ΣP . (5.51)

6 Proof of main results

In this section we collect the asymptotics of p
(n)
n+k(z) and q

(n)
n+k(e

z), from the analysis in Sections
4 and 5. The goal is to prove Theorem 2.

6.1 The asymptotics of p
(n)
n+k(z)

The main task in the computation of the asymptotics for p
(n)
n+k consists of the inversion of the

transformations Y 7→ T 7→ S 7→ P . By (4.5), (4.13), (4.19), (4.40) and the asymptotics obtained

in Section 4.6, we will find the asymptotics of p
(n)
n+k. In Figure 7 it is shown that the complex

plane is divided into the outside region, upper and lower bulk regions and two edge regions by
ΣP . We restrict ourselves to the upper half plane because of symmetry, and do the computation
in each of the four regions.

Outside region For z in the outside region, we have

p
(n)
n+k(z) = Y

(n+k,n)
1 (z) = T1(z)eng(z) = S1(z)eng(z) = P1(z)eng(z). (6.1)

By (4.103) and (4.51),

p
(n)
n+k(z) = (1 +O(n−1))F (I1(z))eng(z), as n→∞, (6.2)

where F is defined in (4.50). Substituting the identity (4.63) for F into (6.2), we have

p
(n)
n+k(z) = (1 +O(n−1))Gk(I1(z))eng(z), as n→∞. (6.3)

This proves (1.37) for z in the outside region.

Bulk region Similar to (6.1)–(6.3), for z in the upper part of the lens but not in Ua and Ub,
we obtain

p
(n)
n+k(z) = Y

(n+k,n)
1 (z) = T1(z)eng(z)

= (S1(z) + S2(z)e−nφ(z)+z)eng(z)

= P1(z)eng(z) + P2(z)ezen(V (z)−g̃(z)+`)

= (1 +O(n−1))F (I1(z))eng(z)

+ (1 +O(n−1))F (I2(z))ezen(V (z)−g̃(z)+`)

= (1 +O(n−1))Gk(I1(z))eng(z)

+ (1 +O(n−1))Gk(I2(z))en(V (z)−g̃(z)+`),

(6.4)
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as n→∞. In the last identity of (6.4) we use (4.63) and the identity z = J(I2(z)). We obtain
the formula (1.39) for z in the upper bulk region.

In particular, if x ∈ (a, b) and z → x from above, we have by (3.8) that V (x)− g̃+(x) + ` =
g−(x), and further from the definition (1.33) of g(z), we have g±(x) =

∫
log|x − y|dµV (y) ±

πi
∫ b
x dµV . On the other hand, as z → x from above, by (1.28) and (1.29), I1(z) and I2(z)

converge to I+(x) and I−(x) respectively. Noting that I−(x) = Ī+(x), we have from (6.4) and
(1.39)

p
(n)
n+k(x) = rk(x)en

∫
log |x−y|dµV (y)

[
cos

(
nπ

∫ b

x
dµV (t) + θk(x)

)
+O(n−1)

]
, (6.5)

where rk(x) and θk(x), as defined in (1.31), are the modulus and argument of 2Gk(I+(x)) =

2ck1
(I+(x)+ 1

2
)(I+(x)− 1

2
)k√

(I+(x)−sa)(I+(x)−sb)
.

Edge region For brevity we only consider the case z ∈ Ub, the case z ∈ Ua can be treated
similarly. As shown in Figure 7, the part of Ub in the upper half plane is divided by the lens
ΣS into two parts, one in the lens and one out of the lens. If z ∈ Ub ∩ C+ is outside the lens,
we obtain

p
(n)
n+k(z) = Y

(n+k,n)
1 (z) = T1(z)eng(z) = S1(z)eng(z), (6.6)

and by (4.40),

(S1, S2) =
√

2(P1, P2)e(πi
4
− z

2
)σ3

(
1 1
−1 1

)−1

(n2/3fb(z))
1
4
σ3P (b)(z)

=
1√
2

(P1, P2)

(
e
πi
4
− z

2n
1
6 fb(z)

1
4 −eπi4 − z2n− 1

6 fb(z)
− 1

4

e−
πi
4

+ z
2n

1
6 fb(z)

1
4 e−

πi
4

+ z
2n−

1
6 fb(z)

− 1
4

)
P (b)(z).

(6.7)

By (4.33), (4.51) and (4.103)–(4.104), we further obtain

p
(n)
n+k(z) =

√
π
[
(P1(z)− iP2(z)ez)n

1
6 fb(z)

1
4 Ai(n

2
3 fb(z))

− (P1(z) + iP2(z)ez)n−
1
6 fb(z)

− 1
4 Ai′(n

2
3 fb(z))

]
e
n
2

(g(z)−g̃(z)+V (z)+`)

=
√
π
[(
F(I1(z))− iF(I2(z))eJ(I2(z))

)
n

1
6 fb(z)

1
4 Ai(n

2
3 fb(z))

−
(
F(I1(z)) + iF(I2(z))eJ(I2(z))

)
n−

1
6 fb(z)

− 1
4 Ai′(n

2
3 fb(z))

]
e
n
2

(g(z)−g̃(z)+V (z)+`)

=
√
π
[
(Gk(I1(z))− iGk(I2(z)))n

1
6 fb(z)

1
4 Ai(n

2
3 fb(z))

− (Gk(I1(z)) + iGk(I2(z)))n−
1
6 fb(z)

− 1
4 Ai′(n

2
3 fb(z))

]
e
n
2

(g(z)−g̃(z)+V (z)+`),

(6.8)

where Gk is defined, analogous to the formula (4.63) for Gk, as

Gk(s) :=

{
F(s) if s ∈ C \ D̄ and J(s) /∈ ΣP ,

eJ(s)F(s) if s ∈ D \ [−1
2 ,

1
2 ] and J(s) /∈ ΣP .

