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1. Introduction

The Airy process can be defined as the limit of the Dyson Brownian motion, as we are going to do later. However, it also appears in
various statistical physical models, such as the polynuclear growth process [1,2] and the Domino tiling model [3].! Since the Airy process
is stationary with continuous sample paths [1], we can pick any time t and consider the gap probability that all particles are in (—o0, u),
denoted by P(u), and find that the probability is given by the GUE Tracy-Widom distribution [4]

P(u) = e i 6-wa 0

where q(s) is the solution of the Painlevé Il equation
e—(2/3)s3/2

q'(s) =s54(5) +2¢°(s),  q(s) = | 2. /msV/

v —s/2 fors - —oo.

In their study of the joint gap probability for several times of the Airy process, Prahofer and Spohn [1] posed the problem to find a PDE
for the joint gap probability. Adler and van Moerbeke [5] solved the problem for the 2-time case, and assuming a plausible conjecture of
the boundary condition, got the asymptotic expansion of the probability function P(t, u, v), which is the probability that all particles are
in (—oo, u) initially and in (—oo, v) after a time t. Their solution was obtained by a previous result of theirs on the spectrum of coupled
random matrices [6]. They regarded the joint distribution for the Dyson Brownian motion of 2-time as a t function of the two-Toda lattice,
and construct a PDE with variables in times and boundary points of the Dyson Brownian motion as a consequence of identities for ©
functions and Virasoro identities specific to the situation. Then they got the PDE for the Airy process by taking the limit.

This paper generalizes their result to the multi-time case, and the technical heart is the same identity for t functions, although in the
generalized case we need more elaborate work to fit differential operators in times and boundary points of the Dyson Brownian motion
into the structure of two-Toda 7 functions.

After the description of the problem, we state the PDEs for both the Dyson Brownian motion with finite number of particles and its
limit, the Airy process with infinitely many particles, and an example for the 3-time (m = 2) case for the Airy process. Section 2 derives
the result for the Dyson process and Section 3 derives the result for the Airy process by taking a limit.

for s — oo,

1.1. Description of the model

The free Brownian motion process is determined by the transition probability distribution

P(t, X, X) ! -
6X,X) = ———e Z/F |
JQmt)/B

E-mail address: wangdong@brandeis.edu.
1 The definition of the Airy process in this paper is slightly different from the definition in these papers. See Remark 2.
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where X and X are initial and terminal coordinates of the particle, and B is the diffusion constant. The probability distribution P(t, X, X),
as a function of t and X, satisfies the diffusion equation

P 1 9
at 2B 09x2
If we add a harmonic potential pX?/2 to the process, then the probability distribution P(t, X, X) satisfies (see e.g. [7])
N I o0 | P
ot |280x  ax. PV

and the process is determined by (¢ = e™**)

_ 1 _X=cX)?
P(t,X,X) = ———e -/,
7(1=c?)
B

While the free Brownian motion process is dispersive, the Brownian motion process in the harmonic potential well has a stationary
distribution

e,pﬂ;@
Ne

Now we can define the Ornstein-Uhlenbeck process [8] of an n x n Hermitian matrix B, in which all the n? real variables - n for real
diagonal entries, n(n — 1)/2 for the real parts of off-diagonal entries, and the other n(n — 1)/2 for the imaginary parts of them - are in
independent Brownian motion in harmonic potential wells. The p for them is uniformly 1, and 8 is 1 for the n diagonal variables and 2 for

P(X) =

the n(n — 1) off-diagonal variables. Therefore fori,jin {1, ..., n},(c = e™*)
_ 1 _ Bji—cBy)?
Pi(t, Bij, Bj) = ———=e 1 ,
Jr-)
. 1 G
Pijg)a(t, %BU’ ERBU) = —— ¢ (1-c2)/2
(1 —c?)/2
Pij:;(t, SBU, SB,‘]‘) ——— RV
7(1—1c2)/2

and we can write the joint transition probability distribution as 2

n -1 B2
_ C _ Tr(B—cB)
— ) o op) — T
Pt.B.B)=]]Pi [] (PimPin)= ot
i=1 1<i<j<n
We consider the multi-time transition function with the initial state By at t; = 0, the terminal state B, and a series of intermediate
states By, ..., B;,_1, such that the time between state By and B; is t;. If we denote
0 i=0,
Si= 14 i=1,
ti—tiy i=2,...,m,
and
¢ =e",
then

2
m oy Bi=GiBi—1)

P(t1. ... tm:Bo,....Bn) =C"'[]e -
i=1

The Ornstein-Uhlenbeck process has a stationary distribution
P(B) = Cle T, (1)

Since the Ornstein-Uhlenbeck process is invariant under the unitary transformation, we define the process of the eigenvalues as the
Dyson Brownian motion process [9], whose multi-time transition probability distributionis (0 =ty < t; <, -+, < ty)

P(ty, ..., tm; A9, ..., ™) = The transition probability of the n x n Hermitian matrix with eigenvalues initially
A =02 A®) and A D after time ¢, A2 after time t,, ..., and A™ after the total time t.

