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Abstract

We consider the limiting location and limiting distribution of the largest eigenvalue in real
symmetric (8 = 1), Hermitian (8 = 2), and Hermitian self-dual (8 = 4) random matrix models
with rank 1 external source. They are analyzed in a uniform way by a contour integral rep-
resentation of the joint probability density function of eigenvalues. Assuming the “one-band”
condition and certain regularities of the potential function, we obtain the limiting location of the
largest eigenvalue when the nonzero eigenvalue of the external source matrix is not the critical
value, and further obtain the limiting distribution of the largest eigenvalue when the nonzero
eigenvalue of the external source matrix is greater than the critical value. When the nonzero
eigenvalue of the external source matrix is less than or equal to the critical value, the limiting
distribution of the largest eigenvalue will be analyzed in a subsequent paper. In this paper we
also give a definition of the external source model for all 5 > 0.

1 Introduction and statement of results

1.1 Introduction

In this paper we will be concerned with the distribution of the largest eigenvalue &yax(n) in the
following ensembles of matrices {M }:

e The set of n x n real symmetric matrices, with the probability distribution function (p.d.f.)

1
P (M)AM = =—e VTV =Ana M) gpp. (1)

n,1
e The set of n x n Hermitian matrices, with the p.d.f.

1
Pra(M)AM = =—e T2 =An2M) gpp (2)

n,2
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e The set of 2n x 2n self-dual Hermitian matrices, with the p.d.f.

1 N "
Pra(M)dM = <—e TV =Anad) gpp. (3)

n,4

Here for each 8 = 1,2,4, C,, 5 is the normalization constant, Vs(z) (or Vﬁ(az)) is a real-valued
function which grows fast enough, A,, g (or Ang) is a fixed n x n real symmetric matrix, n x n
Hermitian matrix and 2n x 2n self-dual Hermitian matrix respectively. The function Vz(z) (or
Vj(x)) is called the potential function and A, 3 (or Ang) is called the external source. The rank
of the external source A,, 3 (or Ang) is defined to be the number of nonzero eigenvalues of A, 3
if 8 = 1,2, or half of the nonzero eigenvalues of Anwg if B = 4. These ensembles are called
real symmetric, Hermitian and Hermitian self-dual random matrix models with external source
respectively. Throughout this paper, we address the three types of ensembles as S-external source
ensembles with 8 = 1,2, 4 respectively.

Note that in these three external source models, the distributions of eigenvalues of M are
unchanged if A,, g (or Anﬁ) is changed into C)An,gQ*1 (or QAn’ngl), where @ is in the orthogonal
group O(n), unitary group U(n) and compact symplectic group Sp(n) for 8 = 1,2,4 respectively.
Since we are only concerned with the distribution of eigenvalues of M, we assume A, g (or Anﬁ)
to be diagonal without loss of generality. To make our presentation uniform for all values of 3, we
let V(z) be a fixed function and

A, = diag(ay,...,an) (4)

be an n x n diagonal matrix. We assume that Vs(z) (or Vz(x)) and A, 5 (or Ang) are defined
from V' (z) and A,, such that

1 -
Vi(z) = iV(ﬂﬁ), Va(z) = Vi(z) = V(z), (5)
1
A%J.: iAma -Aﬂ2::~Anu (6)
A, 4 = diag(a, a1, a2,az,. .., an, ay) (7)

ast bst

Writing a 2n x 2n self-dual Hermitian matrix into 2 x 2 blocks (Cst dy

n
) , We can express it
s,t=1

as a quaternionic Hermitian matrix (qst)?,tzl whose s, t-entry comes from the s, t-block by

<a+bz’ c+di

et di a—bi>:a+b2+c‘7+dk' (8)

In the quaternion form, the p.d.f. of the Hermitian self-dual external source model is

1
Pra(M)dM = =— 4e—"“Tf<V4<M>—Anv4M>dM, (9)
where X
Vi(z) = 2Vy(x) =2V (z), Ana=2A, (10)

with A,, defined in . The A, 4 defined in corresponds to the An74 defined in . In
Appendix |A| we use the quaternion form p.d.f. @D of the 4-external source model to streamline the
derivations for all .



