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Abstract. We are devoted to solving one problem, which is proposed by Akemann, Burda,
Kieburg [2] and Deift [19], on local statistics of finite Lyapunov exponents for M products of
N ×N Gaussian random matrices as both M and N go to infinity. When the ratio (M + 1)/N
changes from 0 to ∞, we prove that the local statistics undergoes a transition from GUE to
Gaussian. Especially at the critical scaling (M + 1)/N → γ ∈ (0,∞), we observe a phase
transition phenomenon.
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1. Introduction and main results

1.1. Lyapunov exponents. In his famous 1892 monograph [39], Lyapunov introduced the
concept of Lyapunov exponent, which originated from the problem of the stability of solutions
of differential equations. For a linearized differential equation

v̇(t) = Xtv, v(0) = v0 ∈ RN , (1.1)

where X(·) is a continuous and bounded function from R+ to the space of N ×N real matrices,
the Lyapunov exponent of a solution v(t; v0) of (1.1) is defined in the following manner

λ(v0) := lim sup
t→∞

1

t
log ‖v(t)‖. (1.2)

Moreover, Lyapunov proved that λ(v0) is finite for every solution with v0 6= 0. Later, through
the works of Furstenberg, Kesten, Oseledets, Kingman, Ruelle, Margulis, Avila and other math-
ematicians, Lyapunov exponents have recently emerged as an important concept in various fields
of Mathematics and Physics, such as linear stochastic systems and stability theory, products of
random matrices and random maps, spectral theory of random Schrödinger operators, smooth
dynamics and translate surfaces; see e.g. [10, 55, 56].

Date: October 17, 2018.
Key words and phrases. Lyapunov exponent, Products of random matrices, GUE statistics, Phase transition.

1



Let’s turn to consider a discrete-time evolution of an N -dimensional real or complex stochastic
system which is described by linear difference equations

v(t+ 1) = Xt+1v(t), t = 0, 1, 2, . . . , (1.3)

then the total evolution is effectively driven by the product of random matrices at time t = M

ΠM = XM · · ·X2X1. (1.4)

The study on products of random matrices can be dated at least from the seminal articles by
Bellman[13] in 1954 and further by Furstenberg and Kesten [28] in 1960, in which classical
limit theorems in probability theory were obtained under certain assumptions when M goes to
infinity. In particular, if X1, X2, · · · , XM are i.i.d. N ×N random matrices, each of which has
independent (and identically distributed) entries with mean zero and variance one, then the
seminal theorem of Furstenberg and Kesten [28, Theorem 2] shows that for any fixed N the
largest Lyapunov exponent defined as

λmax := lim
M→∞

1

M
log ‖ΠM‖ (1.5)

exists with probability 1. Furthermore, all Lyapunov exponents exist by celebrated multiplica-
tive ergodic theorem of Oseledets [46, 49], say,

λk := lim
M→∞

1

2M
log
(
kth largest eigenvalue of Π∗MΠM

)
, k = 1, 2, . . . , N. (1.6)

Here it is worth stressing that the M -dependent eigenvalues on the right-hand side are usually
referred to finite Lyapunov exponents, which are equivalent to singular values of ΠM up to a
one-to-one mapping.

However, usually it’s very hard to find both explicit formulae and effective algorithms of
accurate approximation for the Lyapunov exponents. This was been posed by Kingman [35] as
an outstanding problem in the field. Some noteworthy exceptions occur in the case of N = 2,
see e.g. [16, 40, 41]. For general N , when each Xj is randomly chosen from a finite set of
matrices with positive entries, in a recent work [47] Pollicott solves this problem for the largest
Lyapunov exponent. Another special case is when {Xj} are independent real/complex Ginibre
matrices (that is, with i.i.d. standard real/complex Gaussian entries), which have high interest
in Random Matrix Theory. Then the classical results of Newman [44] (real case, β = 1) and
Forrester [24, 25] (real and complex cases with β = 1, 2) show that the Lyapunov spectrum

λk =
1

2

(
log

2

β
+ ψ

(β
2

(N − k + 1)
))

, k = 1, . . . , N, (1.7)

where ψ(x) denotes the digamma function. Forrester [24, 25] also studied Gaussian random
matrices with correlated entries; for more relevant works, see e.g. [2, 29, 33, 50] and references
therein.

Up to now, the fundamental result about asymptotic behavior for products of random matri-
ces discovered by Furstenberg and Kesten [28] have led to much of great interest in the topic over
the last sixty years, see [15, 10] for the early articles. Recently, significant progresses have been
achieved in the study of products of random matrices, which have important applications in
Schrödinger operator theory [14], in statistical physics relating to disordered and chaotic dynam-
ical systems [17], in wireless communication like MIMO (multiple-input and multiple-output)
networks [54] and in free probability theory [43].

1.2. Universality. Historically, the pioneering work of Furstenberg and Kesten [28] and lots
of subsequent works focused on statistical behavior of singular values for the products such
as Lyapunov exponents, as the number of factors M tends to infinity. However, the more
recent interest in products of random matrices lies in statistical properties of eigenvalues and
singular values as the matrix size N goes to infinity, like a single random matrix. The study of
one single random matrix originated from the seminal works from Wigner, Dyson, Mehta and
others in 1950-60s, and has become a quite active research field named after Random Matrix
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Theory (RMT), which relates to many important branches of Mathematics and Physics; see a
handbook [1], monographs [9, 11, 18, 20, 22, 23, 42, 43, 48, 51, 54] and references therein.

Local statistical properties of eigenvalues in RMT are usually described by certain patterns,
say, Sine, Bessel and Airy kernels. The secret hidden behind can be unveiled through the
repulsion of eigenvalues, which is expected for many randomly disordered systems of the same
symmetry class that have delocalized eigenfunctions. This is referred to as universality in RMT,
which is different from classical Gaussian universality. Most of random matrix ensembles, like
Wigner matrices and invariant ensembles, have been rigorously proved to exhibit universal
phenomena, see e.g. [18, 20, 22] and references therein. As to finite products of large random
matrices, statistical properties have been extensively studied in [6, 7, 8, 26, 30, 34, 36, 37]; see
a recent survey [5] and references therein.

As a typical product like (1.4) with X1, . . . , XM being i.i.d. complex Ginibre matrices of size
N×N , the squared singular values x1, . . . , xN of ΠM , that is, eigenvalues of Π∗MΠM , are proved
to form a determinantal point process with correlation kernel

KN (x, y) =

∫ c+i∞

c−i∞

ds

2πi

∮
Σ

dt

2πi

xty−s−1

s− t
Γ(t)

Γ(s)

(
Γ(s+N)

Γ(t+N)

)M+1

, (1.8)

where c > 0 and Σ is a counter-clockwise contour encircling 0,−1, . . . ,−N + 1; see [7] for the
derivation of the joint eigenvalue density and [37] for the correlation kernel. Note that (1.8)
can be derived from the integral representation in [37] by deforming contours such that the
s-contour lies on the RHS of the t-contour and then shifting variables by N . With the help of
this structure, for any fixed M and as N → ∞, with L. Zhang the two of the present authors
proved the Sine and Airy kernels for singular values of ΠM in [38]. Reversing this order, for any
fixed N and as M → ∞, Akemann, Burda and Kieburg proved in [2] that N finite Lyapunov
exponents for ΠM are asymptotically independent Gaussian random variables.