(6.9)

From (4.76) and (4.102), we have that

Gk(s) = Gk(s)(1 +O(n−1)), as n→∞. (6.10)
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Hence we obtain (1.47) for z in the edge region Ub, upper half plane, and outside of the lens.

Let us now focus on the asymptotics of p
(n)
n+k(z) for z = b + f ′b(b)

−1n−2/3t which is in the
upper half plane and outside of the lens, where t is bounded. Then

Ai(n2/3fb(z)) = Ai(t) +O(n−2/3), as n→∞, (6.11)

Direct computation yields, as n→∞, by (1.23)–(1.24) and (1.26)–(1.27),

I1(z) = sb +
(sb + 1

2)(sb − 1
2)

√
sb

f ′b(b)
−1/2n−1/3

√
t(1 +O(n−2/3)t), (6.12)

I2(z) = sb −
(sb + 1

2)(sb − 1
2)

√
sb

f ′b(b)
−1/2n−1/3

√
t(1 +O(n−2/3)t), (6.13)

and that as s→ sb, by (6.10) and (1.30),

Gk(s) = (1 +O(n−1))

(
2−

1
2 (

1

4
+

1

c1
)−

1
4 ck−1

1 (

√
1

4
+

1

c1
− 1

2
)k−1 +O(s− sb)

)
1√
s− sb

, (6.14)

where all square roots take the principal value. Hence when t is bounded

Gk(I1(z))− iGk(I2(z)) =

(
1

2

(
1

4
+

1

c1

)− 1
8
(√

1

4
+

1

c1
− 1

2

)k−1

c
k− 1

2
1 +O(n−

1
3 )

)
n

1
6 t−

1
4 ,

(6.15)

Gk(I1(z)) + iGk(I2(z)) = O(n−
1
6 )t

1
4 . (6.16)

Substituting (6.15) and (6.16) into (6.8) and noting that fb(b) = 0 and f ′b(b) > 0, we obtain
(1.49) for z outside of the lens.

If z ∈ Ub ∩ C+ and inside the lens, then like (6.4),

p
(n)
n+k(z) = (S1(z) + S2(z)e−nφ(z)+z)eng(z), (6.17)

and like (6.7),

(S1 + S2e
−nφ(z)+z, S2) =

√
2(P1, P2)e(πi

4
− z

2
)σ3

(
1 1
−1 1

)−1

(n2/3fb(z))
1
4
σ3P (b)(z)

(
1 0

e−nφ(z)+z 1

)
. (6.18)

Hence by (4.33), (4.51) and (4.103)–(4.104), and using the identity Ai(x)+ωAi(ωx)+ω2 Ai(ω2x) =
0, we find that the result in (6.8) still holds, and so do the subsequent asymptotic formulas
(6.9)–(6.16). Thus we can still prove (1.47) and (1.49).

6.2 The asymptotics of q
(n)
n+k(e

z)

The derivation of the asymptotics for q
(n)
n+k(e

z) is similar, and we need to invert the transfor-

mations X 7→ T̂ 7→ Ŝ 7→ P̂ using (5.4), (5.6), (5.10), and (5.17). For brevity, we only consider
the outside region and the bulk region.
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Outside region If z is in the upper half plane and not in the lens or Ua, Ub, we have

q
(n)
n+k(e

z) = X
(n+k,n)
1 (z) = T̂1(z)eng̃(z) = Ŝ1(z)eng̃(z) = P̂1(z)eng̃(z). (6.19)

By (5.33) and (5.42), we find similar to (6.1)

q
(n)
n+k(e

z) = F̂(I2(z))eng̃(z) = R̂(I2(z))F̂ (I2(z))eng̃(z). (6.20)

By the formula (5.32) for F̂ and the asymptotic formula (5.49) for R̂, this yields

q
(n)
n+k(e

z) = (1 +O(n−1))

√
(1

2 − sa)(1
2 − sb)√

(I2(z)− sa)(I2(z)− sb)
ek( 1

2
c1+c0)(I2(z)− 1

2
)−keng̃(z), as n→∞.

(6.21)
In (6.21) and later in (6.23),

√
(z − sa)(z − sb) is chosen to be close to z as z → ∞ and has

branch cut along γ2. Substituting sa and sb by (1.24), we prove (1.38) for z in the outside
region.

Bulk region Similar to (6.4),

q
(n)
n+k(e

z) = T̂1(z)eng̃(z) = Ŝ1(z)eng̃(z) + Ŝ2(z)en(V (z)−g(z)+`) = P̂1(z)eng̃(z) + P̂2(z)en(V (z)−g(z)+`).
(6.22)

By (5.33), (5.42), (5.32) and (5.49), we find that as n→∞,

q
(n)
n+k(e

z) = F̂(I2(z))eng̃(z) + F̂(I1(z))en(V (z)−g(z)+`)

= R̂(I2(z))F̂ (I2(z))eng̃(z) + R̂(I1(z))F̂ (I1(z))en(V (z)−g(z)+`)

= (1 +O(n−1))

√
(1

2 − sa)(1
2 − sb)√

(I2(z)− sa)(I2(z)− sb)
ek( 1

2
c1+c0)(I2(z)− 1

2
)−keng̃(z)

+ (1 +O(n−1))

√
(1

2 − sa)(1
2 − sb)√

(I1(z)− sa)(I1(z)− sb)
ek( 1

2
c1+c0)(I1(z)− 1

2
)−ken(V (z)−g(z)+`).