2 Through out this paper, C stands for various constants, which we do not bother to write down explicitly.
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If we change the coordinates of the R" space of n x n Hermitian matrices in to the eigenvalue-angle coordinates A1, ..., A, 61, . . ., Ban—1),
with the Jacobian identity (see e.g. [10])
n n(n—1)
[T [] (d%epdSxyp) =V ]_[ d [ de.
i=1 1<i<j<n i=1 i=1
where V(1) = [];;_j<, (A — })) is the Vandermonde, we find the explicit formula for P(ty, ..., tm; A0 Ay,

, m T (B(A(i).9(i>),qg(;x(i—1).g(l'—l))> m m
—Ir A .
Pt tnin® ™ = ¢ [ [T [Tvao?Tao®.
i=1 i=1 i=1

where 0© appears in the integral but is not relevant to the result, since the transition probability is independent of 8 for the unitary
invariant property.
By the Harish-Chandra-Itzykson-Zuber (HCIZ) formula [11]

/ eTr(XUYUil)dU _c det(e¥) ’
un) V)V (©y)
where X = diag(xy, ..., x,)and Y = diag(ys, ..., y,) are diagonal matrices, we can evaluate the multi-time transition probability density

das

=1

Zflz 2=, 0
P(ty, ..., t AQ, ... AM) = V(A(O)) V(M’"))Hdet(e < f)

2 n 2 ? [ 2
- Z*(O) m—1 _ 12+ H—21 ZA() - Zl(m)
e e ’Cm i= .

Xelcllll || =i -y

=1

If we take the initial state with eigenvalues A© from the stationary distribution (1), which is

02

POy = V(A(O)) e =1
We get the multl—tlme correlation function in the stationary Dyson process

P(ty, ... .t A9, LA™y = POOYP(ty, ..., A QLA™

=1 I=1

2c, (=1, () 1 02 m-1 _( 1 Cix1 ) 2 1 (m)2
A A -1 { S+ Y S W o Y
V(A<0))V(A(’">)| |det( ' )e AT T e VT e TR

If we want to find the joint gap probability that all A{"’s are in U® = (a{’,ay) U--- U (ay) ;. ay), with —o0 < af < @} < af

<---<a§'r) <oo,forl=0,1,...,mandi=1,...,n, whichis

0 1
BN bt 0 0) = / / Pt ot 2, M"”)]"[]"[dx“ )
U@ sxym? 1=0 k=
Dyson 0) m) 0] (O]
we can simplify it by the fact that P," (t1, ..., tm; a;, .. azT ) is symmetric with respectto A ’, ..., A, for any [, and get
1
BNt a)) = - / / Ve o)
C VO ...xymn
2.2
1 )L(O)Zm 1 _ 1f:fz+1 (l)z 15 ,m?2 m 2cz u (r 1) (1) m n
I=1 I=1 =0 k=
Dyson (1)

We are going to give a PDE satisfied by log P,”™" with variables t; and a;
The Airy process can be defined as the limit of the Dyson process at the edge [5]. Asn — oo, we can prove that the right-most particle
in the Dyson process is almost surely around ~/2n with the fluctuation scale n'/ [1,5]. If we take the rescaling

i =n"y, (3)
h =200 — v2n) 4)
D = 2@ — 2, (5)
then for fixed f; and a(l) Dysm converges to a function defined by the Fredholm determinant of a matrix integral operator [12,13,1,2]
lim POYON| s =PAY(E, . Eeray, L a) = det (T — O K] X 1<ijzm) - (6)

oV =vanra jvan1/6)
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where y[ is the indicator function defined as

f
0 te azi_1, ayi),
ch(t) — ILZJ( 2i—1 21)

1 otherwise,

and (Ai stands for the Airy function)
o0
/ Ai(x + 2)Ai(y + z)dz ifi =},
0Oo o
Ki(x.y) = / e 2GWA(x + 2)AI(y +2)dz  ifi > ],
0

0 — -

— / eGDAI(x + 2)Ai(y + 2)dz  ifi <.
—0oQ

Then we can define the Airy process, which contains infinitely many particles, by the multi-time joint gap probability (6). Furthermore,

we are going to give a PDE satisfied by t with variables t; and a(l)

Remark 1. To make the definition (6) meaningful, we need aa)

side is not well defined.

to be —oo for all I. Otherwise the left-hand side of (6) is 0 and the right-hand

Remark 2. We should emphasis a subtle difference between definitions. In this paper, we regard the Airy process as a limiting process of
the n-particle Dyson Brownian motion as n — oo. Thus in the Airy process there are infinitely many particles. However, in the original
definition of the Airy process in [1], it is defined as the process of the rightmost particle (whose existence is proved in [1]) among the
infinitely many particles, and the co-particle process, which we call the Airy process, is called the ensemble of world lines of the Airy field.
For details see Section 4 of [ 1], especially the definition 4.2. Most papers follow the definition in [1], e.g. [2,3], but in [5] our version of the
definition of the Airy process is implicitly used, which is natural because in [5] the Sine process is studied in parallel, and the Sine process
is another limiting process of the n-particle Dyson Brownian motion as n — 00, and has infinitely many particles. Although we follow the
convention in [5], the PDE we get still solves the problem posed in [1,2].

1.2. Notational convenience

Throughout this paper, parentheses (. ..) always include numbers and functions; brackets [. . .] always include operators; braces {. . .}
are always for Wronskians: {f, g}p = gDf — fDg, where D is a differential operator.