So a very natural question arises: What will happen when both the matrix size and the
number of factors tend to infinity? Precisely, will the largest Lyapunov exponent undergo a
crossover from Gausssian to Tracy-Widom distribution [53] at some proper scaling of M and
N? Actually, at the end of [2, Sect.5] Akemann, Burda and Kieburg commented “Since the
two limits commute on the global scale while they do not commute on the local one, we claim
that there should be a non-trivial double-scaling limit where new results should show up. In
particular we expect a mesoscopic scale of the spectrum which may also show a new kind of
universal statistics”. Also, in his 2017 list of open problems in random matrix theory and the
theory of integrable systems, P. Deift ended in [19] with “There are many other areas, closely
related to the problems in the above list, where much progress has been made in recent years,
and where much remains to be done. These include: . . ., singular values of n products of m×m
random matrices as n,m→∞, and many others”. It is our main goal in the present paper to
solve this problem when Ginibre random matrices are involved.

1.3. Main results. When both M and N go to infinity, we investigate local statistical prop-
erties of singular values of the product. As to the global property, it was argued in [3] that
the limiting eigenvalue density is a constant up to some proper scaling transform. Since the
largest singular value (or finite Lyapunov exponent) is more important from aspect of RMT
and dynamical systems, we place emphasis on local property of the largest one. For this, we
need to divide three different regimes of the number of product factors and matrix sizes:

I weakly correlated regime as (M + 1)/N →∞;
II intermediate regime as (M + 1)/N → γ ∈ (0,∞); and

III strongly correlated regime of (M + 1)/N → 0.

We also assume that M := MN may depend on N , and N → ∞. Besides, for notational
simplicity, instead of KN we consider the following transformed kernel

K̃N (x, y) = eyKN (ex, ey), x, y ∈ R, (1.9)

which is more relevant to finite Lyapunov exponents.
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Recall that for a determinantal point process with correlation kernel K̃N (x, y), n-point cor-
relation functions are given by

R
(n)
N (x1, . . . , xn) = det[K̃N (xi, xj)]

n
i,j=1, (1.10)

and the gap probability can also be expressed in terms of K̃N (x, y); see e.g. [9, 23, 42]. So we
just state our main results about correlation kernel.

Theorem 1.1 (Normality in case I). Suppose that limN→∞(M+1)/N =∞, and k ∈ N is fixed.
Let xN (k) = N(ψ(1− k +N)− logN) and

g(k; ξ) = N logN + xN (k) + ξ

√
N

M + 1
. (1.11)

(1) If ξ, η are in a compact subset of R, then with the function hN,M+1,k defined in (2.15),

lim
N→∞

√
M + 1

N

hN,M+1,k(η)

hN,M+1,k(ξ)
K̃N

(
M + 1

N
g(k; ξ),

M + 1

N
g(k; η)

)
=

1√
2π
e−

1
2
η2 . (1.12)

(2) Let ε > 0. Then there exists C0(ε) > 0 such that∫ +∞

M+1
N

g(1;C0(ε))
K̃N (, x)dx < ε. (1.13)

(3) Let ε > 0. Then for each k ∈ N there exists Ck(ε) > 0 such that∫ M+1
N

g(k;−Ck(ε))

M+1
N

g(k+1;Ck(ε))
K̃N (x, x)dx < ε. (1.14)

Remark 1.1. Part 1 of Theorem 1.1 means that in the N →∞ limit, there is a single eigenvalue
of the matrix log(Π∗MΠM ) that is at M+1

N g(k; 0), whose fluctuation is normal and higher point

correlation functions vanish, with scaling
√

(M + 1)/N . This Gaussian behaviour has been

conjectured in [31]. Part 2 implies that the eigenvalue at M+1
N g(1; 0) is the largest one almost

surely, and then part 3 further implies that for any fixed k, the eigenvalue at M+1
N g(k; 0) is the

k-th largest one almost surely.

Theorem 1.2 (Criticality in case II). Suppose that limN→∞(M + 1)/N = γ ∈ (0,∞). Let

g(ξ) = (M + 1)

(
logN − 1

2N

)
+ ξ. (1.15)

(1) If ξ, η are in a compact subset of R, then

lim
N→∞

K̃N

(
g(ξ), g(η)

)
= Kcrit(ξ, η; γ), (1.16)

where

Kcrit(ξ, η; γ) =

∫ 1+i∞

1−i∞

ds

2πi

∮
Σ−∞

dt

2πi

1

s− t
Γ(t)

Γ(s)

e
γs2

2
−ηs

e
γt2

2
−ξt

, (1.17)

with Σ−∞ being a contour starting from −∞− iε, looping around {0,−1,−2, . . . } posi-
tively, and then going to −∞+ iε.

(2) Let ε > 0. Then there exists C(ε) > 0 such that∫ ∞
g(C(ε))

K̃N (x, x)dx < ε. (1.18)

Remark 1.2. Part 1 of Theorem 1.2 can be stated alternatively as that, with t0 being the
unique positive solution of ψ′(t0) = γ, after a translation by γt0 we have

e(η−ξ)t0K̃crit(ξ − γt0, η − γt0; γ) = K̂crit(ξ, η; γ), (1.19)
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where

K̂crit(ξ, η; γ) =

∫ 1+i∞

1−i∞

ds

2πi

∮
Σ̂−∞

dt

2πi

1

s− t
Γ(t+ t0)

Γ(s+ t0)

e
γs2

2
−ηs

e
γt2

2
−ξt

. (1.20)

with Σ̂∞ starting from −∞− iε, looping around {−t0,−t0−1,−t0−2, . . . } positively, and then

going to −∞+ iε. With this choice, noting that the Taylor expansion of log Γ(t+ t0)− γt2

2 + ξt
at zero has a vanishing quadratic term, so as γ → 0 its behaviour is better than that of Kcrit,
see Theorem 3.2 below.

Remark 1.3. Part 2 of Theorem 1.2 implies that the largest eigenvalue of log(Π∗MΠM ) is not
too far to the right of 0.

Theorem 1.3 (GUE statistics in case III). Suppose that lim
N→∞

(M + 1)/N = 0. Let

g(ξ) = M logN + log(M + 1) + v(θ) +
ξ

ρN
(1.21)

where ρN will be determined and the parametrization representation

v(θ) = θ cot θ + log
θ

sin θ
, θ ∈ [0, π), (1.22)

the following hold true for ξ, η in a compact subset of R.

(1) When θ ∈ (0, π), let

ρN =
N

M + 1

θ

π
, (1.23)

then

lim
N→∞

e−π(ξ−η) cot θ 1

ρN
K̃N

(
g(ξ), g(η)

)
=

sinπ(ξ − η)

π(ξ − η)
. (1.24)

(2) When θ = 0, let

ρN = 2
1
3

( N

M + 1

) 2
3
, (1.25)

then

lim
N→∞

e
− N
M+1

ξ−η
ρN

1

ρN
K̃N

(
g(ξ), g(η)

)
= KAi(ξ, η), (1.26)

where KAi denotes the standard Airy kernel.

Remark 1.4. For the largest eigenvalue of the deformed GUE ensemble, Johansson has found
a different transition from Tracy-Widom to Gaussian; see [32]. Our phase transition result is
also different from the famous BBP transition introduced in the spiked Wishart matrix by Baik,
Ben Arous and Péché [12]. The soft edge limit in Theorem 1.2 was independently obtained by
Akemann, Burda and Kieburg [3]. Though different in form, our integral representation (1.17)
is believed to be in essence the same as that in [3, Eq(15)]. Besides, we are inspired by [3, Eq
(10)] to study the bulk critical limit in Sect. 3.2.