In this paper we concentrate on the rank 1 case, i.e.,

A, = diag(a,0,...,0). (11)
—_——

n—1

Random matrices are powerful tools to simulate Hamiltonians of complex systems. Different
types of random matrices, namely the real symmetric (aka orthogonal), the Hermitian (aka unitary)
and the Hermitian self-dual (aka symplectic) ensembles are used for physical systems with different
properties of time-reversal invariance [24]. For random matrix models without external source in
all the three types of ensembles, i.e., rank 0 S-external source models, the distribution of the largest
eigenvalue has been studied extensively for all the three 8. If § = 2, for all real analytic potentials
Va(x) under mild regularity conditions, the largest eigenvalue &ax(n) approaches e, the right-end
point of the equilibrium measure of Va(z) (see below), with probability 1 as n — oo, and the
limiting distribution is the GUE Tracy-Widom distribution. See e.g. [14] and [12]. If 5 = 1, for
real analytic potentials Vj(x) satisfying the “one-band” condition (cf. Condition [2| in Subsection
below) and mild regularity conditions, the largest eigenvalue with probability 1 approaches e
as n — oo, and the limiting distribution is the GOE Tracy-Widom distribution. See [30]. If 5 = 4,
similar result can be obtained and the limiting distribution is the GSE Tracy-Widom distribution.
See [12].

The random matrix model with external source was proposed by Brézin and Hikami [9], [10]
to simulate complex systems with both random part and deterministic part. Although in all three
types of random matrix ensembles the random matrix model with external source can be defined,
due to technical reasons, only the Hermitian (5 = 2) type has been studied for general potential
functions. See e.g. [7] and references therein.

In [3], the Hermitian random matrix model with rank 1 external source was studied for all real
analytic potentials V2(x) under mild regularity conditions. For convex potentials, the universality
of phase transition was proved. Let Va(z) be defined by V() as in (5). In the rank 1 2-external
source model, with probability 1, as n — oo

e if a < 3V'(e),

zo(a) ifa>1V'(e), (12)

Emax(n) — {

where a is the unique nonzero eigenvalue of the external source A,, » = A,,, and z¢(a) is a continuous
increasing function in a € (3V(e), 00) such that z¢(a) — e as a — 3V (e), see and (29). If
a < 3V'(e), the limiting distribution of &pax(n) is the GUE Tracy-Widom distribution, and if
a > 3V'(e) the limiting distribution is Gaussian. For the double scaling a = $V'(e) + —73, the
limiting distribution is the generalized Tracy-Widom distribution. If the potential is not convex,
then new phenomena may occur. The “critical value” may be less than %V’ (e), and there may be
“secondary critical values”. The largest eigenvalue &yax(n) may converge to two or more points if
a takes such values. The results were also obtained by Bertola, Buckingham, Lee and Pierce in [5]
and [6] independently.

For real symmetric and Hermitian self-dual matrix models with external source, known results
are limited to special potentials. Let V;(z) and Vj(x) be defined by V(z) as in (), the rank
1 l-external source model with Gaussian potential (V(z) = x? on the real line) and Laguerre
potential (V(z) = x — clog(z) on half of real line) are studied in e.g. [2], [28], [I7] and [II]. The



limiting location of the largest eigenvalue is given by formula , the same as in the corresponding
rank 1 2-external source model, where a is the nonzero eigenvalue of A, and A, ; is defined by
(@. If @ > 1V’(e), then the limiting distribution of &max(n) is Gaussian, with variance twice of
that in the corresponding Hermitian (5 = 2) external source model. If a < %V’ (e), the limiting
distribution of {max(n) is the GOE Tracy-Widom distribution. The rank 1 4-external source model
with Laguerre potential is studied in [32], where the limiting location of the largest eigenvalue
is found to be given by formula , the same as in the corresponding rank 1 2-external source
model, where a is the nonzero eigenvalue of A,, and An,4 is defined by @ If a > %V’ (e), then
the limiting distribution of &nax(n) is Gaussian, with variance half of that in the corresponding
Hermitian (8 = 2) external source model. If a < $V”(e), the limiting distribution of &max(n) is the
GSE Tracy-Widom distribution. In [32] the limiting distribution of &max(n) when a = 1V’(e) is
also obtained.