1.3. Statement of main results

With notations defined in Section 1.1, we define differential operators (I =0, 1, ..., m)
2r; 9 2r o 9
pil — , D2 — a! ’
2 B v
0) U] U] 0 _ (U]
ifall a;” are finite; otherwise we drop the a;” (resp. Oy, ) part if a; —o00 (resp. Oy, = o0). Then we denote

m
_ Ze_qu’ (7)
1=0

B =) el ®)
=0
Z e—zr,Dl 2 + Z(l —Zr,) e72tm, (9)
B, = Xm: e?=tmph? 4 i‘(ez“ﬁfm) - e*Z‘m)i — e 2m, (10)
=0 = oty

Now we state

Theorem 1 (Dyson Brownian Motion). Given ty, ..., ty, the logarithm of the joint gap distribution for the stationary Dyson Brownian motion
PRV defined in (2) (abbreviated as log P,) satisfies a third order non-linear PDE in times and boundary points of U®
By Aq log]P’n _ 3 Ay B log]P’n
U B A; logP, + 2ne—tm ' A, B, log P, + 2ne—tn’

(11)
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Similarly with the notations
m
p=0
1=0

m
Dy =) (tn—t)D",
1=0

m
Dig = Z D",
1=0

m
D1 =Dy — Dr= Z(tm —2t)D",
=0

m
Dy =) ((tm — 1) + )D",
=0

m
D3 =) ((tn—t)* — )D",
=0
m

=0

m
& =) (tm —24)D"2,

ao

2
!

3
T = lel:t,(tm — g

we state the result for the Airy process

2
Il

0
t=——,
7 at

Theorem 2 (Airy Process). Given tq, ..., ty, the logarithm of the joint gap probability for the Airy process PA"Y defined in (6) (abbreviated as
log P) satisfies a third order non-linear PDE in times and boundary points of U®

D261+ D3 + T3] 10gP — DD1[E + Dy + T11l0gP — 2D, D1rD; log P = {D? log P, DD, log P} o. (12)

In the case of m = 1, our results agree with those in [5]. Especially, if U¥ = (oo, u), UV = (o0, v) and denote t; = t, then the result
for log PAY(t; u, v) is

Corollary 1 ([5]). The logarithm of the 2-time joint gap probability for the Airy process PAY (t; u, v) (abbreviated as log IP) satisfies a third-order
non-linear PDE in variables u, v and t

wowl Y I IR SR N P
v—u)|—+ — — - — | = ——— 0
au " 9v | gudv a2 a2 | ot ou_ ov | oudv | 8

! o° o log P 9 + 9 21 P (13)
=-1|— — —|logP, | — + — | Io :
2 o2 " 902 | B u T aw | OB

d i)
wut o

Inthe m = 2 case, if U® = (—o0, u), UD = (00, v), UP = (00, w), t; = t and t, = s, the result for log PAY (¢, s; u, v, w) is

Corollary 2. The logarithm of the 3-time joint gap probability for the Airy process PAY (¢, s5; u, v, w) (abbreviated as log ) satisfies a third-order
non-linear PDE in variables u, v, w, t and t (D = % + % + %)

2 2 2
|:t(u—v) 0 +s(u — w) 0 +GE—t)w—w) 9 +[—sa+(2t—s);v+sa] |:ta+58:|+t(s—t)Daat:|

udv ouow Judw u ow at as
3 83 5 33 3 3 83
DlogP —t ) t 2t —)2s —t)(s+t)———
x DI08 +[ ozge ° awzow T guper T A TS DG D
3 83 3 33 3 33
+ 57— —(s—t +(s—t log P
oupw? ~ O gy TETO 8v8w2] &
_ ! sa + (2t s)8 +s8 DlogP, D? logP (14)
“2 1 P gv Caw | BT Y 0B
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1.4. Relation to other results

For the 2-time joint gap probability of the Airy process, Adler and van Moerbeke not only found the PDE (13), but also computed the
asymptotic expansion of PAY(t; u, v) with respect to t~' as t — oc. Their method of computation cannot be analogously applied in
an obvious way to the general multi-time situation. Even for the 3-time case, the author is unable to analyze the asymptotic behavior
of log PAY(t, s; u, v, w) when t,s — oo by (14) and simple boundary conditions. Widom found another method for computing the
asymptotic expansion of PAY(t; u, v) in [14], which is based on results in [4,15]. It is an interesting question whether one can get such
asymptotic behavior for the multi-time situation by that method.

To find equations satisfied by the gap probabilities in various matrix models, one can get PDEs by Adler and van Moerbeke’s method,
or get systems of differential equations by Tracy and Widom'’s method. The two kinds of results appear to be quite different, albeit they
describe the same model. For example. the reader may compare the results in our paper and the corresponding results in [ 16]. Nevertheless,
these two approaches stem from the same integrable structure: the Toda lattice. For the Gaussian unitary ensemble, which is equivalent to
the Dyson Brownian motion at a single snapshot, comparisons between the two approaches have been done in [17,18]. The exact relation
between our results of the multi-time joint gap probability and those in [16] is still an open problem.

In this paper we utilize the fact that the joint gap probability of the Dyson Brownian motion is a specialization of the two-Toda
function. Now mounting evidence suggests that it is also an isomonodromic 7 function in Jimbo, Miwa and Ueno’s sense [19]. For the 1-
time gap probability, which is the same as the gap probability in the Gaussian unitary ensemble, it has been proved in [20]. For the 2-time
joint gap probability, Bertola et al. have been making steady progress, e.g. [21]. The relation between isomonodromic t functions and Toda
t functions is not very clearly understood. Our PDE may help clarify that relation.