(6.23)

Substituting sa and sb by (1.24), we prove (1.40) for z in the upper bulk region.
As z → x ∈ R from above, noting that V (x)− g−(x) + ` = g̃+(x) by (3.8), I2(z) → I−(x),

and I1(z)→ I+(x), and using the identities I−(x) = Ī+(x) and g̃±(x) =
∫

log|ex − ey|dµV (y)±
πi
∫ b
x dµV , we have like (6.5),

q
(n)
n+k(e

x) = r̂k(x)en
∫

log|ex−ey |dµV (y)

[
cos

(
nπ

∫ b

x
dµV (t) + θ̂k(x)

)
+O(n−1)

]
, (6.24)

where r̂k(x) and θ̂k(x), as defined in (1.32), are the modulus and argument of 2Ĝk(I−(x)) =

2

√
( 1
2
−sa)( 1

2
−sb)

(I−(x)−sa)(I−(x)−sb)e
k( 1

2
c1+c0)(I−(x)− 1

2)−k.

6.3 Proof of Theorem 2

The asymptotic results obtained in the last two subsections nearly prove items (a), (b) and
part of (c) and (d) of Theorem 2. However, in the statement of the theorem, the regions where
asymptotic formulas are given, are Aδ, Bδ, Cδ, and Dδ, which are similar but not exactly equal
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to the outside, upper bulk, left edge and right edge regions that depend on ΣP . We observe
that if δ is a fixed small enough number, we can take the radius of Ua and Ub large enough so
that they cover Cδ and Dδ. On the other hand, we can also take the radius of Ua and Ub small
enough and the shape of the lens thick enough to let the upper bulk region cover Bδ, and we
can take the radius of Ua and Ub small enough and the shape of the lens thin enough to let the
outside region cover Aδ. In this way, by using different contours ΣP , the asymptotic results in
the outside, upper bulk, left edge and right edge regions are translated into results in regions
Aδ, Bδ, Cδ, and Dδ respectively.

Although we have not proved all the asymptotic formulas in items (c) and (d) of Theorem
2, the remainders can be proved using the method presented in the previous two subsections,
and we omit the details.

To compute h
(n)
n+k and prove item (e) of Theorem 2, we note that it appears in the leading

coefficient of C̃pn+k(z), see (4.3). Using (4.5), (4.13), (4.19) and (4.40), we have, for z in S,
outside of the lens and away from a and b,

C̃pn+k(z) = Y
(n+k,n)

2 (z) = en`e−ng̃(z)T2(z) = en`e−ng̃(z)S2(z) = en`e−ng̃(z)P2(z). (6.25)

Since g̃(z) = z +O(e−z) as z → +∞ in S, (6.25) yields

P2(z) =
−h(n)

n+k

2πi
e−n`e−(k+1)z +O(e−(k+2)z), as z → +∞. (6.26)

By (5.51), (4.65), and (4.62), we have as n→∞,

lim
z→+∞

P2(z)e(k+1)z = lim
z→+∞

P
(∞)
2 (z)e(k+1)z(1 +O(n−1))

= lim
z→+∞

F (I2(z))e(k+1)z(1 +O(n−1))

= lim
z→+∞

ck1

(
I2(z)− 1

2

)k+1 e−c1I2(z)−c0√
(I2(z)− sa)(I2(z)− sb)

e(k+1)z(1 +O(n−1)).

(6.27)

From the formula (1.23) of J(s) which is the inverse function of I2(z), we have

I2(z) =
1

2
+ e

c1
2

+c0e−z +O(e−2z), as z → +∞, (6.28)

and we obtain that

lim
z→+∞

ck1

(
I2(z)− 1

2

)k+1 e−c1I2(z)−c0√
(I2(z)− sa)(I2(z)− sb)

e(k+1)z = ck1e
k(
c1
2

+c0) i√
(1

2 − sa)(sb − 1
2)

= ic
k+ 1

2
1 ek(

c1
2

+c0),

(6.29)

where sa and sb are expressed in c1 by (1.24). Formulas (6.29), (6.27) and (6.26) yield Theorem
2(e).
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A Proofs of several technical results

A.1 Proof of Proposition 1

Our proof is similar to that of [15, Proposition 2.1]. By the formula of the probability density
function (1.9), the average of

∏n
j=1(ez − eλj ) can be expressed as

E′n(
n∏
j=1

(ez − eλj )) =
1

Z ′n

∫
Rn

n∏
j=1

(ez − eλj )
∏
i<j

(λj − λi)
∏
i<j

(eλj − eλi)
n∏
j=1

e−nV (λj) dλj . (A.1)

From this formula, it is clear that E′n(
∏n
j=1(ez − eλj )) is a linear combination of ekz with

k = 0, 1, . . . , n, and that the coefficient of enz is equal to 1 since the probability measure is

normalized. To show that it is equal to q
(n)
n (ez), we only need to verify that it satisfies the

orthogonality conditions (1.12), which characterize q
(n)
n (ez) uniquely.

Expanding the Vandermonde determinant over the symmetric group Sn gives∏
i<j

(λj − λi) = det(λj−1
i )i,j=1,...,n =

∑
σ∈Sn

(−1)σ
n∏
j=1

λ
σ(j)−1
j . (A.2)

Substituting (A.2) into (A.1), we obtain

E′n(

n∏
j=1

(ez − eλj )) =
1

Z ′n

∫
Rn

∑
σ∈Sn

(−1)σ
n∏
j=1

(ez − eλj )
∏
i<j

(eλj − eλi)
n∏
j=1

λ
σ(j)−1
j e−nV (λj) dλj

=
n!

Z ′n

∫
Rn

n∏
j=1

(ez − eλj )
∏
i<j

(eλj − eλi)
n∏
j=1

λj−1
j e−nV (λj) dλj .

(A.3)

Substituting the identity

n∏
j=1

(ez − eλj )
∏
i<j

(eλj − eλi) = det


1 eλ1 . . . enλ1

1 eλ2 . . . enλ2

...
...