In the recent preprint [8], Bloemendal and Virag obtained the limiting distribution of the largest
eigenvalue &pax(n) when the potential is Gaussian or Laguerre, for all 8 and for all a. When a
is at or near %V’ (e), they described the limiting distribution function of &yax(n) via the unique
solution to a PDE. The recent preprint [25] by Mo indicates a new approach to study the limiting
distribution of &yax(n) in the rank 1 l-external source model with Laguerre potential when a is
at or near 3V’ (e), see also [26]. The contour integral formula in [25, Theorem 1] is equivalent to
that of Proposition in this paper with 5 = 1 and Laguerre potential (cf. Remark . In [25],
Mo further simplified the integrand in the contour integral formula, (see [25, Theorem 3],) and he
applied it in the asymptotic analysis in [26] to obtain a result similar to that in [8]. In this paper,
we take a different approach to apply Proposition in asymptotic analysis. The reader may also
compare our paper with the paper [4] by Benaych-Georges and Nadakuditi, where they considered
a different kind of low rank perturbations of large random matrices.

In this paper, we consider the rank 1 S-external source models with general potential V3(z) (or
Vj(x)) which are defined by V(z). The conditions satisfied by V(z) will be given in Subsection
We find that the “critical value” is independent of 3, and for all g = 1,2, 4 find the limiting
location of the largest eigenvalue &max(n) when a, the nonzero eigenvalue of A,,, is not equal to the
critical value. When a is greater than the critical value, we also find the limiting distribution of
Emax(n).

Besides the asymptotic results summarized above, in Appendix [A] we also have an algebraic
result: the definition of the S-external source model with general 3 > 0. Here we note that the
analytic method presented in this paper can be used to study the rank 1 S-external source model
with general f3.

1.2 Assumptions on V(z)

Throughout this paper, we assume four conditions on V'(z), the function in and . The first
is

Condition 1. V(x) is a polynomial of degree 21 and with positive leading coefficient.

To state the other three conditions, we need a few definitions. Recall that if V(z) is regarded
as a potential function on R itself, there is an equilibrium measure p associated to V' (z) defined
by a certain variational problem. See and (15), and the general references [29] and [13]. Since
V(x) is a polynomial, y is supported on a finite union of intervals. In this paper we assume that
V (z) satisfies the “one-band” condition:



Condition 2. The equilibrium measure p associated to V(x) is supported on a single interval
J = [b1, ba].

For the function V' (z) satisfying Conditions (1| and [2| the equilibrium measure p has the form

dp = V() dx = %\/(bQ —z)(x — by)h(z)xsdz, (13)

where x; is the indicator function and h(x) is a polynomial of degree 20 — 2. The next condition
assumed on V(x) is

Condition 3. The function h(x) in the formula of the equilibrium measure p of V(z) has
only non-real zeros.

The equilibrium measure dyu = W(x)dz is characterized by the conditions
2/ log|z — s|¥(s)ds — V(x) =L for x € J, (14)
J
2/log|x—s]\P(s)ds—V($) </{¢ forzeR\J. (15)
J

The last condition assumed on V(z) is
Condition 4. The inequality is strict.

Remark 1.1. Conditions are assumed to apply Proposition in our paper, and they are not
used anywhere else in this paper. If Proposition [4.1] can be proved under weaker conditions, e.g.
the conditions assumed in [22 Theorem 1] El, these conditions can be weakened accordingly.

Remark 1.2. Functions V satisfying all Conditions also satisfy the assumptions of V' in [3|
Formulas (6)—(8)]. Thus all the results in [3] on V' can be applied in this paper.

Remark 1.3. If V(z) is a convex polynomial with positive leading coefficient, V (x) satisfies Condi-
tions by [21, Proposition 3.1], and it is straightforward to verify that V' (z) satisfies Condition
2k

1.3 Preliminary notations

To state the results in this paper, we need a few more notations. We follow the notational convention
in [3] to denote the right edge of the support of the equilibrium measure

e := by, the right edge of J = [b1, ba], the support of the equilibrium measure pu. (16)

The so called g-function is defined by
g(z) = / log(z — s)¥(s)ds, for z € C\ (—o0,e). (17)
J

For a € (0,4V(e)), define c(a) as the unique point in (e, co) such that

gle() = [ HE — (19)

(a) -z

!Mariya Shcherbina informed the author that Proposition can be proved under the consitions assumed in [22]
Theorem 1] through private communication.



The properties of g(z) used in this paper is summarized below (see [3, Formula (30)]).

g'(z) >0, g'(x)<0 forzxe (e 00),

gle) = M, g'(e) = V’2(e)’ lim g'(x) = 0.