2. The joint probability in the Dyson Brownian motion

To get the PDE, we need to consider a generalized integral in which foralll =1, ..., m, ti(l) (i=1,2,...)and c(l) (i,j=1,2,...)are
formal variables,

[(l) )\(1) m Z (1)2 (1= 1)’)L(1)J m

O . 4O (0) (m) P =it (]
T, 65 a7) = = f /U(O)n Xu(m)nvo\ W )He & ]‘[ = Hl_[dk (15)

=1 1=0 k=
with C a normalization constant such that P2 = 1, ¢, where the locus € is definedas(I=1,2,...,m—1,k=1,2,...,m, ¢, = e )
1
(0 = — ,
1—cy
1 c?
U] I+1
= (mat ).
-G 1—ciy
S= w1 (16)
1—c3’
C(k) _ 2Ck
L
and all other coefficients 0.

U]

In the latter part of this paper, the phrase “variables are on the locus £” means that t(l) and ¢;; are given by (16).

Dyson U] (O]

and ¢;;,

as a function with variables ¢;

of the variables are 0, according to (16). Therefore it is legitimate to consider ‘fo) poyson

Remark 3. In the latter part of the paper, we often regard P, and parameters a though most

etc.

Remark 4. Since we allow sgl) to be —oo and aglr)l to be 400, the integral in (15) may be divergent for general values of t.(l) and c.(’f)_
However, if we assume t() =0fori > 2, c(() = 0 for max(i, j) > 1, and values oft(') t(l) and c(k) are near to the locus £, then the integral
is convergent, and all algebralc operations m latter part of the paper can be taken in thls restrlcted setting, so they are legitimate.

(l)

Now we consider actions of D"! on z,. Since D*! acts on the integral domains of A (l) , by the formula

a a /
|:8a + ab}/a fx)dx = f(b) — f(a) =/a f(xdx,

we get

o0 I n
D Z x“’ moy ﬁ(,)

i i
D>l — 1 ZTO V )\‘(0) v m lzl [ ij=1 kZ )L([ ! I) T d)\.(l)
™= (m oy VPOV >He = e [T Tax

7

n

X (= 1
(z)zkm LN S PN, i AD

n 9 m t |
. V(k(o))V(A(m)) ei=1 ' k=1 gij=1 " k=1 d)\.()
©) i1 M ©=1, (1)
it; Ay + ic; A A
Y [z IS I }

i,j=0

E}
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o0
) ! (U] (I PINOY
I<> Z A() m > o Z M m

x V(MO))V(A(m))]_[ele = ]_[w— HHdA(')

=0 k=
1/ / © i © 9 S o Y ii m_ 9
=—1 - nt, + it;” —— + q + ic; ;
¢ UOxxym® ! i=2 l 3f-(70) i=1 3f(l) i=2 j=1 Y 1(1)1.1
i ,)]
m Z[w Z ,\(” m Z 0 Z A= mon
> V(A(O))V(A(m))ne’ k=1 l_[ iRl e 1—[ Cl)»,(f)
=0 =1 1=0 k=1
(0) (0) M S (1) 3
=|nL+ Z't (o) Z (1> +D e 5 | ™ (17)
— i=2 j=1 i—1,j
and similarly (I =1,...,m—1)
U] U] c U] S U] (+1) S (+1)
+1 +1
D'z, = | nty’ + th 2", + ZC “n T ZZ"CU o T Z o T ZZ’C )
dt; j=2 i=1 dc Cij—1 dt; i=2 j=1 d¢; 1j
(m) m o m) N\ 0
m,1 _ m m m . (m
D™z, = | nt; +th (m) +Zc,] o (m 5 —1—221% 2 Tn. (18)
j=2 i=1 ij—1
As explained in Remark 3, we regard IPDySO“ as a specialization of t,,, such that the values of ti(l) and c(') are given by the locus £ as in (16),
and we get (We abbreviate PE¥*" as P, here and later.)
2 0 2C1 0
D*'p, = | — + Py, 19
n |: 1—C128t1(0) 1_C123t1(1) n (19)
2q 0 2 2C12 1 0 2C1+1 0
Dip, — _ It 2 U T Py, (20)
" [1 — gD (1 —c2 1=, )t - e |
2c a 2 a
D™'p, = T > | Bn- (21)
l—Cthl l—Cmat1
Now we define an (m 4+ 1) x (m + 1) matrix
-1
2 )
)] @] 2)
G120 o
J = C.Ez; i . - . s
(m)
: Cln:
&y 2
whose rows and columns are indexed from 0 to m. When tf') and c(l) are on the locus £ as in (16), ] becomes
2 2¢; -1
1—c? 1—¢?
2¢; 2 2¢2 2¢,
1—c? 1—¢2 1-¢ 1-¢
2¢,
Jlg= S
1—0c
2Cm
1-¢2
2Cm 2
1-¢2 1—c2

We can find the entries of the first and the last row of ] explicitly when the variables are on the locus £:

1! 1,
— __ = ——e 22
Joile = > ;l:1| i=-3 (22)

]ml|£——*l—[Cm i+1 Z—*e ", (23)
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and especially

Jomle =Jmole = — l_[C' = —fe ~tm

Then let
EO.1 po1
EL1 p1
=1 | (24)
g e
and we have

0}

Lemma 1. When the variables t“) and c;j areon the locus £ as in (16), we have

9%logP, n

E%'E™logP, = E™'E® logP, = ——— — —
! " Dgem 2

e~tm, (25)

Proof. First, since E®' and E™! are linear combinations of D"’s, they are differential operators of order 1, and we have

EO,l[P;nEm,l]P)n EO,lEm,lIP)n
P2 P,

E®'E™ " logP, = —

By (19)-(23), when variables are on the locus £, we getfor[ =0, ..., m

P,
El]]P = [Z]H'LD }]P]H - a9t (0) (27)

Therefore when variables are on the locus £,

OPy 9Py 0,1_0_p
o1 ; 9t g¢m PG
E*'E™logPy = ——— ! (28)
P2 P,

Here we need to be careful about the term E®!