...
1 eλn . . . enλn

1 ez . . . enz

 (A.4)

into (A.3), we obtain after integrating with respect to λi that

E′n(

n∏
j=1

(ez−eλj )) =
n!

Z ′n
det


m00 m01 . . . m0n

m10 m11 . . . m1n
...

...
...

mn−1,0 mn−1,1 . . . mn−1,n

1 ez . . . enz

 , where mjk =

∫
R
λjekλe−nV (λ)dλ.

(A.5)
Then it is straightforward to verify that for k = 0, 1, . . . , n− 1,

∫
R
E′n(

n∏
j=1

(ez − eλj ))zke−nV (z)dz =
n!

Z ′n
det


m00 m01 . . . m0n

m10 m11 . . . m1n
...

...
...

mn−1,0 mn−1,1 . . . mn−1,n

mk0 mk1 . . . mkn

 = 0. (A.6)

Thus we prove that E′n(
∏n
j=1(ez − eλj )) satisfies the orthogonality condition (1.12) that deter-

mines q
(n)
n (ez), and then it follows that E′n(

∏n
j=1(ez − eλj )) = q

(n)
n (ez).
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A.2 Proof of Proposition 2

In this proof, we fix c1 ∈ R+ and c0 ∈ R, and J stands for Jc1,c0 such that J(s) = c1s + c0 −
log

s− 1
2

s+ 1
2

. Recall that sa = −
√

1
4 + 1

c1
, sb =

√
1
4 + 1

c1
as in (1.24), and a = J(sa), b = J(sb) as in

(3.4).
To prove part (a), we show that the equation J(s) = x:

(1) has a unique solution s in the upper half plane C+ = {s = u+ iv with v > 0} if x ∈ (a, b),

(2) has no solution in C+ if x ∈ R \ (a, b).

Moreover, as x runs from a to b, the solutions s = s(x) form an arc in C+ from sa to sb. Then
this arc is the desired γ1 in Proposition 2, and the complex conjugate of γ1 is the arc γ2.

For s = u+ iv with v > 0, J(s) ∈ R if and only if the identity for its imaginary part

c1v − arccot
u2 + v2 − 1

4

v
= 0 (A.7)

is satisfied, where the range of arccot is (0, π). It is a direct consequence of (A.7) that v < π
c1

.
Under the condition 0 < v < π

c1
, (A.7) is equivalent to

u2 =
1

4
+ v cot(c1v)− v2. (A.8)

By direct calculation we find that the right-hand side of (A.8) is a decreasing function in v for
0 < v < π

c1
. Moreover, as v → 0, it tends to 1

4 + 1
c1

, and as v → π
c1

, it tends to −∞.
Thus for J(s) to be real where s = u+ iv with v > 0, u has to be in (sa, sb), and for any u

in this interval there is a unique v > 0 to make (A.8) hold. The locus of all such s = u+ iv is
an arc in C+ connecting sa and sb. As a consequence of (A.8), v increases as u runs from sa to
0, and then decreases as u runs from 0 to sb. At any s in this arc,

dJ(s)

ds
= c1 −

1

s2 − 1
4

6= 0, (A.9)

and it follows that J is a homeomorphism from this arc to the interval [a, b], which proves part
(a) of Proposition 2.

Next we prove part (b). It is easy to check that J maps the ray (sb,∞) to (b,∞) and the ray
(−∞, sa) to (−∞, a) homeomorphically. Then it suffices to show that J is a univalent map from
C+ \ D̄ onto C+, and the univalent property of J on C− \ D̄ follows by complex conjugation.
To this end, we use the following elementary lemma:

Lemma 3 (Exercise 10 in Section 14.5 of [19]). Suppose that G and Ω are simply connected
Jordan regions and f is a continuous function on the closure of G such that f is analytic on
G and f(G) ⊆ Ω. If f maps ∂G homeomorphically onto ∂Ω, then f is univalent on G and
f(G) = Ω.

But this lemma is not directly applicable, since both C+ \ D̄ and C+ are unbounded. Let
g(s) := −i s−is+i be the conformal map from the unit disk to the upper half plane, we find that

g−1 ◦ J ◦ g is a map from the simply connected region g−1(C+ \ D̄) into the unit disk, and the
map is homeomorphic on the boundary. A direct application of Lemma 3 shows that g−1 ◦J ◦ g
is univalent in g−1(C+ \ D̄) and onto the unit disk, hence J is univalent in C+ \ D̄ and onto the
upper half plane, and part (b) is proved.

To prove part (c), we find by direct calculation that J maps homeomorphically
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(1) the interval (sa,−1
2) to the ray (−∞, a),

(2) the interval (1
2 , sb) to the ray (b,∞),

(3) the upper side of the interval (−1
2 ,

1
2) to the horizontal line R− πi, and

(4) the lower side of the interval (−1
2 ,

1
2) to the horizontal line R + πi.

Then it suffices to show that J maps D ∩C+ onto S ∩C− univalently. We use Lemma 3 again.
Similar to the conformal map g, we use the conformal map h(s) := log g(s) = log −is−1

s−i that
transforms the unit disk to S ∩ C+. We omit the details since the arguments are very similar
to those in the proof of part (b).

A.3 Proof of Lemma 2

First, we show that for any x1 ∈ R+, (3.3) has a unique solution as an equation in x0. Note
that

d

dx0

1

2πi

∮
γ
V ′ (Jx1,x0(s))

ds

s− 1
2

=
1

2πi

∮
γ
V ′′ (Jx1,x0(s))

ds

s− 1
2

=
−1

π
=
∫
γ1

V ′′ (Jx1,x0(s))
ds

s− 1
2

=
1

π

∫ π

0
V ′′ (Jx1,x0(s(θ)))=d log(s(θ)− 1

2)

dθ
dθ,

(A.10)

where we parametrize s ∈ γ1 by its argument θ that runs from 0 to π. This parametrization
is well defined since as s moves along γ1, its imaginary part increases as its real part increases
from sa to 0, and then decreases as its real part continues to increase from 0 to sb, as shown in
the proof of Proposition 2.