2
For a > 1V’(e), define c(a) := e. We also define two auxiliary functions

G(z) = G(z;a) :=g(2) — V(2) + az,
H(z) = H(z;a) == —g(z) +az + ¢,

for z € C\ (—o0,e). Condition 4] of V' and the condition imply that for any a

1
G(e;a) = H(eja) = —EV(e) + ae + g,

G(z;a) < H(z;a) for z € (e,00).

The convexity of g(x) on (e, 00) yields that for u > ¢(a),

H' (u;a) :a—/dﬂ(m) > 0.

u—x

Define the set

Ay :={a € (0,00) | there exists T € (c¢(a), c0)such that G(z;a) > H(c(a);a)}.

It is proved in [3, Lemma 1.2] that Ay is an open, semi-infinite interval. From Ay we define

a. =a.(V) :=inf Ay.

It is also proved in [3, Lemma 1.2] that a, > 0.
Let
Gnax(a) == max G(z;a).

z€[c(a),00)

Define the discrete set
Jv :={a € [a.,0) |Gmax(a) is attained at more than one point}.
For a > a. and a ¢ Jy, there is a unique zg(a) € (¢(a), c0) such that (cf. [3, Lemma 1.3])
Guax(a) = G(zg(a); a).
For a > a. and a € Jy, there are r > 2 and ¢(a) < z1(a) < x2(a) < --- < xy(a) such that
Gnax(a) = G(z1(a);a) = --- = G(z,(a); a).

We define the set of secondary critical values as Jy \ {a.} (cf. [3, Definition 1.3] ).
Remark 1.4. If the potential V is convex for x > e, Jy = (). See [3, Remark 1.2].



1.4 Statement of main results

Let V(x) be a function that satisfies Conditions . For any n and 8 = 1, 2, 4, let the n-dimensional
(B-external source models be defined by p.d.f.s , and respectively, with potentials V3(z)
(or Vg(x)) given by and external sources A,, g (or Anﬁ) given by (4), (6) and (7). We assume
that A, has only one nonzero eigenvalue a, as in . In each n-dimensional S-external source
model, let &pax(n) be the largest eigenvalue of the random matrix. The theorems below are stated
uniformly for all S-external source models (5 = 1,2,4). In the case § = 1, we assume that the
dimension n is even. For § = 1 and n is odd, the theorems below also hold, and we discuss it briefly
in Appendix [A] First we show the limiting location of the largest eigenvalue.

Theorem 1.1. The following hold for each fized a as n — oo:
(a) If0<a<a., ora=a.=3V'(e) and a. ¢ Jv, Emax(n) — € with probability 1.
(b) If a > a, and a. & Jv, then &max(n) — wo(a) with probability 1, where xo(a) is defined in
(29)-

(c) If a > a. and a € Jy, then there exist 1 > 2 and x1(a), ..., z,(a) defined in (30). Un-
der the assumption that G"(zj(a)) # 0 for all j = 1,...,r, then &{max(n) converges to

xj(a) with nonzero probability p; 3(0) for j = 1,...,7. Here p;3(0) are defined in (168))
and 22:1 p;p(0) = 1.

Remark 1.5. If a < 0, Theorem still holds, and the method of proof is similar to that in the
0 < a < a, case. Since when a < 0 there is no interesting phase transition phenomenon for the
distribution of the largest eigenvalue (while there is a similar one of the smallest eigenvalue) and
the proof is long and parallel to the a > 0 case, we skip further discussions about the a < 0 case.

If a > a., we have the limiting distribution of the largest eigenvalue. If a is not at or near
secondary critical values, we have the following result that strengthens Theorem [1.1{b)|

Theorem 1.2. The following hold for a > a. and a & Jy as n — oo.
(a) If G"(x¢(a);a) # 0, then for any T € R

T
lim P | &nax(n) < xo(a =d(T), (31)
n—00 \/ BG" (wo(a): a)n
where ®(T) = rf 52d§ denotes the cumulative distribution function of standard

normal distribution.