'(m) P,. By (17) and (18), the action of E™! on 1, is equivalent to that of a differential

operator of the form - (m) + - - -, which does not contain ai explicitly. When variables are on the locus £, all terms of the differential
operator vanish except for ; (m) , s0 we can ignore them and replace E™! by ﬁ between E®! and P,..

Since E%!

) commute

a d
0,1 0,1
1P, = ——E%'P,. (29)
arm " gem "

By (17), (18), (22) and (24), we have the identity for the action of E%! on 1,

9 00
0) 0) (1) . (1)
E 'L'n —]00 |:Tlt +th 8['(0) + i.j 9 6] i| Tn

i—1 i=1 i=2 j=1 1]]

o0
U] 0} c? 0]
+Zm@-&y m+z RN
Jj=2 i=1 U 1
I = I
(1) (I+1)
+ ZC ot (l+1> + ZZ'C 5 (1+1>
j=

i=2 11]

a o0

—t (m) - (m) (m) (m)

me@q+zmam+ o S
i=2 i—1

i=1 Jj=2 i=1 w—]

a
_[wm+%“m+'}% (30)

such that all terms except for - (m) + o, mt ) in the operator on the right-hand side of (30) do not contain t}"” and vanish when variables
are on the locus £. So when varlables are on the locus £,

2
9 0,1

d
E>'p
T [ari"”

+ o mt\™ 4 - } P, = + o, m|oPn, (31)

PROPRD
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and
9P, 0P, 32p,
ar © dr(”r;) t(o)r)t(m) + Wo.m|<Pn 3% logP, n
E®'E™ logP, = —— Ein Mo
=
P Py T 0™ 2

Similarly to (17) and (18), with the help of the formula

d
[ 8a+b]/ f(x)dx = bf (b) — af (a) = / (&f (x))'dx,

we get ([ZZ 15,0 A(O)i| is regarded as an operator)

o0
2ro O x‘“l m O 3 D A(I)l m n
D%27 — l |: © > >y
W =

Z
VOO m ei=1 ' k=1 @ii=1 = A ®
i|/ -/U(O)”x xymn AV )H 1_[ 1_[ k

=1 =

0
m & (’) (- 1)' (’)J
E (’) E )L (l) E L‘ E )\. )\

N
= —A vO.Oyy(am ei=1 k=1 eii=1 k=1
/ /u(O)”x Xu(m)n[ 220" AHV( )| | 1|=|
© O ) O (W n(n+1)
= it; A0+ ic; ; A Ay
/ /(O)HX XU(m)n [Z Z Z Z 2

i,j=0

C4

n

o0
KU Z YOI SRS SPY T A

m n
x V(A<°>)V(A<’">)]_[em’ = ]_[ eli=1 it [1T]er

=0 k=1

! 3 o nn1)
++(0) (1)
= — ... lt
C / /L\](O)nxwxu(m)” |;sz ! (0) + Z (1) 2

l

0
) (U] =i, aj
m Z D Z )» Gj Z X A n

x V(k(o))V(}»(m))He’ 1 k=1 ﬁeu’—l ﬁnd)‘l(cl)
1=0 k=1

—0 k=

o Bl n(n +1
— 0) (1)
= Z't t(e) + D i ¢ (1) ) Tn>

i=1 j=1
and similarly

2 my 3 (m) 3 +1
D™4t, = thm 3("‘) +ZZJC,T o (m) + n(n ):| Tn,
1 1 i=1j=1
and forl =1, -1
o0 o0 o0 o0
) (0] (I+1)
= Z’t 50 +ZZJC (:) +ZZ’C B T T
i i=1 j=1 i=1 j=1

When variables are on the locus £ we get (l = 1, ce,m—1)

2 d 2cq d nn+1)
DO‘Z]P) = — + + ]P ’
" { 1-c2 9t " 1—c}ac 2 "

2 2c? 0 2 9 2c 0
DY?P, = | — +—5 o T 3 ot - @D P
l—c, 1—c,+] at, 1—¢ acm 1—CJr ac

pn2p, — | 2 il n 2tm 0 +n(n—i—l) B,
T—ciog™  1-ciac) 2

If we define(l=1,2,...,m—1)

F02 — po2 _ C(l)

1,1 ’
acy
g2 _p2_ 0 9 a0
= 11570) 11 a+n°
acq; Lo
m,2 m,2 (m)
E D 11 ok
1,1

we have

827

(32)
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Lemma 2. For k,l = 0, 1, ..., m, when variables are on the locus £ in (16),
k21 b, 9P el
EME " logPn =26, |e—p—q + OE" logPn. (36)
atar?
2 94

Proof. With arguments similar to those for (26) and (28), we get

(k), 9P, P, k2 9
2t 5 +CPy | =F 20
EX2EL jog P E*2p,EMB,  ER2EMP, ( 2 |£ar§k) ") a0 E atg’)P”
= - _

P2 P, P2 Py
with
nn+1)
c=1—5 k=1orm,
= 2
n otherwise.