Below we show that the right-hand side of (A.10) is bounded below by a positive constant
for all x0 ∈ R. Since V ′′(Jx1,x0(s(θ))) is bounded below by a positive number by the strong
convexity of V , we need only to prove for all θ ∈ (0, π), = log(s(θ) − 1

2) = arg(s(θ) − 1
2) is

an increasing function. We show the increasing for θ ∈ (π2 , π) and θ ∈ (0, π2 ) separately. For
geometric reasons, when θ ∈ (π2 , π), arg(s(θ)− 1

2) is increasing with θ since both <s(θ) < 0 and
=s(θ) > 0 are decreasing. For θ ∈ (0, π2 ), we use the identity

= log(s(θ)− 1

2
) = =

(
x1s(θ) + x0 + log(s(θ) +

1

2
)

)
−=Jx1,x0(s(θ)). (A.11)

Here =Jx1,x0(s(θ)), by the construction of γ1, vanishes, =s(θ) increases as θ runs from 0 to π
2

and for geometric reasons = log(s+ 1
2) also increases as θ runs from 0 to π

2 . Thus we have that
for θ ∈ (0, π2 ), = log(s(θ)− 1

2) = x1=s(θ) + = log(s(θ) + 1
2) is increasing.

Now we have that as a function in x0, 1
2πi

∮
γ V
′(Jx1,x0(s))/(s − 1

2)ds is a bijection from R
to R, since its derivative is bounded below by a positive constant. Hence by continuity, there
must be a unique x0 to make this function equal to 1. Given x1 ∈ R+, we denote the unique x0

that solves (3.3) by c0(x1). Similarly we can show that c0(x1) is a continuous function in x1.
Although we do not have a simple formula for c0(x1), we show below that

1

2πi

∮
γ
V ′(Jx1,c0(x1)(s))ds < x−1

1 , for x1 sufficiently small, (A.12)

1

2πi

∮
γ
V ′(Jx1,c0(x1)(s))ds > x−1

1 , for x1 sufficiently large. (A.13)
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Hence, by continuity, it follows that there exists c1 ∈ R+ that, together with c0 = c0(c1), solves
(3.2)–(3.3).

As x1 → 0+, from (A.8), it follows that the shape of γ is close to the circle with radius x
−1/2
1

and center 0. Hence if we parametrize s ∈ γ as before by its argument θ, we have for θ ∈ [0, 2π),

s(θ) = eiθx
−1/2
1 + o(1), lim

x1→0+

s′(θ)

s(θ)− 1
2

= i, lim
x1→0+

V ′(Jx1,x0(s(θ))) = V ′(x0). (A.14)

By the dominated convergence theorem, we have

lim
x1→0+

1

2πi

∮
γ
V ′(Jx1,x0(s))

ds

s− 1
2

=
1

2πi
lim

x1→0+

∫ 2π

0
V ′(Jx1,x0(s(θ)))

s′(θ)

s(θ)− 1
2

dθ

=
1

2πi

∫ 2π

0
V ′(x0)idθ = V ′(x0).

(A.15)

We find limx1→0+ c0(x1) = x̃0, where x̃0 is the unique value such that V ′(x̃0) = 1. From the
results obtained above, we have that

1

2πi

∮
γ
V ′(Jx1,c0(x1)(s))ds = o(x−1

1 ) as x1 → 0+, (A.16)

since the shape of contour γ approaches to the circle with radius x
−1/2
1 , and the integrand tends

uniformly to V ′(x̃0) = 1.
On the other hand, for large values of x1, we use the expression

1

2πi

∮
γ
V ′(Jx1,x0(s))ds =

−1

π
=
∫
γ1

V ′(Jx1,x0(s))ds =
−1

π

∫ sb

sa

V ′(Jx1,x0(s(u)))=v′(u)du, (A.17)

where s ∈ γ1 is expressed as a function in its real part u = <s, and v(u) > 0 is defined by the
condition that s(u) = u+ iv(u) ∈ γ1, and sa, sb are the two endpoints of γ1, as denoted in the
beginning of Appendix A.2, with the parameters c1, c0 substituted by x1, x0. Let us decompose
the integral at the right of (A.17) as I1 + I2 + I3, where

I1 =
−1

π

∫ − 1
2

sa

V ′(Jx1,x0(s(u)))=v′(u)du, (A.18)

I2 =
−1

π

∫ 1
2

− 1
2

V ′(Jx1,x0(s(u)))=v′(u)du, (A.19)

I3 =
−1

π

∫ sb

1
2

V ′(Jx1,x0(s(u)))=v′(u)du. (A.20)

From (A.8), it is not difficult to find that as x1 →∞,

v(−1

2
) = v(

1

2
) =

π

2
x−1

1 + o(x−1
1 ). (A.21)

We know that V ′ is an increasing function in u and that v(u) is an even function. From
Appendix A.2 we have that v(u) is increasing for u ∈ (sa, 0) and decreasing for u ∈ (0, sb).
Hence the integral I2 is positive. Using the monotonicity of V ′ and integration by parts for I1

and I3, we similarly obtain

I1 + I3 >
1

π
V ′(Jx1,x0(s(

1

2
)))(v(

1

2
)− v(sb))−

1

π
V ′(Jx1,x0(s(−1

2
)))(v(−1

2
)− v(sa))

=
1

π

(
V ′(Jx1,x0(s(

1

2
)))− V ′(Jx1,x0(s(−1

2
)))