(b) If GCR)(z4(a);a) # 0 and GU)(zg(a);a) =0 for j = 1,...,2k — 1 where k > 1, then for any
TeR
Sl e g

T|="F——F—
[ g

—1/(2k)
-5(}@kNxoUU;a)n> (32)

mﬂ”mﬂm<%@+< (2k)!

n—oo

If @ > a. is at or near a secondary critical value, we have the following result that shows the
double scaling case and strengthens Theorem (1.1} c)]



Theorem 1.3. Suppose that ag > a. and ag € Jy. Assume that G(x;ag) attains its maximum
at r > 2 points x1(ag) < xa(ag) < -+ < xr(ag) in (c(ag),00), and G"(x;(ap);a0) # 0 for all

i1=1,2,...,r, then for
Q@

a=ag+ e (33)
where « is in a compact subset of R, we have
. T
Jim P { Emax(n) < @i(ao) + = | > pjsla) | +pis(@)®(T), (34)
\/—gG”(JJi(ao))n j

where p; p() (i =1,...,r) are defined in (168) and >7%_, pjs(a) = 1. Furthermore, p, g(a) — 1
as a« — 0o and p g(a) = 1 as a = —oo.

Remark 1.6. The phenomenon of Theorem occurs for some quartic potential V' that satisfies
Conditions For example, V(x) = 0.02093z* — 0.1673623 + 0.374482% + 0.11418z.

In the case that a > a., a € Jy and G”(zj(a);a) = 0 at at least one maximizer z;(a) of G(z;a)
in (¢(a),c0), we show hereafter an example when the number of maximizers of G(z;a) in (¢(a), o0)
is r = 2. The result for general case is similar.

Theorem 1.4. Suppose that ag > a. and ag € Jy. Assume that G(z;ag) attains its maximum
at two points z1(ag) < x2(ag) in (c(ag), ), with G"(x1(ag); ag) # 0, GC¥)(zy(ag); ag) # 0 and
G (xy(ag);ag) =0 for j=1,...,2k — 1. Then for

logn « 2 i L
= ag — —, wh =-—2 2k 35
a=ag—qg + —, Where gp B 2a(a0) —z1(ag)’ (35)

and a is in a compact subset of R, we have

nlLIgloP fmax( < z1(ao) \/ B G —p1,5 )7 (36)
(w1(ao))
BG(%) z9(ap);a _1/(% e dn
Jim P Emax(n) < x2(ag) + ( ((2]:)( 0); ao)n =p1,5(a) + P2,p(c )mv
(37)

where p1 g(a) and P2 g(v) are defined in (183)), and p1 g(c)+p2 g(a) = 1. Furthermore, pp g(c) — 1
as a — oo and py g(e) = 1 as o — —oo.

Remark 1.7. When = 2, the probabilities p;2(a) and p;2(a) should agree with the p(])( ) in 3,
Formula (52)] and the pgj)l(a) in [3, Formula (63)] respectively. It is not obvious that they are the
same, and we give the proof in Appendix [B]

The limiting distribution of the largest eigenvalue when a < a., as well as the limiting location
of the largest eigenvalue when a is at or near a, < %V’ (e), will be analyzed in a subsequent paper.

The paper is organized as follows. In Section [2] we calculate the limiting p.d.f. of the largest
eigenvalue in the rank 1 g-external source model as n — oo, based on Proposition In Section

we prove Theorems and The proof of Proposition [2.1]is in Section



The starting point of the asymptotic analysis in this paper is Proposition 2.2 the contour
integral formula of the largest eigenvalue &yax(n). Since its proof is combinatorial, we postpone it
to Appendix [A] In this appendix we also propose a definition of the S-external source model for
any 3 > 0. In Appendix Bl we show that the results in this paper agree with those in [3] when

B=2.

2 The p.d.f. of the largest eigenvalue

In this section we compute f¢ . (n), the p.d.f. of the largest eigenvalue {yax(n) in the n-dimensional
(B-external source model with rank 1, as n — oco. For f = 1, n is assumed to be even. We also
assume that the only nonzero eigenvalue of the external source matrix A, is a > 0. Recall that J
is the support of the equilibrium measure p associated to V(x), e is the right end of J, and ¢(a)
is defined in Subsection In this section we compute/estimate fe  (n)(u) for all real u. To be
concrete, let € be a small enough positive constant. In Subsection assuming that c¢(a) > e, we

compute fe () (u) for u € [e + € c(a) — e] up to a constant factor C,p In Subsectlon we
compute fe, ) () for u € [c(a) + ¢ e+ & 1] up to the constant factor C,, 5. For u € (e + e
u € (—o00,e +¢€) and u € (c(a) — € c(a) + €) in case c(a) > e, we give an estimate of f¢ )( ) in

Subsection Note that throughout this section, u is always a real number.
To facilitate the computation of fe . (n)(u), we define some notations. For any m, define the
probability measure on R™