Similar to (29) and (30), we have
0 0

Ek.Z P, = Ek’ZP
gt " e "
and
0 d
B = (26— + 0 — + O+ | (37)
ot at!

such that all terms except for 2t2(k) ﬁ + t{k) ar%
1

when variables are on the locus £. Therefore with an argument similar to that for (31), when variables are on £ we have

(k)| 9P P, 9 k) _9 (k) _d
(2[’2 |£3[<E> + CHD”> 76t<;1> 20 (th 52 + t oc® + C) P,
2 1 + 1 2 1

+ C in the operator on the right-hand side of (37) do not contain t,(’) explicitly and vanish

EF2EM Jog P, = —

P2 P,
P, 9Py 3P, §5L 8Bn t(k) %P,
_ 2t(k)|£ ) aeld e oD kae® thle 3t ¢
2 P2 P, P,
9% logP
(k) n Irl1
=2t |g———— + 6,E" logP
(k) o (D) k m
at, 0,
since when variables are on £
11 Xy
EV'P at®
E"'logP, = e S
Py Py
When variables are on the locus £, as defined in (16), ciki and tz(') are functions of c; = e™1, ..., ¢; = e~°™ and all other variables are
0. Now we regard P, as a function in variables sy, . . ., sy, and by the chain rule we get as operatorson P, (I=1,2,...,m)
0 2¢f 9 22 9 2q(1+c¢f) 9

I -2l (- (- acl)
and
0 a(l) _ 2<:,24 0 20 0 1-¢ 3
190 T A= oD T 1—ciod | 1+ os

Therefore by (33)-(35) we get that as operators actingonP,,(I=1,2,...,m— 1)

2293 2293 1—-¢c? 9
E02 — po2 _ 1 e 1 =@ ;7, (38)
1—¢ ot 1—¢] oty 14 cf 95
2 a2 2D 2¢f 2¢2, 0 2k, 9 1-c2a 1—-ci; @
B =D TP G ]_4+1_4 O 1_ 4 +n "9 29 | 1 2 g9¢ (39)
¢ at, G i1/ dt, €1 Oty ¢ osi + Ciiq IS
quz _ Dm*z _ 2(,‘31 0 2Cr2n d 1-— C; 0 (40)

- + _
T—cpatd™P  1—chatl™  1+4c3 d5m
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Now we denote (I = 1, 2, ,m—1)
FOZ_D°'2+1 C%i
1+C% 851

1-c¢2d 1—-ci; @

Fl2 —pl2 9 ’
14+cfds 14ch, s
Fm2 — pm2 1_Cr2ni
1+c2 dsy’
and have
Lemma3. Fori=1,...,m—1,
2 02 2¢2 92
FO2E™1ogp, = | — + -1 log Py,
' 1—ct oo™~ 1—cf g o™ !
2¢? 02 2 2¢; 92 2¢? 92
F“2E™1logP, = ! _ i IES logP,.
"=t ar™ \1—cf 1=y ) aclar™ 1l ot Vg™ '

2¢2 a2 2 92
T—chad™ Dac™ 1= cf arfae™

F™2E™ 1 og P, = |: i| log P, + E™!logP,.

Proof. We only prove (41) and (43), and (42) can be proved similarly. By (38) and (40), as operators acting on P,;, we have

po2 _po2 | 229 229
T—cforl”  1—cf oV
Fm2 _ pm2 2¢2, 0 2¢2 9

T—choat™ D 1—choar™
Similar to (28) and (31), we have

OPn 1 9 rli
—EYP, WE P, 2 logP,

E' logP, = -2 T = a0
i Py at, dt,

tz(k)

Thus with the results of (27), (36), (44) and (45) we have

2293 2293
FO2E™ 1 og P, = E“2E™! log P, + ! a WE”” logP, + ! 2 TE’”’] logP,
1-— Cl 8[’2 1-— Cl 8t2

_ 5O 9% log P, 2¢2 3%logP, 2¢2 3%logP,
2™ T T a®ae™ T T el o

- : > + 2 o log P
1 oo™ 1—cfagan™ "

and
F™2E™ ! log P, = E™2E™ log P, + 2 D E™'logP, + 2 0 E™'logP
" "=k armD "1 —chadm "
_ (2em), 9% logP, L log, | 4 2¢2 9%logP, 2¢2 9%logP,
- n
P oo™ T—chag™ Poe™ 11— chae™ar™
2 9? 2c? 92
=|- . logP, + E™'logP,. O
|: 1—c} atz("”at](’") 1—ch Bt;m_l)atim) " !