The rest of this article is organised as follows. In the next Section 2 we prove the main
theorems stated above. In Section 3 we discuss a few relevant questions.

2. Proof of main theorems

Since many occurrences of notation M + 1 are in the proofs of Theorems 1.1-1.3, throughout
Section 2, symbol M stands for M + 1.
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2.1. Proof of Theorems 1.1&1.2. Before the proof of the theorems, we define several func-
tions to be used later. Let N,M be fixed and w be a real parameter. We define function F (t),
depending on N,M,w as

F (t;w) = (logN + w/N)t− log Γ(t+N), (2.1)

where log takes the principal branch. It is easy to see that

F ′(t;w) = (logN + w/N)− ψ(t+N), F ′′(t;w) = −ψ′(t+N). (2.2)

where ψ(t) = Γ′(z)/Γ(z) is the digamma function, such that for z 6= 0,−1,−2, . . .

ψ(z) = −γ0 +

∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
, ψ′(z) =

∞∑
n=0

1

(n+ z)2
, (2.3)

where γ0 is the Euler constant.
We easily see that Reψ′(z) > 0 if arg z ∈ (−π/4, π/4). As w ∈ (−∞,+∞), there is a unique

tw such that

F ′(tw;w) = 0 and tw ∈ (−N,+∞), (2.4)

and we have that

tw depends on w monotonically, tw →∞ as w → +∞ and tw → −N as w → −∞. (2.5)

As dist(z,Z≤0 = {0,−1,−2, . . . }) > 0, by Stirling’s formula (see [45, 5.11.1]), as z → ∞ in
the sector ph(z) ≤ π − φ < π,

log Γ(z) = (z − 1

2
) log z − z + log

√
2π +

1

12z
+O

(
1

z2

)
, (2.6)

we have that

ψ(z)−
(

log z − 1

2z

)
= O

(
1

dist(z,Z≤0)2

)
. (2.7)

Hence we have for w in a compact subset of R,

tw =
1

2
+ w +O(N−1). (2.8)

In the proofs of Theorems 1.1 and 1.2, we need to show that as s = c + iy, the function
ReF (s;w) increases at a high enough speed as y goes upward from 0 to +∞ or downward from
0 to −∞, where c and w are in a compact subset of R. To see it, we note that − ImF ′(c+iy;w),
and

d

dy
ReF (c+ iy;w) = − ImF ′(c+ iy;w) = Imψ(c+ iy +N) = −

∞∑
n=0

Im
1

n+N + c+ iy

= arctan(N−1y)
(
1 +O(N−1)

)
.

(2.9)

In the proofs of Theorems 1.1 and 1.2, we use the following positive oriented contours: For
any a ∈ (−N + 1, 0), Σ−(a) = Σ1

−(a) ∪ Σ2
−(a) ∪ Σ3

−(a) ∪ Σ4
−(a) ∪ Σ5

−, where

Σ1
−(a) = {a− 2− i

4
t | t ∈ [0, 1]}, Σ2

−(a) = {a− 2 + i

4
+

2 + i

4
t | t ∈ [0, 1]},

Σ3
−(a) = {−t+

i

4
| t ∈ [

1

2
− a,N − 1

2
]}, Σ4

−(a) = {t− i

4
| t ∈ [−N +

1

2
, a− 1

2
]},

Σ5
− = {−N +

1

2
− it | t ∈ [−1

4
,
1

4
]}.

(2.10)
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Similarly, for any b ∈ (−N + 1, 1/2), Σ+(b) = Σ1
+(b) ∪ Σ2

+(b) ∪ Σ3
+(b) ∪ Σ4

+(b) ∪ Σ5
+, where

Σ1
+(b) = {b+

2− i
2

t | t ∈ [0, 1]}, Σ2
+(b) = {b+

2 + i

4
− 2 + i

4
t | t ∈ [0, 1]},

Σ3
+(b) = {t− i

4
| t ∈ [b+

1

2
1]}, Σ4

+(b) = {−t+
i

2
| t ∈ [−1,−b− 1

2
]},

Σ5
+ = {1 + it | t ∈ [−1

4
,
1

4
]}.

(2.11)

Proof of Theorem 1.1. First we consider part 1. Define

xN (k) = N(ψ(1− k +N)− logN), such that F ′(t;xN (k)) = 0 is solved by txN (k) = 1− k.
(2.12)

Then

K̃

(
M

N
g(k; ξ),

M

N
g(k; η)

)
=

∫ c+i∞

c−i∞

ds

2πi

∮
Σ

dt

2πi

exp(MF (t;xN (k) + ξ
√
N/M)

exp(MF (s;xN (k) + η
√
N/M)

Γ(t)

Γ(s)

1

s− t
.

(2.13)
Later we apply the change of variables

t = (1− k) + τ
√
N/M, s = (1− k) + σ

√
N/M. (2.14)

We define Σ0(1− k) to be the positive oriented circle centered at 1− k with radius
√
N/M ,

and then divide contour Σ into Σ−(1/2− k)∪Σ0(1− k) if k = 1, and Σ−(1/2− k)∪Σ0(1− k)∪
Σ+(3/2− k) if k = 2, 3, . . . . Then we have that for t on Σ0(1− k), under the change of variable
in (2.14), with

hN,M,k(ξ) = exp(MF (1− k;xN (k) + ξ
√
N/M)), (2.15)

MF (t;xN (k) + ξ
√
N/M) = log hN,M,k(ξ)−

Nψ′(1− k +N)

2
τ2 + ξτ +O(τ3/

√
NM), (2.16)

which holds for all τ = O(N1/8M1/8). Note that for any fixed k, as N →∞, we have Nψ′(1−
k +N)/2→ 1/2.

We let the vertical contour for s be {1 − k + 2
√
N/M + iy | y ∈ R}. (2.16) is a good

estimation if |Imσ| ≤ N1/8M1/8, or equivalently, |Im s| ≤ N
5
8M−

3
8 . Out of this window, we

use the estimate (2.9) to find that for some ε > 0

ReMF (1− k + 2
√
N/M + iy;xN (k) + η

√
N/M) ≥{

ReMF (1− k + 2
√
N/M + iN

5
8M−

3
8 ; ·) + εN−

3
8M

5
8 (y −N

5
8M−

3
8 ) y ≥ N

5
8M−

3
8 ,

ReMF (1− k + 2
√
N/M − iN

5
8M−

3
8 ; ·) + εN−

3
8M

5
8 (−y −N

5
8M−

3
8 ) y ≤ −N

5
8M−

3
8 .

(2.17)

We see that exp
(
MF (s;xN (k) + η

√
N/M

)
grows fast and dominates the Γ(s) term as s→∞

on the vertical contour.
On the other hand, for t on Σ−(1/2− k) and Σ+(3/2− k), we can check that

|exp(MF (t;xN (k) + ξ
√
N/M))| ≤ hN,M,k(ξ)e

−εM
N (2.18)

for some ε > 0. We can find it by checking that the left-hand side of (2.18) attains its maximum
on Σ−(1/2− k) at 1/2− k, and attains its maximum on Σ+(3/2− k) at 3/2− k. We omit the
detail of calculation.