1 T B (e,
dum,ﬁ(xh s 7$m) = TB’A(JJD ceey xm)‘ﬁ H € va(xj)dl'l c. d.’Em, (38)
m, j=1
where Z,, g is the normalization constant. Suppose F(x1,...,%,) is an integrable function with

respect to the measure p,, g defined in , define the expectation of F' with respect to fi,, g by

Emg(F(21,...,2m)) = F(xi,...,xm)dpm g(T1 ... Tm). (39)
Rm

For u € R and w € C\ (—o0,u), define the functions in u and w

m

Zom3(,0) =B g | P,y it w) [ [ Xcoom () | 5 (40)

m
Zm,3(u,0) =B g | [Pmg(@, - @i, )| T X(Cooy (25) | (41)

Jj=1

where
m _7V("rj u — T )/B
J

Prng(@1, -, T 4, W) ]_;[ w_z)P2 (42)

and we take the principal branch of (w—x;)?/2 for w € C\(—o0, z;). For z < uwand w € C\(—o0,u),
define the function in x with parameter v and w

p(x;u,w) := =V (x) + 2log(u — z) — loglw — z|. (43)



We have

N

m
F(u,w) = By g | 7 2o plesiu) H . (44)

If w = v we denote
p(z;u) = p(z;u,u) = =V (z) + log(u — ). (45)

Then we can state the technical tool in the asymptotic analysis of this section:

Proposition 2.1. Let u > e and w € C\ (—o0, u].

(a) Suppose

w=u-+ i, where z = s + it is in a compact subset of C\ (—o0, 0], (46)
n
we have
_ Bz [dp(x)
Zusslw) = F T Ry e | S [tesiaut)| a4 om).

where Rg(u) is defined in (192]).
(b) Suppose

w=wy+1 where wy > u and ¢ is in a compact subset of R, (48)

NG
we have

_ Bpt2 du(f) 6t\/~f du(z) B
Zn—1p(u,w) =€ * 7 (wo—o) “0~* Rg(u, wp) exp [QTL/p(:B;u, wo)du(w)} (14 0(1)),

(49)
where Rg(u,wo) is defined in (191)).

(c) Let € be a small positive constant. For all w such that dist(w, (—oo,e]) > € and |w| < e}

Zu v Zuos ) = exp | 51 [ ol wldu(o)] 010, (50)
where the factor O(1) is bounded uniformly in w.

This proposition is a corollary of a theorem of Johansson [21, Theorem 2.4], and we put off its
proof to Section [

For the asymptotic analysis in this section, we define four types of contours: 37, . . II7, 'Y and

I?) where z is a real parameter and si, so and s are positive parameters. We assume sy > s1/ V2
for 37 . and allow s = oo in I'?. The contours II¥ and ¥7 . will be used in Subsections and

51,52 51,52

10



@ respectively. The contours I¥ and I'Y represent the local parts of 1I? and ¥? _ around the

51,582
point x respectively, which will turn out to be the saddle point in the asymptotic analysis.

Y. ., ={w(t)|teR}, where

51,52
x+e%t if 0 <t < sy,
x—l—e%sl—i—i(t—sl) if31<t<32—|—(1—i)81
w(t) = R TR
r—(V2—1)s1+ (1 +i)sg —t ift> s2+ (1= 5)s1,
w(—t) ift <o0.
T+ it if 0 <t<s,
I = {w(t) |t e R} where w(t)=qx+(1+i)s—t ift>s, (52)
w(—t) if t <0.
% ={w(t) |t €[-s,s]} where w(t)=z+ (it —|t])/V2. (53)
IT ={w(t) | t € [-s,s]} where w(t)=x+it. (54)
See Figures and [ for these contours. For any real number r, we define
E§1782(7‘) ={z¢€ Z§1752 | Rz >r}, Ii(r)={z€Ill | Rz >r}. (55)

The asymptotic analysis in this section is based on the contour integral representation of the
p.d.f. of the largest eigenvalue &pax(n):

Proposition 2.2. Let {nax(n) be the largest eigenvalue in the n-dimensional rank 1 [-external
source model for = 1,2,4, where the potential Vg(x) (or Vs(z)) is defined by from V(x), and
the external source matriz A, g (or Anﬁ) is defined by (6) (or (7)) from A, in (11) with a > 0.
Then for any integer n if 8 = 2,4 and for even integer n if 5 =1,

éG,’I’L’LU

énﬁ €2

_ Ynpg —Lnviw) e
Fewmton1) = S8 § 7y ), (56)

where C’nﬁ is a constant, Z,_1 g(u,w) is defined in , and C is either X5, o, defined in or
I1Z defined in with x > u.