Finally we define

GO,Z F0’2

G2 F12
=Kl . |,

Gm,2 Fm,2

829

(41)

(42)

(43)

(44)

(45)
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where
2 22 -
1—cf 1—cf
2¢2 2 2¢; 2¢2
1—cf ]—cle—cg‘ 1—¢}
K — 2¢5
1—¢;
2¢2
1—c}
2¢2 2
1—cp 1—cp

We can get K ! by substituting each ¢; in J~!|¢ by ¢?, so we have
1 1 1 m—I
Ko = -5 l_[ Ciz’ K, = D) l_[ Crznfi+1
i=1 i=1
and get by (41)-(43),

Lemma 4.
2

9
GO2E™ 1 logP, = SO log P, + Ko mE™" log . (46)
2 1

Symmetrically, we can get by the same method

Lemma 5.
82
G™2E%! logP, = — @ 108 Pn + K. oE® " log P,. (47)
aty oty
By the result of [6]
2
] Tnt1 e o™ og
0 = S5
3f1( ) Tn-1 W log tn
2 log Ty
0 Tnt1 atém)argo)
—m = >
3t1(m) Tn—1 W log 7y
and by (27), which implies the differential equation when variables of 7,_; and t,; are on the locus £
el Tn+1 0,1 Tn+1
— 108 = E~ log , (48)
Btl Tn-1 Tn—1|g

we get the differential equation with respect to parameters af’), when variables of 7,,_1, 7, and 7, are on the locus £, by (25) and (46)-(48)

E% Jog Tnt1| G*2E™" 10g Ty| e — Ko mE™ " log 7,
Tn—1 g EOTE™1log 1| ¢ — Wm,0 '
E™ Jog Tnp1| G™2E% " 10g tyle — Kin,oE® " log Tae
Tn-1lg Em1E% log 1y]e — nfo,m
By the identity
EO1E™ 1 Jog 1| _ E™1E Jog Tn+1 ,
Tn—1 g Tn—1|g

we get the final result

0.1 G™?E>" log 7, — K oE*' log 7,
Em1E0,1 log 7, — Wo,m

m1 GO?E™ 1 log T, — Ko mE™" log 7,

= ) (49)
. EO1E™1log 7, — nJim.o o
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Now we denote specializations of differential operators when variables are on the locus £

Ay = =201
By = —2E™,
Az = =2(G"* — Kom),
By = —2(G"™* = Kno),

which agree with (7)-(10), and we get the Eq. (11), after the notation change P2*" < 7,]s.

Remark 5. In the 2-time case,i.e.m =1,

Ay =D 4 ¢,D",
8 = c;D%' + D1,

3
Ay =FO2 4 2F'2 2 =p*' 4 2D (1 - C%)E —c,
1

d
By =ciF*? +F"? — c]2D0’1+D1’1+(1—612)¥—cf.
1
Our PDE (11) agrees with that in [5].

3. The joint probability in the Airy process

=

In this section we adapt notations defined in (3)-(5), and by Remark 1, a(” a, = —oo.Wedenote(I=0,1,...,m)
2n 9 2r
N1 __ (0]
D=3 50 Za —(l)’
k=1 k
if all a(') < 400, otherwise drop the a part We can write the differential operators defined for the Dyson process as
m -
— V2R e i,
1=0
m — -
— /2’:‘ Z e(t[—[m)/ﬁbl,l’
1=0
" 020/ " 020/ Y fiy 0 n/
_ —2f/aQl2 =2 —2f/apl1 | = a2y 9 —2tm/i
Az_;e D" +2n ;e D —l—n;(l e )8f, e~ 2tm/n
m o __ m o __ m o B a _ 8 o
8 = Zez(rﬁrmvnl)z,z + 272 Zeszrm)/nDu i Z(ezm—tm)/n — e 2m/iy L _ o=2tm/A
1=0 1=0 =1 dt

It is not difficult to see that (11) implies

[a“u]éBzA] — D(B]AZD(B]] lOan . (eA'lc@] IOan + 2ne_“”) = BrA IOan - A1 B A log]P’n — Ay B IOan - B1A1B IOan.

Substituting (50)-(53) into (54), we get

m
<|:Z eq/n[')l,l:| [Z 2(—tm)/ARL2 | 2 Z e2(@—im) /i .1
1=0

I=0 =0

( 2(E,—Em)/ﬁ _ e_ZEm/ﬁ)a% _ e—zfm/n:| |:Z e_f{/n[_)l.li| log P,
! 1=0

3

+ﬁ

m
<|: f,/ﬁ[_)l,l:| |:Z e(f,—fm)/ﬁDl,l:| log]P’n + ﬁze—fm/ﬁ>
=0 =0

m
9 S
2(f— tm)/nD12+2n2 eZ(tl tm)/nDll +Tl eZ(tI tm)/0 _ 72tm/n — _e72tm/n
-3 > > -

ng I Ms

=0

=0 =1

m m m
% {Z et1/ﬁbl,1:| logIP’n % |:Z et[/ﬁbl,]} |:Z e(tltm)/ﬁbl,l} {Z etl/ﬁﬁl,1:| lOan
0

=0 =i =0 =0

m m
(ﬁ—fm)/ﬁbl,l:| |:Z e—2t1/nDl 24 o2 Z e—zq/nDl T4qa Z(l —2tz/n ~ e—zfm/ﬁ:| |:Z e(f,—fm)/ﬁbz.1:| logIP’n>
at
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(50)

(51)

(52)

(53)

(54)
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m m m
o oo 9 o
—26/ARL2 =2 —20/aRll | = —24/7 —2tm /it
- e D"+ 2n e D" +n 1—e — —e
{Z > > i }

=0 1=0 =1
m o o m o o m o m o L
% Z e([[—[m)/nDl,l lOg Pn X Z e([l_[m)/nDlsl Z e_tl/”Dlvl Z e(tl_tm)/nDl’1 log [P’n,
1=0 1=0 1=0 1=0
Since we have commutator formulas
I 2(t—tm) /i 2tm /1 d - ti/npl1 - (§—2tm) /1 (fi+2tm) /1yl 1
ﬁ(e ti—tm)/n __ e” tm H)T, e*[l nD, — (e q—2tm)/n __ e” t+2tm n)D, ,

n
!