)
v(

1

2
),

(A.22)
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where in the last line we used the identities v(sa) = v(sb) = 0 and v(−1
2) = v(1

2). Hence (A.17)
and the estimates of I2 and I1 + I3 above imply that

1

2πi

∮
γ
V ′(Jx1,x0(s))ds >

1

π

(
V ′(Jx1,x0(s(

1

2
))− V ′(Jx1,x0(s(−1

2
))

)
v(

1

2
). (A.23)

As x1 →∞,

Jx1,x0(s(−1

2
)) = x0 −

x1

2
+ o(x1), Jx1,x0(s(

1

2
)) = x0 +

x1

2
+ o(x1), (A.24)

where the two o(x1) terms are independent to x0. By (A.24) and the assumption V ′′(x) > c > 0
for all x, we have that if x1 is large enough, then uniformly for all x0 ∈ R

V ′(Jx1,x0(s(
1

2
)))− V ′(Jx1,x0(s(−1

2
)) > cx1. (A.25)

Substituting (A.25) and (A.21) into (A.23), we have that as x1 →∞ and x0 = c0(x1),

1

2πi

∮
γ
V ′(Jx1,c0(x1)(s))ds� x−1

1 . (A.26)

We note that 1
2πi

∮
γ V
′(Jx1,c0(x1)(s))ds is continuous in x1, since 1

2πi

∮
γ V
′(Jx1,x0(s))ds is con-

tinuous in x1, x0 and c0(x) is continuous. Then we find that the estimates (A.16) and (A.26)
imply that there is a pair (c1, c0 = c0(c1)) such that both (3.3) and (3.2) are satisfied.

B Explicit construction of the equilibrium measure for quadratic
and quartic V

In this appendix we use the method developed in Section 3 to find the endpoints of the support of
the equilibrium measure explicitly for quadratic and quartic external fields V . In the quadratic
case, we consider a monomial external field V (x) = x2

t , but the same method can be applied
to all quadratic V . We also construct the density function of the equilibrium measure. In the
quartic case, we confine our attention to V such that V (x)− x

2 is an even function. Under this
condition the equilibrium measure is symmetric around the origin. In contrast to the quadratic
V that is automatically convex, we also consider quartic V that is one-cut but not convex.

External field V (x) = x2

2t

In this case, V ′(x) = x
t , and a simple calculation of residue yields

1

2πi

∮
γ
V ′
(
c1s+ c0 − log

s− 1
2

s+ 1
2

)
ds =

1

t
,

1

2πi

∮
γ

V ′
(
c1s+ c0 − log

s− 1
2

s+ 1
2

)
s− 1

2

ds =
c0

t
+
c1

2t
.

(B.1)
Thus by Lemma 2, we have

c1 = t, c0 =
t

2
. (B.2)

The support of the equilibrium measure, as expressed by (3.4), is

[a, b] = [Jt, t
2
(sa),Jt, t

2
(sa)]

=

[
1

2
(t−

√
t2 + 4t)− log

t+ 2 +
√
t2 + 4t

2
,
1

2
(t+

√
t2 + 4t)− log

t+ 2−
√
t2 + 4t

2

]
.

(B.3)
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In particular, for t = 1, we have

[a, b] =

[
−
√

5 + 1

2
− log

3 +
√

5

2
,

√
5 + 1

2
− log

3−
√

5

2

]
. (B.4)

To find the equilibrium density, we have as a particular case of (3.21) that

M(s) =

−1
t log

s− 1
2

s+ 1
2

, for s ∈ C \ D̄,

s+ 1
2 , for s ∈ D.

(B.5)

Then by (3.23), after a straightforward calculation, we obtain the following expression

ψV (x) =
1

π
=I+(x), (B.6)

where I+ is as before the boundary value of the inverse of J = Jt, t
2

which parametrizes the
curve γ1.

External field V (x) = x4/4 + ux2/2 + x/2

In this case, V ′(x) = x3 + ux+ 1
2 , and the calculation of residues yields

1

2πi

∮
γ
V ′
(
c1s+ c0 − log

s− 1
2

s+ 1
2

)
ds =

c2
1

4
+ 3c1 + 3c2

0 + u, (B.7)

1

2πi

∮
γ

V ′
(
c1s+ c0 − log

s− 1
2

s+ 1
2

)
s− 1

2

ds =
c3

1

8
+ (

3c0

4
+

3

2
)c2

1 + (
3c2

0

2
+ 6c0 +

u

2
)c1 + c3

0 + uc0 +
1

2
.

(B.8)

As a consequence of the relation V (x) = V (−x) + x, the equilibrium measure µV is symmetric
around the origin. Indeed, changing variables s 7→ −s and t 7→ −t in the energy functional
(1.17), it is straightforward to verify that IV (µV ) = IV (µ̃V ), where µ̃V is defined by the fact
that µ̃V (A) = µV (−A) for any Borel set A. From the uniqueness of the equilibrium measure, it
follows that µV = µ̃V . In particular this implies that the support of the equilibrium measure is
of the form [−b, b]. By (1.21), we have c0 = 0. Substituting this and (B.7) into (3.2), we obtain
the equation

c3
1 + 12c2

1 + 4uc1 − 4 = 0. (B.9)

Remark 8. Although the equilibrium measure, which is the limiting mean eigenvalue distribution
of the random matrix ensemble as n→∞, is symmetric around the origin, this is not true for
the finite n joint probability distribution of eigenvalues (1.6). The latter would only be invariant
under the change of variables λi → −λi if the term x/2 in V (x) were replaced by (1

2 − 1
2n)x.