At last, we note that under the change of variables (2.14), we have

Γ(t)

Γ(s)
=
σ

τ

(
1 +O

(√
N

M
max(|σ|, |τ |)

))
,

1

s− t
=

√
M/N

τ − σ
, (2.19)
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and by the standard steepest-descent technique that the integral on the right-hand side of
(2.13) concentrates on s = t = 1− k, and under the change of variables (2.14), we have that as
N,M →∞, the right-hand side of (2.13) becomes(

1 +O(
√
N/M)

)√N

M

hN,M,k(ξ)

hN,M,k(η)

∫ 2+i∞

2−i∞

dσ

2πi

∮
|τ |=1

dτ

2πi

exp(σ2/2− ησ)

exp(τ2/2− ξτ)

1

σ − τ
σ

τ
. (2.20)

Noting that ∫ 2+i∞

2−i∞

dσ

2πi

∮
|τ |=1

dτ

2πi

exp(σ2/2− ησ)

exp(τ2/2− ξτ)

1

σ − τ
σ

τ
=

1√
2π
e−η

2/2, (2.21)

we prove part 1.

To prove parts 3 and 2, we need to estimate K̃N (x, x) where x is between (M/N)g(k + 1; 0)
and (M/N)g(k; 0) in part 3, and x is greater than (M/N)g(1; 0) in part 2. We let

w = N(x/M − logN). (2.22)

Then we have that tw ∈ (−N,+∞) defined by (2.4) is between 1− k and −k in part 3, and is
to the right of 0 in part 2.

We deform contour Σ into Σ−(
√
N/M) in part 2 and Σ−(−k+

√
N/M)∪Σ+(−k+1−

√
N/M),

and in both parts we let the contour for s be the vertical line through tw, where w is related
to x by (2.22). Below we consider part 2 and give a sketch of proof. We omit the argument for
part 3 since it is similar.
x > (M/N)g(1; 0) if and only if x = (M/N)g(1; ξ) with ξ > 0. If ξ > −2, then tw >

√
N/M ,

and the contour for s does not intersect the contour for t. Then for all s ∈ {tw + iy | y ∈ R},
and t ∈ Σ−(

√
N/M) on the contour, the value of∣∣∣∣∣ exp(MF (t;xN (1) + ξ

√
N/M)

exp(MF (s;xN (1) + η
√
N/M)

∣∣∣∣∣ (2.23)

attains its maximum at s = tw and t =
√
N/M , and it vanishes fast as s moves away from tw

or t moves away from
√
N/M . Moreover, as ξ → +∞, the maximum value also vanishes expo-

nentially fast. Hence we conclude that K̃(x, x) vanishes exponentially fast as x = (M/N)g(1; ξ)
and ξ → +∞, by standard techniques of steepest-descent analysis. On the other hand, when
|ξ| is small, we have the approximation in part 1. The exponential decay and the estimate for
small |ξ| case imply part 2. �

Proof of Theorem 1.2. First we consider part 1. With w,w′ in a compact subset of R,

K̃N

(
M(logN+w/N),M(logN+w′/N)

)
=

∫ 1+i∞

1−i∞

ds

2πi

∮
Σ−(1/2)

dt

2πi

exp(MF (t;w))

exp(MF (s;w′))

Γ(t)

Γ(s)

1

s− t
,

(2.24)

where the contour Σ−(1/2) is defined by (2.10). For a fixed w ∈ R, if |t| < N1/4, we have, by
the Taylor expansion of F (t;w) (cf. eqn (2.6)), that

MF (t;w) = MF (0;w) +M(logN − ψ(N) + w/N)t− 1

2
Mψ′(N)t2 +O(N−1/4), (2.25)

and we have

lim
N→∞

M(logN − ψ(N) + w/N) = γ(w +
1

2
), lim

N→∞
Mψ′(N) = γ. (2.26)

So as s ∈ {1 + iy} and t ∈ Σ−(1/2) and s, t = O(N1/4), we have (here o(1) is with respect to
N)

exp(MF (t;w))

exp(MF (s;w′))
=
e
γ
2
s2−γ(w′+1/2)s

e
γ
2
t2−γ(w+1/2)t

(
1 + o(1)

)
. (2.27)
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Next we estimate the integrand when either s or t is not O(N1/4). For s = 1 + iy, by (2.9)
we have similar to (2.17) that there exists ε > 0 such that

ReMF (1 + iy;w′) ≥

{
ReMF (1 + iN

1
4 ) + εN

1
4 (y −N

1
4 ) y ≥ N

1
4 ,

ReMF (1− iN
1
4 ) + εN

1
4 (−y −N

1
4 ) y ≤ −N

1
8 .

(2.28)

Then it dominates Γ(s) as s→∞ on the vertical contour.

On the other hand, as t moves to the left along Σ3
−(1/2)\B(0, N1/4) or Σ4

−(1/2)\B(0, N1/4),
ReF (t, w) decreases monotonically. To see it, we check that on these horizontal contours, the
second derivative

d2

dx2
ReF (x± i/4;w) = −Reψ′(x+N ± i/4) = −

∞∑
n=0

(n+N + x)2 − 1
16

((n+N + x)2 + 1
16)2

< 0, (2.29)

and at the rightmost ends of these horizontal contours, d
dx ReF (x ± i/4;w) > 0 by (2.25). So

|exp(MF (t;w))| decreases monotonically on these horizontal contours to the left. At last, for
t ∈ Σ5

−, we have

ReF (t;w) = −N logN +O(1) < − log(N)− εN = F (0;w)− εN (2.30)

for some ε > 0. Hence the double contour integral (2.24) concentrates on the region s, t ∈
B(0, N1/4), and by approximation (2.27), we have (o(1) is with respect to N)

K̃N

(
M(logN + w/N),M(logN + w′/N)

)
=(

1 + o(1)
)∫ 1+iN1/4

1−iN1/4

ds

2πi

∮
Σ−(1/2)∩B(0,N1/4)

dt

2πi

e
γ
2
s2−γ(w′+1/2)s

e
γ
2
t2−γ(w+1/2)t

Γ(t)

Γ(s)

1

s− t
. (2.31)

It is obvious that if we change N1/4 to be ∞, (2.31) also holds. At last, by changing w,w′ in
the proof by γ−1ξ − 1/2 and γ−1η − 1/2 respectively, we prove part 1.

To prove part 2 we consider for w ∈ R that is not too small,

K̃N

(
M(logN +w/N),M(logN +w/N)

)
=

∫ tw+i∞

tw−i∞

ds

2πi

∮
Σ−(1/2)

dt

2πi

exp(MF (t;w))

exp(MF (s;w))

Γ(t)

Γ(s)

1

s− t
,

(2.32)
where tw is the solution to the equation F (t;w) = 0 in (2.4). Below we assume that w is large
enough, such that by (2.5), the contours for s and t do not intersect.