Xm: e—f,/ﬁDl,l’ Xm: ez(f,fm)/nDl,2:| _ Xm: e(E,fzfm)/ﬁE)m’
1=0 1=0 1=0
r m o m _ m o
Z e@-tn)/ipl1. Z e—zq/nbz,zi| _ Z e~ (+im/ApL1
1=0

= 1=0

1

Ms

m
(1 72t1/11) Ze(tl tm)/nDl 1:| — Z(e(flffm)/ﬁ _ e*(f[+fm)/ﬁ)51,1,
=0

we can change some orders of operator multiplications in (55) and make some cancelations, so that it becomes

m 2
|:Z e—fl/ﬁDl,l:| |:Z ez(t, tm)/nDI 2 + 2112 Z e2(t, tm)/nDl 1 +1 Z(ezm tm)/n __ —Ztm/n) _ :| log P,

=0 1=0 I=1

1=0 1=0 =0 =1

m m
< <|:Z et,/ﬁl_)l,li| |:Z e(t,tm)/ﬁDl,li| log P, + ii%e tm/n>
=0 =0

m m m m
— (|:Z et,/ﬁDl,1i| |:Z e2(flffm)/ﬁ[')l,2 4 2ﬁ2 Z e2(f17fm)/ﬁ51,1 47 Z(eZ(fﬁfm)/ﬁ _ 72tm/n) i| log[P’
=0

m m m m
B |:Z @)/ . 1] |:Z e-2/Apl2 | oi2 Ze—zf,/ﬁ[‘)l,l +ﬁ2(] _ ey 9 0 i|10gpn
ot

=0 =0 =1

m m 2 m
_ {Z e(t[2[m)/ﬁDl.1:| log Pr,) x |:Z e[’/ﬁl_)l‘]:| |:Z e(tltm)/ﬁbl,l} log P,
=0 =0

=0

m m m m
o o o 9
(t—tm)/npl1 —=2t/npl,2 =2 —=2t/nnl,1 = —2t;/n
x | — Ee D Ee D +2n§e D +n§ 1—e — | logP,
( |:l:0 :||:l:0 =0 1=1( )8t1i| s
m o m _ m o 2
. Zef(thtrm)/ﬁbl,l logIP’n> % Ze—tl/ﬁf)l.] Ze(tﬁtm)/ﬁ[')l,l log P,.
1=0

1=0 1=0

Since all terms of the PDE involves 71, we can expand the PDE with respect to n, with formulas (* can be 1 or 2)

m o m_ m o 1 m o 1
Sen = $oo S s L S LS o (L),
=0 1=0 2 on =0 "

1=0 I
m o m _ 2 m o 2 m o 4 m o 1
=2t /nnlx __ 1, % 1% 2Rl * 3Rl *
Sediphe =3 B - 23 g0 4 23 @D - 3 Ph +o(f),
1=0 1=0 Ly n? =5 3 15 n
i t tm)/ﬂDll =iDll +ii(ﬁ_tm)Dl] 4+ — Z(tl_t ) Dl1 Z(tl_tm) Dl] 10 1
=0 =0 Ly
i e2i-im/iphs — iﬁ’v* 42 i(a — D" + Z(ﬁ — tw)*D"* + Z(fl —t)’D"* +0 (.1 ) :
1=0 1=0 Ly n 1= e

2(tj—tm) /7 Z[m/n) 0 _ZXm:E 0 2 Zm: (t 2t ) +O ]
of T R F T ’

=1l

i
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Although the left-hand side of (55) contains O(fi*) terms, after careful calculation we find all 0(1*), 0(®) and O(7?) terms disappear, and
the equation becomes

m 2 m m m
_ _ o _ _ I - __ 0
E D1 E tm — 20 D’*2+§ t —t3—t3D”1+2§ t(tn — ) — |logP
I:O(m l) I:O((m l) 1) £ l(m l)atl g 'y

=0
m _ m _ m _ m _ m a
+ [ DD D@ =D || Y D Y (@ + (fn — DY +2) fi— | logP,
1=0 1=0 =0 1=0 1=1 3ty
m m m m m
+ [ DD 208D | | D — 8D | — | Y (@ — 8D || Y ED" | |logP,
1=0 1=0 =0 1=0 =0
m m m
+2| Y G | Y (@ — @)D" | | D (25 — En)D"! | log P,
1=0 1=0 1=0
m _ o m _ m _ m _ 1
= 1> @t —tmD"" || Y D" [logP,, | Y D' [| > D" |logP, +0 (7> ) (56)
pry =0 1=0 1=0 5 pl1 n
1=0

The term O (1) in (56) is a quadratic function in term of log P, and its derivatives with coefficients O (). By the definition of PA™ in (6)
and the convergence result in [5], we take the limit n — o0, and get the PDE (12) after the changing of notations, i.e. cleaning all “bars”
for variables and operators.
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