For any value of u, the equation (B.9) has a unique positive solution by Descartes’ rule of
signs. We have an explicit formula for c1 ∈ R+ in u by the formula for the roots of a cubic
equation, but we will not write down the long formula. Together with c0 = 0, c1 > 0 gives us
a solution to the pair of equations (3.2) and (3.3). Under the condition that the equilibrium
measure is one-cut supported, this pair c0, c1 yields expressions for the support and the density
function of the equilibrium measure, but we omit the formulas.

We note that the external field V is convex if u ≥ 0. If u is negative, it is not but the
construction of the equilibrium measure given above can still be carried out formally. When u is
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negative but sufficiently close to 0, we can check that the equilibrium measure constructed in this
way is still a probability measure. When u is a large negative number, the constructed density
function ψV (x) is negative on an interval centered at 0, and therefore not a probability density.
This means that the external field is not one-cut regular, and our construction fails. Based
on the analogy with matrix models without external source, the symmetry of the equilibrium
measure and numerical simulations, we conjecture that V is one-cut regular for values of u such
that ψV (0) > 0.

From (B.9), we derive that u = 1
c1
− 3c1 − 1

4c
2
1, where c1 is the positive solution to (B.9).

This makes u a strictly decreasing function of c1. Since c0 = 0, it is easy to see that I+(0) is on
the imaginary axis, and we denote it as I+(0) = i p (p > 0). From the relation

Jc1,c0(I+(0)) = c1I+(0)− log
I+(0)− 1

2

I+(0) + 1
2

= 0, (B.10)

we derive that c1 = 2
p arctan 1

2p and c1 is a strictly decreasing function in p, which means that
u is a strictly increasing function in p.

Like (B.5), with our quartic V (using the fact that c0 = 0), we have by (3.21)

M(s) =

−(3c2
1s

2 + u) log
s− 1

2

s+ 1
2

+ 3c1s
(

log
s− 1

2

s+ 1
2

)2

−
(

log
s− 1

2

s+ 1
2

)3

− 3c2
1s s ∈ C \ D̄,

c3
1s

3 + uc1s+ 3c2
1s+ 1

2 s ∈ D.
(B.11)

Similarly to the quadratic case, we can recover the equilibrium density using (3.23). In particular
at zero we have

ψV (0) =
1

π
=M−(I+(0)) =

1

π
=
(
c3

1I+(0)3 + (uc1 + 3c2
1)I+(0) +

1

2

)
=

1

π

(
−c3

1p
3 + (1− c3

1

4
)p

)
=
p

π

(
1− c3

1(p2 +
1

4
)

)
=
p

π

(
1− (

8

p
+

2

p3
)(arctan

1

2p
)3

)
.

(B.12)

Here we used (B.9) to pass from the first to the second line. Thus ψV (0) > 0 if and only
if (8

p + 2
p3

)(arctan 1
2p)3 < 1, which is equivalent to p > pc for some value pc > 0. Since u

is an increasing function in p, this is equivalent to u > uc, where uc can be approximated
numerically as uc ≈ −1.9250. Although we have not rigorously proved that for u > uc the
external field is one-cut regular, numerical results are convincing. When u = −1.925, the
constructed equilibrium measure is shown in Figure 9. It suggests that around u = uc ≈ −1.925
the transition between one-cut and two-cut equilibrium measures occurs.

C Asymptotics of p
(n)
n (x) when V (x) = x2

2

In this appendix, we give an alternative derivation of the asymptotic results in Theorem 2 when
the external field is V (x) = x2

2 . The derivation is based on the contour integral formula of mul-
tiple Hermite polynomials in [16, Theorems 2.1 and 2.3]. This method can essentially reproduce
all results in Theorem 2 for quadratic external field, but for brevity we only give the derivation

for p
(n)
n (x) where x ∈ R and is away from the edges of the equilibrium measure. Although this

contour integral method cannot be applied when the external field is not quadratic, it shows
that the transformation Jc1,c0 arises naturally in the uniform external source model.
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Figure 9: The density function ψV of the equilibrium measure for the external field V (x) =
x4

4 − 1.925x2

2 + x
2 .

The result [16, Theorem 2.1] states that the monic polynomial Pn(x) of degree n that satisfies∫ ∞
−∞

Pn(x)enajxe−n
x2

2 dx = 0, for j = 1, 2, . . . , n, (C.1)

is expressed by an integral over the imaginary axis:

Pn(x) =

√
n√

2πi

∫ i∞

−i∞
e
n
2

(t−x)2
n∏
i=1

(t− ai)dt. (C.2)

When aj = j−1
n as in (1.5), we have, in our notations, Pn = p

(n)
n where V (x) = x2/2. Setting

t = s+ 1
2 , we have

p(n)
n (x) =

√
n√

2πi

∫ i∞

−i∞
enFn(s;x)ds, (C.3)

where

Fn(s;x) =
1

2
(s+

1

2
− x)2 +

n∑
i=1

log(s+
1

2
− i− 1

n
)
1

n
. (C.4)

For s away from the interval [−1
2 ,

1
2 ], we have the following uniform (in s and x) asymptotic

expansion as n→∞,

Fn(s;x) = F (s;x) +
1

n
log

√
s+ 1

2

s− 1
2

+O(
1

n2
), (C.5)

where

F (s;x) =
1

2
(s+

1

2
− x)2 + (s+

1

2
) log(s+

1

2
)− (s− 1

2
) log(s− 1

2
)− 1, (C.6)

and we take the principal branch of the logarithm and square root. Hence

d

ds
F (s;x) = s+

1

2
− log

s− 1
2

s+ 1
2

− x = J1, 1
2
(s)− x. (C.7)

Below we consider the zeros s of the derivative d
dsF (s;x) and express them as functions in x.