By argument similar to that in the proof of part 1, we have that as s ∈ {tw + iy | y ∈ R} and
t ∈ Σ−(1/2), the function |exp(MF (t;w))/ exp(MF (s;w))| attains it maximum when s = tw
and t = 1/2. By (2.5), we have that this maximum vanishes as w → ∞. Hence by standard
method of steepest-descent analysis, we find that the integral vanishes fast as w →∞. Since in
the small w case the integral is computed in part 1, we derive part 2 by the fast vanishing of

K̃N (M(logN + w/N),M(logN + w/N)). �

2.2. Proof of Theorem 1.3.

Proof of Theorem 1.3. After change of variables s, t→ sN/M, tN/M , we obtain

1

ρN
K̃N (g(ξ), g(η)) =

1

ρN

N

M

∫ c+i∞

c−i∞

ds

2πi

∮
ΣN

dt

2πi

1

s− t
e
N
M

(
fM,N (s)−fM,N (t)

)
e
N
M

ξt−ηs
ρN (2.33)

where

fM,N (t) =
M2

N
log Γ(N +

N

M
t)− M

N
log Γ(

N

M
t)−

(
(M − 1) logN + logM + v(θ)

)
t

+M2
(

1− (1− 1

2N
) logN − 1

2N
log(2π)

)
+
M

2N
log

M

N
. (2.34)

Here c and ΣN will be properly chosen below.
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In order to choose a proper t-contour, with the notations Σ± as in Lemma 2.1 below, for
small δ > 0 such that δ + θ < π, set

Σ1
± =

{
t ∈ Σ± : {Re{t} ∈ [−C, 1]} ∩ {t : |arg t± θ| < δ}

}
, (2.35)

Σ2
± =

{
t ∈ Σ± : {Re{t} ∈ [−C, 1]} ∩ {t : |arg t± θ| ≥ δ}

}
, (2.36)

and

Σ3
± =

{
t = x± ih−1(−C) : x ∈ [−M +

M

2N
,−C]

}
, (2.37)

Σ4
± =

{
t = −M +

M

2N
± iy : y ∈ [0, h−1(−C)]

}
. (2.38)

Here h−1 denotes the inverse function of h(θ) = θ cot θ, θ ∈ (0, π), and the positive constant C
is sufficiently large such that h−1(−C) > max{1, δ + θ}.

To prove part 1, according to Lemma 2.1 and Lemma 2.2 below, we deform the integral
contours in (2.33) as follows. We choose the s-contour C to be a vertical line passing through
t± = θ cot θ± iθ whenever θ cot θ is not a nonpositive integer; otherwise, this line routes around
(θ cot θ, 0) with a very small circle. We choose the t-contour ΣN as the union of two closed
contours on opposite sides of C, see Fig. 1. Let ΣL (respectively, ΣR) be the vertical bar
connecting the two left (respectively, right) endpoints of Σ1

+ and Σ1
−. Thus, Σ′ := Σ1

+ ∪ ΣL ∪
Σ1
−∪ΣR forms a closed contour and encircles the part of C whose imaginary part lies in (−θ0, θ0),

but does not encircle any pole for fM,N (t). When θ cot θ is an integer, we need to deform ΣL

or ΣR such that it routes around (θ cot θ, 0)with a very small circle. At last, let Σ = ∪4
k=1Σk

±
be an anticlockwise contour.

ΣR

ΣL
0 1

t+

t−

Σ1
+

Σ1
−

Figure 1. Contours of double integrals: Bulk

With these new contours we see from (2.33) that

1

ρN
K̃N (x, y) =

1

ρN

N

M
P.V.

∫
C

ds

2πi

∮
Σ

dt

2πi

(
·
)
− 1

ρN

N

M

∫
C

ds

2πi

∮
Σ′

dt

2πi

(
·
)

:= I1 − I2. (2.39)

Noting that all poles of t-integral come from s ∈ C with Im{s} ∈ (−θ, θ), apply the residue
theorem and we obtain

I2 = − 1

ρN

N

M

∫ t+

t−

ds

2πi
e
N
M

ξ−η
ρN

s
= −sinπ(ξ − η)

π(ξ − η)
eπ(ξ−η) cot θ. (2.40)

On the other hand, combining Lemma 2.1 and Lemma 2.2, we can use the argument of the
steepest decent method to claim the following fact: The Cauchy principal integrals near two

10



points t± give rise to the leading contribution for I1. So, take a Taylor expansion and change
variables, we obtain

I1 ∼ P.V.
2

ρN

N

M

√
M

N

∫ i
√
N/Mδ

−i
√
N/Mδ

ds

2πi

∫ √N/Mδ

−
√
N/Mδ

dt

2πi

1

s− t
e

1
2
f ′′(t+)(s2−t2) = O

(√M

N

)
. (2.41)

Combining (2.40) and (2.41) thus completes the proof of part 1.
Next, we are devoted to verifying the claimed fact. Take the derivative and use the reflection

formula of the digamma function, we see from the asymptotic expansion (2.7) that

f ′M,N (t) = Mψ(N +
N

M
t)− ψ(1− N

M
t) + π cot

N

M
πt−

(
(M − 1) logN + logM + v(θ)

)
∼M(log(N +

N

M
t)− logN)− log(1− N

M
t)− log

M

N
+ π cot

N

M
πt− v(θ). (2.42)

Thus, for any fixed y0 := h−1(−C) > 1 and for t = x+ iy0, when M,N are sufficiently large we
have

∂

∂x
Re{fM,N (t)} ≤M

(
Re{log(N +

N

M
t)} − logN

)
− Re{log(1− N

M
t)} − log

M

N

=
M

2
log
(

(1 +
x

M
)2 + (

y0

M
)2
)
− log

(
(
M

N
− x)2 + y2

0

)
≤ M

2
log
(

(1 +
x

M
)2 + (

y0

M
)2
)
. (2.43)

This shows that, whenever x ≤ −C ≤ − y20
M , we see that

∂

∂x
Re{fM,N (x+ iy0)} < 0. (2.44)

Therefore, as t moves to the right endpoints along {t = x ± iy0 : x ∈ [−M + M
2N ,−C]} with

fixed y0 > 1, Re{fM,N (t)} decreases monotonically.
While, for t ∈ Σ± with Re{t} ∈ [−C, 1], use the Stirling’s formula (2.6) and we see

fM,N (t) = f(t) +O
(

max
(M
N
,

1

M

))
(2.45)

where

f(t) =
1

2
t2 − t log t− v(θ)t+ t. (2.46)

According to Lemma 2.1 below, for any given θ ∈ [0, π), Re{f(t)} obtains its unique minimum
at t+ in the upper half plane (respectively, at t− in the lower half plane).

Combine the two estimates above and we know that there exists ε1 > 0 such that

Re{fM,N (t)− fM,N (t±)} ≥ ε1, ∀t ∈ Σ2
± ∪ Σ3

±. (2.47)

On the other hand, for large M and N and t ∈ Σ4
±, by the Stirling formula we easily see that

there exists ε2 > 0 such that

Re{fM,N (t)− fM,N (t±)} ≥ ε2, ∀t ∈ Σ4
±. (2.48)

Therefore, the claimed fact immediately follows from (2.47), (2.48) and the standard steepest
decent argument.

Now we turn to prove part 2. For δ > 0 small, let

Σlocal =
{

1−
(M
N

)1/3
+ re±i7π/12 : r ∈ [0, δ)

}
. (2.49)

and let Σglobal be the union of two vertical bars, connecting endpoints of Σlocal and Σ±, and the
rest parts of Σ±, see illustration as in Figure 2. Similarly, we define

Clocal =
{

1 +
(M
N

)1/3
+ re±iπ/3 : r ∈ [0, δ)

}
. (2.50)

and Cglobal as the vertical line starting from the endpoints of Clocal to infinity.
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1

Σlocal

Σ+

Σ−

ClocalClocal

Figure 2. Contours of double integrals: Edge

Use similar estimates and the steepest decent method, we know from Lemma 2.1 and Lemma
2.2 that

1

ρN
K̃N (x, y) ∼ 1

ρN

N

M

∫
Clocal

ds

2πi

∫
Σlocal

dt

2πi

1

s− t
e
N
M

(
fM,N (s)−fM,N (t)

)
e
N
M

ξt−ηs
ρN . (2.51)

Using the Taylor expansion of fM,N at s, t = 1, this reduces to

1

ρN
K̃N (x, y) ∼ 1

ρN

N

M

∫
Clocal

ds

2πi

∫
Σlocal

dt

2πi

1

s− t
e
N
6M

(
(s−1)3−(t−1)3

)
e
N
M

ξt−ηs
ρN (2.52)

∼ e
N

M+1
ξ−η
ρN KAi(ξ, η). (2.53)

This thus completes part 2. �

Lemma 2.1. Let f(t) = 1
2 t

2 − t log t− v(θ0)t+ t with θ0 ∈ [0, π) and

Σ± = {t = g(±θ) : θ ∈ [0, π)}, g(θ) =
θ

sin θ
eiθ, (2.54)

then Re{f(t)} attains its unique minimum over Σ+/Σ− at the point g(θ0)/g(−θ0).

Proof. Note that v(θ), defined in (1.22), is a strictly decreasing function of θ ∈ (0, π), we see
from θ − sin θ > 0 that

d

dθ
Re{f(g(θ))} =

(
v(θ)− v(θ0)

)cos θ sin θ − θ
sin2 θ

{
< 0, θ ∈ (0, θ0),

> 0, θ ∈ (θ0, π).
(2.55)

Moreover,

d2

dθ2
Re{f(g(θ))}

∣∣∣∣
θ=θ0

= Re

{(
1− 1

g(θ0)

)(cos θ0 sin θ0 − θ0

sin2 θ0
+ i
)2
}

=
(

1− cos θ0 sin θ0

θ0

)((cos θ0 sin θ0 − θ0

sin2 θ0

)2
+ 1
)
> 0 (2.56)

Combining (2.55) and (2.56) implies that θ0 is the unique minimum point of Re{f(t)} over Σ+.
Similarly, −θ0 is the unique minimum point of Re{f(t)} over Σ−. �

Lemma 2.2. With the same notation as in Lemma 2.1, let

Cθ0 =

{
θ0 cos θ0

sin θ0
+ iy : y ∈ R

}
, (2.57)

then Re{f(t)} with t ∈ Cθ0 has only two (one) maximum points θ0 cos θ0
sin θ0

±iθ0 for θ0 > 0 (θ0 = 0).
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Proof. Without loss of generality, we consider y > 0. Since

∂

∂y
Re{f(x+ iy)} =


−y + arctan y

x , if x > 0,

−y + π
2 , if x = 0,

−y + arctan y
x + π, if x < 0,

(2.58)

we see know that it is a strictly decreasing function of y. The lemma immediately follows from

∂

∂y
Re
{
f(
θ0 cos θ0

sin θ0
+ iy)

}∣∣∣
y=θ0

= 0. (2.59)

�

3. Further discussion

In this last section we discuss a few relevant questions and add some comments.

3.1. Largest Lyapunov exponent. The critical correlation kernel K̂crit(x, y; γ) defined as in
(1.20) admits other forms which may be more convenient for application. If we introduce two
families of functions

f−1(x) =

∮
Σ̂−∞

dt

2πi
Γ(t+ t0)e−

γ
2
t2+xt, g−1(x) =

∫
1+iR

ds

2πi

1

Γ(s+ t0)
e
γ
2
s2−xs (3.1)

and for k = 0, 1, . . . ,

fk(x) =

∮
Σ̂−∞

dt

2πi

Γ(t+ t0)

t+ t0 + k
e−

γ
2
t2+xt, gk(x) =

∫
1+iR

ds

2πi

1

(s+ t0 + k)Γ(s+ t0)
e
γ
2
s2−xs, (3.2)

then the critical kernel can be rewritten as

K̂crit(x, y; γ) =

∫ ∞
0

f−1(u+ x)g−1(u+ y)du, (3.3)

or an integrable form

K̂crit(x, y; γ) =
1

x− y

(
−γf−1(x)g−1(y) +

∞∑
k=0

fk(x)gk(y)

)
. (3.4)

These can be derived from the simple facts

1

s− t
=

∫ ∞
0

e−(s−t)udu, (x− y)ext−ys =
( ∂
∂t

+
∂

∂s

)
ext−ys, (3.5)

and the series expansion of the digamma function(cf. [45, 5.7.6]).
If we strengthen the result in Theorem 1.2 from uniform convergence to the trace norm

convergence of the integral operator with respect to the critical kernel K̂crit(x, y; γ) in (1.20),
then as a direct consequence the limiting distribution of the largest Lyapunov exponent (or the
largest singular value), after rescaling, converges to a new limit distribution which admits a
Fredholm determinant expression

Fcrit(x; γ) = 1 +
∞∑
k=1

(−1)k

k!

∫ ∞
x
· · ·
∫ ∞
x

det[K̂crit(yi, yj ; γ)]ki,j=1dy1 · · · dyk, (3.6)

see [9, Sect.3.4] for more details about Fredholm determinants. Since the proof of trace norm
convergence is only a technical elaboration that confirms a well-expected result, we do not give
the detail.
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3.2. Criticality in the bulk. Except for the critical scaling limit at the soft edge, Akemann,
Burda and Kieburg investigated local bulk statistics in the critical regime and obtained a new
interpolating kernel in [3]. Inspired by their result [3, Eq (10)](see [4] for more details), we
consider the bulk critical limit and give a different derivation.

In order to state the main theorem in this subsection, we need some notations. Recall that
the Jacobi theta function, defined as

ϑ(z; τ) =
∞∑

n=−∞
eπin

2τ+2πinz, Im{τ} > 0, z ∈ C, (3.7)

admits an integral representation

ϑ(z; τ) = i

∫ i
2

+∞

i
2
−∞

du eπiτu
2 cos(2πuz + πu)

sinπu
, (3.8)

which can be derived by applying the Cauchy residue theorem. Besides, let [x] be the greatest
integer less than or equal to x.

Theorem 3.1 (Bulk criticality in case II). Suppose that limN→∞(M + 1)/N = γ ∈ (0,∞). For
any given u ∈ (0, 1), let γ′ = γ/(1− u) and

g(ξ) = M logN(1− u) + log
1− u
u

+
M + 1

N(1− u)

(
Nu− [Nu] +

1

2

)
+ ξ. (3.9)

With the kernel K̃N in (1.9), if ξ, η are in a compact subset of R, then

lim
N→∞

e(g(ξ)−g(η))[Nu]K̃N

(
g(ξ), g(η)

)
= K

(bulk)
crit (ξ, η; γ′), (3.10)

where

K
(bulk)
crit (ξ, η; γ′) =

1√
8πγ′

∫ 1

−1
dw e

1
2γ′ (πw−iη)2

ϑ
( 1

2π
(πw − iξ); i

2π
γ′
)
. (3.11)

Proof. Use the Euler’s reflection formula for the gamma function and the identity

sinπs

sinπt
=

sinπ(s− t)
sinπt

eiπt + e−iπ(s−t), (3.12)

we rewrite K̃N in (1.9) as

K̃N (x, y) =

∫
ds

2πi

∮
dt

2πi

ext−ys

s− t
Γ(1− s)
Γ(1− t)

(
Γ(s+N)

Γ(t+N)

)M+1(sinπ(s− t)
sinπt

eiπt +
eiπt

eiπs

)
. (3.13)

Note that the second integral in the above summation vanishes since there is no pole for t-
function, we thus arrive at

K̃N (x, y) =

∫
ds

2πi

∮
dt

2πi

sinπ(s− t)
s− t

eiπt

sinπt

e−ysΓ(1− s)
e−xtΓ(1− t)

(
Γ(s+N)

Γ(t+N)

)M+1

. (3.14)

Make change of variables s→ s− [Nu], t→ t− [Nu] and we obtain

K̃N (g(ξ), g(η)) =

∫ i∞

−i∞

ds

2πi

∮
ΣN

dt

2πi

sinπ(s− t)
s− t

eiπt

sinπt

efN (η,s)

efN (ξ,t)
, (3.15)

where

fN (ξ, t) = −tg(ξ) + log Γ(1 + [Nu]− t) + (M + 1) log Γ(N − [Nu] + t), (3.16)

and ΣN is a rectangular contour with four vertexes 1
2 + [Nu]± i

2 and −N + [Nu] + 1
2 ±

i
2 .