We use the functions I1(x), I2(x) and their boundary values I±(x) as defined in (1.26)–(1.29)

with c1 = 1 and c0 = 1
2 . Note that sa = −

√
5

2 and sb =
√

5
2 as given in (1.24); we denote

a = J1, 1
2
(sa) =

−
√

5 + 1

2
+ 2 log

√
5− 1

2
, b = J1, 1

2
(sb) =

√
5 + 1

2
+ 2 log

√
5 + 1

2
, (C.8)

as in (3.4), which agree with (B.4). We can say the following about the zeros of d
dsF (s;x):
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(1) if x > b, then there are two zeros of d
dsF (s;x): I1(x) ∈ (sb,∞) and I2(x) ∈ (1

2 , sb),

(2) if x < a, then there are two zeros of d
dsF (s;x): I1(x) ∈ (−∞, sa) and I2(x) ∈ (sa,−1

2),

(3) if x ∈ (a, b), then there are two zeros of d
dsF (s;x): I+(x) ∈ γ1 and I−(x) ∈ γ2.

By explicit computation, we find that for x ∈ (−∞, a) ∪ (b,+∞), then along the vertical line
{z = I1(x) + it | t ∈ R}, <F (z) attains its maximum at z = I1(x). If we deform the contour iR
of integration in (C.3) to the vertical line through I1(x), the standard application of the saddle
point method yields

p(n)
n (x) =

√
n√

2πi

∫ I1(x)+n−
1
3 i

I1(x)−n− 1
3 i

enFn(s;x)ds(1 + o(n−1))

=

√
n√

2πi

∫ I1(x)+n−
1
3 i

I1(x)−n− 1
3 i

enF (s;x)

√
s+ 1

2

s− 1
2

ds(1 +O(n−1))

=

√
nenFn(I1(x);x)

√
2πi

∫ I1(x)+n−
1
3 i

I1(x)−n− 1
3 i

exp

(
n

2
(s− I1(x))2 d2

ds2
F (s;x)

∣∣∣∣
s=I1(x)

)√
s+ 1

2

s− 1
2

ds(1 +O(n−
1
2 ))

= enF (I1(x);x) I1(x) + 1
2√

I1(x)2 − 5
4

(1 +O(n−
1
2 )).

(C.9)

If x ∈ (a, b), by explicit computation, we find that along the vertical line that passes through
I+(x) and I−(x), <F (z) attains its maximum at two points z = I+(x) and z = I−(x). (Note
that although F (z) is discontinuous on the interval [−1

2 ,
1
2 ], <F (z) is continuous everywhere.)

Then we take the contour in (C.3) as this vertical line. When the contour crosses the interval
[−1

2 ,
1
2 ], F (z) is no longer a good approximation of Fn(z), but we can estimate the magnitude

of Fn(z) by other methods, (say, some rough and direct estimate of (C.4)) and still find the
vertical line suitable for saddle point analysis. The standard application of saddle point method
yields, like (C.9),

√
n√

2πi

∫ I±(x)+n−
1
3 i

I±(x)−n− 1
3 i

enFn(s;x)ds = enF (I±(x);x) I±(x) + 1
2√

I±(x)2 − 5
4

(1 +O(n−
1
2 )), (C.10)

and

p(n)
n (x) =

√
n√

2πi

∫ I+(x)+n−
1
3 i

I+(x)−n− 1
3 i

enFn(s;x)ds+

∫ I−(x)+n−
1
3 i

I−(x)−n− 1
3 i

enFn(s;x)ds

 (1 + o(n−1))

= 2en<F (I+(x);x) |I+(x) + 1
2 |

|I+(x)− 5
4 |

1
2

cos

n=F (I+(x);x) + arg

 I+(x) + 1
2√

I+(x)2 − 5
4

+O(n−
1
2 )

 ,
(C.11)

where the square roots take the principal value. It is not obvious that the asymptotic formulas
(C.9) and (C.11) agree with the formulas (1.37) and (1.41). To convince the reader, we show
that (C.9) is equivalent to (1.37) (with k = 0 and x ∈ R) in the leading term.

It is easy to check that
I1(x) + 1

2√
I1(x)2 − 5

4

= G0(I1(z)) (C.12)
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where G0 is the function defined in (1.30) with c1 = 1. We need also to show that F (I1(x);x) =
g(x) where g(x) is defined in (1.33). Since it is not hard to verify by direct computation that
g(x) = log(x) + o(1) and F (I1(x);x) = log(x) + o(1), we need only to show that the function
g′(x) = G(x), defined in (3.10), satisfies

G(x) =
d

dx
F (I1(x);x), (C.13)

Note that by the relation x = J1, 1
2
(I1(x)), we have

F (I1(x);x) = F̃ (I1(x))

:=
1

2

(
log

I1(x) + 1
2

I1(x)− 1
2

)2

+ (I1(x) +
1

2
) log(I1(x) +

1

2
)− (I1(x)− 1

2
) log(I1(x)− 1

2
)− 1,

(C.14)

where we consider F̃ as a function of u = I1(x), and

d

dx
F (I1(x);x) =

d

du
F̃ (u)

(
dJ(u)

du

)−1

= log
I1(x) + 1

2

I1(x)− 1
2

. (C.15)

On the other hand, by the identities (3.15) and (3.21), we have

G(x) = − 1

2πi

∮
γ

J(ξ)

ξ − I1(x)
dξ

= − 1

2πi

∮
γ

ξ + 1
2

ξ − I1(x)
dξ − 1

2πi

∮
γ

log(
ξ+ 1

2

ξ− 1
2

)

ξ − I1(x)
dξ.

(C.16)

By the calculation of residue, it is obvious that the first contour integral in the second line of

(C.16) vanishes, and after some effort, we find the second contour integral has value−2πi log
I1(x)+ 1

2

I1(x)− 1
2

.

Thus (C.13) is proved, and together with (C.12) the equivalence between (C.9) and (1.37) is
obtained.
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