We will make use of the asymptotic expansion (see [45, 5.11.8] and cf. (2.6) for the uniform

convergence condition) for large z and slowly growing h, say, h = O(z1/4),

log Γ(z + h) ∼ (z + h− 1

2
) log z − z + log

√
2π +

∞∑
k=2

(−1)kBk(h)

k(k − 1)zk−1
, (3.17)
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where Bk(h) is the Bernoulli polynomial of degree k and in particular B2(h) = h2 − h + 1/6.

Whenever t = O(N1/4), noting the assumptions and the cancelation of the coefficient of t one
gets

fN (ξ, t)− fN (ξ, 0) = −tg(ξ)− t log[Nu] +O
(
N−1/2

)
+ (M + 1)

(
t log(N − [Nu]) +

B2(t)−B2(0)

2(N − [Nu])
+O

(
N−5/4

))
=

1

2
γ′t2 − ξt+O

(
N−1/4

)
. (3.18)

Similarly, one has for |s| ≤ N1/4

fN (η, s)− fN (η, 0) =
1

2
γ′s2 − ηs+O

(
N−1/4

)
. (3.19)

So as s ∈ iR and t ∈ ΣN and s, t = O(N1/4), we see from fN (ξ, 0) = fN (η, 0) that

efN (η,s)

efN (ξ,t)
=
e
γ′
2
s2−ηs

e
γ′
2
t2−ξt

(
1 + o(1)

)
. (3.20)

Next, we estimate the integrand when either s or t is not O(N1/4). For s = iy,

d

dy
Re fN (η, iy) = Imψ(1 + [Nu]− iy)− Im

{
(M + 1)ψ(N − [Nu] + iy)

}
= −

(
arctan

y

1 + [Nu]
+ (M + 1) arctan

y

N − [Nu]

)(
1 +O(N−1)

)
. (3.21)

Thus, there exists ε > 0 such that

Re{fN (η, iy)− fN (η, 0)} ≤ −εN1/4(|y| −N1/4), |y| ≥ N1/4. (3.22)

Then it dominates the factor sinπ(s− t) as s→∞ on the vertical contour.

On the other hand, as t moves to the right endpoint along {x± i
2 : x ∈ [−N+[Nu]+ 1

2 ,−N
1/4]}

or to the left endpoint along {x± i
2 : x ∈ [N1/4, [Nu]+ 1

2 ]}, Re fN (η, t) decreases monotonically.
To see it, we check that on these horizontal contours, the second derivative

d2

dx2
Re fN (ξ, x± i

2
) = Re

{
ψ′(1 + [Nu]− (x± i

2
)) + (M + 1)ψ′(N − [Nu] + (x± i

2
))
}

=

∞∑
n=0

(
(n+ 1 + [Nu]− x)2 − 1

4

((n+ 1 + [Nu]− x)2 + 1
4)2

+ (M + 1)
(n+N − [Nu] + x)2 − 1

4

((n+N − [Nu] + x)2 + 1
4)2

)
> 0. (3.23)

Take the first derivative, we know from (3.18) that for large N

d

dx
Re fN

(
ξ,N1/4 ± i

2

)
> 0,

d

dx
Re fN

(
ξ,−N1/4 ± i

2

)
< 0. (3.24)

So Re fN (ξ, x ± i
2) decreases monotonically on these horizontal contours to the endpoints

±N1/4 ± i
2 .

At last, on the two vertical lines of ΣN , applying the Stirling formula leads to for any
−1/2 ≤ y ≤ 1/2

Re
{
fN (ξ,−N + [Nu] +

1

2
+ iy)− fN (ξ, 0)

}
= (M + 1)N(1− u) +O

(
N logN

)
, (3.25)

and

Re
{
fN (ξ, [Nu] +

1

2
+ iy)− fN (ξ, 0)

}
= (M + 1)N(−u− log(1− u)) +O

(
N logN

)
. (3.26)

The integrals over them are thus negligible.
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Combine these estimates and we know that the double integral (3.15) concentrates on the

region of s, t = O(N1/4), that is,

e(g(ξ)−g(η))[Nu]K̃N (g(ξ), g(η)) ∼(∫ iN1/4

iN1/4

ds

2πi

∫ −N1/4+ i
2

N1/4+ i
2

dt

2πi
+

∫ iN1/4

iN1/4

ds

2πi

∫ N1/4− i
2

−N1/4− i
2

dt

2πi

)
sinπ(s− t)

s− t
eiπt

sinπt

e
γ′
2
s2−ηs

e
γ′
2
t2−ξt

. (3.27)

This further gives us

lim
N→∞

e(g(ξ)−g(η))[Nu]K̃N

(
g(ξ), g(η)

)
= K

(bulk)
crit (ξ, η; γ′) :=(∫ i∞

i∞

ds

2πi

∫ i
2
−∞

i
2

+∞

dt

2πi
+

∫ i∞

i∞

ds

2πi

∫ − i
2

+∞

− i
2
−∞

dt

2πi

)
sinπ(s− t)

s− t
eiπt

sinπt

e
γ′
2
s2−ηs

e
γ′
2
t2−ξt

. (3.28)

Use first the simple fact that

sinπ(s− t)
s− t

=
1

2π

∫ 1

−1
dw e−iπ(s−t)w, (3.29)

and then integrate out variable s, we have

K
(bulk)
crit (ξ, η; γ′) =

√
π

8

∫ 1

−1
dw e

(πw−iη)2
2γ′

(∫ − i
2

+∞

− i
2
−∞

dt

2πi
−
∫ i

2
+∞

i
2
−∞

dt

2πi

)
eiπt

sinπt
e−

γ′
2
t2+ξt. (3.30)

Finally, changing t to −t in the t-integral over the line − i
2 +R and using (3.8), we arrive at the

desired formula (3.11).
We thus complete the proof. �

Remark 3.1. Our expression form for the critical limit in the bulk (3.11) is actually the same
as that in [3, Eq (10)], just by noting that the summation in [3, Eq (10)] can simplify to an
integral in terms of the Jacobi theta function. Besides, as γ′ → 0 one can recover the Sine
kernel; see [3, Eq (12)].

3.3. Transition from critical kernel. The parameter γ is defined as the limit ratio of M + 1
and N , so as γ → 0,∞, we expect the Tracy-Widom (Airy kernel) and Gaussian phenomenon
respectively. We also discuss a transition from the soft edge to bulk critical limit.

Theorem 3.2. Let t0 > 0 be the unique solution of ψ′(t0) = γ, the following hold true uniformly
for x, y in a compact subset of R:

lim
γ→∞

ex−y
√
γK̂crit

(√
γ(x− 1),

√
γ(y − 1); γ

)
=

1√
2π
e−

1
2
y2 (3.31)

and

lim
γ→0

2−
1
3γ

2
3 K̂crit

(
− log t0 + 2−

1
3γ

2
3x,− log t0 + 2−

1
3γ

2
3 y; γ

)
= KAiry(x, y). (3.32)

Proof. As to (3.31), after change of variables s 7→ (s − 1)/
√
γ and (t − 1) 7→ t/

√
γ the kernel

(1.20) becomes

ex−y
√
γK̂crit

(√
γ(x− 1),

√
γ(y − 1); γ

)
=

∫
1
2

+iR

ds

2πi

∮
C−∞∪C0

dt

2πi

1

s− t
Γ( t−1√

γ + t0 + 1)

Γ( s−1√
γ + t0 + 1)

s− 1 +
√
γt0

t− 1 +
√
γt0

e
1
2
s2−ys

e
1
2
t2−st

. (3.33)

Here C−∞ denotes a counterclockwise contour encircling the interval (−∞,−1/2), starting at
and returning to (−1/2, 0), while C0 is a small circle around the origin.

As γ →∞, one sees from ψ′(t0) = γ that

t0 =
1
√
γ

(
1 +O

( 1
√
γ

))
,
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cf. [45, 5.7.4]. Thus, by taking limit in (3.33) only the integral over C0 gives us a leading term,
which further results in the desired formula.

Next, we turn to (3.32). Change s, t to 2
1
3γ−

2
3 s, 2

1
3γ−

2
3 t and we rewrite (1.20) as

2−
1
3γ

2
3 K̂crit

(
− log t0 + 2−

1
3γ

2
3x,− log t0 + 2−

1
3γ

2
3 y; γ

)
=

∫
ΣL

ds

2π

∮
ΣR

dt

2πi

1

s− t
ext−ysefγ(s)−fγ(t), (3.34)

where

fγ(t) = − log Γ(log t0 + 2
1
3γ−

2
3x) + (2γ)−

1
3 t2 + 2

1
3γ−

2
3 t log t0. (3.35)

Here we have chosen a clockwise contour ΣR := {ye±i
π
3 : y ≥ 0} and a counterclockwise contour

ΣL := {ye±i
2π
3 : y ≥ 0}.

As γ → 0, it’s easy to see from the relation ψ′(t0) = γ that t0 →∞ and further

γ =
1

t0
+

1

2t20
+O

( 1

t30

)
, (3.36)

cf. [45, 5.15.1]. The Taylor expansion for the gamma function (2.6) gives us

fγ(t) = t0 − (t0 −
1

2
) log t0 − log

√
2π + 2

1
3γ−

2
3 t+ (2γ)−

1
3 t2

− (t0 −
1

2
+ 2

1
3γ−

2
3 ) log

(
1 + 2

1
3γ−

2
3
t

t0

)
+O

( 1

t0 + 2
1
3γ−

2
3 t

)
= t0 − (t0 −

1

2
) log t0 − log

√
2π +

1

3
t3 + o(1). (3.37)

Combine the similar result for fγ(s) over ΣL and we thus complete the proof of (3.32). �

We next turn to the transition from the kernels Kcrit in (1.17) to K
(bulk)
crit in (3.11).

Theorem 3.3. Let k be a positive integer k, we have for any x, y in a compact subset of R

lim
k→∞

ek(x−y)Kcrit

(
− γk − log k + x,−γk − log k + y; γ

)
= K

(bulk)
crit (x, y; γ). (3.38)

Proof. We proceed in the similar procedure as the proof of Theorem 3.1.
Let g(x) = −γk− log k+ x, for simplicity. Make change of variables s→ s− k, t→ t− k, as

in Theorem 3.1 we obtain

ek(x−y)Kcrit(g(x), g(y)) =

∫ i∞

−i∞

ds

2πi

∮
Σk

dt

2πi

sinπ(s− t)
s− t

eiπt

sinπt

efk(y,s)

efk(x,t)
, (3.39)

where

fk(x, t) = log Γ(1 + k − t) +
1

2
γt2 − (x− log k)t, (3.40)

and Σk is a contour starting from −∞− iε, looping around {k, k− 1, k− 2, . . . } positively, and
then going to −∞+ iε.

Whenever t = O(k1/4), applying the Stirling formula gives rise to

fk(x, t)− fk(x, 0) =
1

2
γt2 − xt+O

(
k−1/4

)
. (3.41)

As in the proof of Theorem 3.1, we can prove that the double integral concentrates on the region
of s, t = O(N1/4) and have a limiting kernel defined in (3.28). �

17



3.4. With different sizes. When each Xj is a complex Ginibre matrix of size (νj + N) ×
(νj−1 + N) with ν0 = 0 and ν1, . . . , νM ≥ 0, the eigenvalues of log

(
Π∗MΠM

)
with the product

ΠM in (1.4) also form a determinantal point process with correlation kernel

K̃ ′N (x, y) =

∫ c+i∞

c−i∞

ds

2πi

∮
Σ

dt

2πi

ext−ys

s− t
Γ(t)

Γ(s)

M∏
j=0

Γ(s+ νj +N)

Γ(t+ νj +N)
, (3.42)

see [37]. In this general case, all Lyapunov exponents can be expressed as certain time average

λk = lim
M→∞

1

2(M + 1)

M∑
j=0

ψ
(
νj +N − k + 1

)
, k = 1, . . . , N, (3.43)

whenever the limits exist; see [29].
We believe that our main results hold true in this rectangular case, at least in the critical

regime.

Theorem 3.4. Suppose that

lim
N→∞

M∑
j=0

1

νj +N
= γ ∈ (0,∞), (3.44)

let t0 be the unique positive solution of ψ′(t0) = γ and LN =
∑M

j=0 log(νj + N), then for any
ξ, η in a compact subset of R

lim
N→∞

eηt0

eξt0
K̃ ′N

(
LN + γ(t0 −

1

2
) + ξ, LN + γ(t0 −

1

2
) + η

)
= K̂crit(ξ, η; γ). (3.45)

Proof. Following the same argument as that in Theorem 1.2, we can complete the proof. �

3.5. Open questions. As discussed in the introduction, the product of M random matrices
of size N ×N relates classical law of large numbers and central limit theorems, and Lyapunov
exponents when M → ∞, to RMT statistics when N → ∞. As both M and N go to infinity
such that (M + 1)/N → γ ∈ (0,∞), there is a phase transition phenomenon as observed in
Theorem 1.2 and [3]. These draw us to conclude this last section with a few questions which
are well worth considering.

Question 1. Find an explicit form for the distribution Fcrit(γ;x) defined by (3.6) as in the
Tracy-Widom distribution; cf. [53].

Question 2. Consider the product of real Gaussian random matrices and prove a phase tran-
sition from GOE statistics to Gaussian. Furthermore, find an explicit interpolating process
associated with the largest Lyapunov exponent.

Question 3. Prove the phase transition phenomenon for the product of truncated unitary/orthogonal
matrices; see [25] and [34].

Question 4. Verify Theorems 1.1-1.3 for singular values of products of non-Hermitian random
matrices with i.i.d. entries under certain moment assumptions. This is one of the most chal-
lenging and difficult problems related to infinite products of large random matrices; see [21, 52]
or [22] for a significant breakthrough on Wigner matrices.
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