The proof of Proposition is in Appendix [A]

2.1 Computation of f¢ ) (u) when u € [e + € c(a) — €

Assuming e + € < u < ¢(a) — €, we use the contour integral formula Of fenax(n) (1) and take the
contour C in as Hfr(la), which is defined in (52)). Here 7 is a large enough parameter such that
the inequality holds. For w & Hfr(la), we parametrize it by w = w(t) as in with = ¢(a)
and s = 7.

11



r— 3L +is - j
\/ + 159 T +1s
3mi
r+e+ s
x x
5mi
r+e1 s
S1 N
T — 2k —1s ‘
. V2 ?] . x—1s
Figure 1: The contour 5, ,, Figure 2: The contour I1¢
3 T +1s
r+ets
T x
L .
€T _|_ e 4 xr — 18
Figure 3: The contour I'Y Figure 4: The contour I?

Let L be a positive number. For sufficiently large n, the contour I @) g part of Hﬁ(la). By

L/Vn
Proposition [2.1fb)| for w = ¢(a) + it/y/n € Iz(/af, the integrand in the contour integral of
satisfies
s a(uw) T G (S pemet@)n(e) ract) Rolel@) gy sy
T w —w)fr CORMEE

Using the asymptotic formula , we have the result

5(177/11}
QLﬂ'i o an’ﬁ(%w)(wejwdw - \}ﬁe’gn(fP(m;u,c(a))d#(z)+ac(a)>Mﬁ(u)(1 +ei(L,n)), (58)
L/vn
where
MB(U) _ Rﬁ(u C( )) (59)
78 [ ity (c(a) — u)P/2

and €1(L,n) is small if L and n are large. To be precise, for all € > 0, there is an L; > 0 such that

for all L > Ly, |e1(L,n)| < € for n large enough
(a)

For w in a bounded subset of HW1 \ we use Proposition [2.1f(c)|and estimate the integrand

L/vn’
of the contour integral of ( .
eganw B 7 1
_ 5nP(u,w)
Zp-14(u, w)i(w—u)ﬁﬂ e2 e —u]ﬁ/QO(l)’ (60)




where

P(u,w) = /p(x;u, w)dp(x) + aRw, (61)

and the O(1) factor is uniformly bounded. Below we show that P(u,w(t)) decreases fast enough
as t increases and t > 0. By the symmetry of the contour Zf:fﬁ; " about the real axis, we see that

P(u,w(t)) decreases fast enough as ¢ decreases and t < 0.

If w(t) € Hfr(la) \Iz(/a\)/ﬁ with ¢ > 7, i.e., w is in the ray from c(a) + im to —oo, we have

dP(u,w(t)) cla) —x+m —t
i = s

—a. (62)

If mp is large enough, we have that for all ¢ € [m,00) and all x € J, there exists ¢; > 0 such that

cla) —x+m —t 1

—c1. 63
W —a?  e@-z " (63
Hence we have R
dP(u,w(t) _ [ du() _
dt</c(a)—x c1+a=—ci. (64)
For 0 <t < 7y, like and , we have
dP(u, w(t)) / t
= d —cot < 0 65
- ) ) < —eat <0, (65)

where ¢ is a positive constant depending on 7. )
Let Ly be a large enough positive number such that —L; < ¢(a) and the inequality holds.

By Proposition [2.1(c)| and inequalities and ([65)),

NG

L Zoa () v =z exp | Bl /i) | O()
211 (H:}(la)(*Ll)\Iz(/a\)/ﬁ)mC-&- (w — ’LL)/B/ 2

(66)
where the factor O(1) is bounded uniformly in L. Substituting the Taylor expansion (210]) of

p(z; u, w) into , we find

Bnp 8 . _BL2? [ du(a)
e3nPlun(L/Vi) - oSn(f plue@)du@)tac@) (=53 Taro2 4 o(1) ) . (67)
We write like (58)
1 eganw 1 s ( )
— Zn1, (U, W) —————=dw = —e2" J p(zu,c(a))dp(z)+ac(a) ea(L,n).
271 (Hsr(la)(_il)\lz(/a\)/ﬁ)m(ch B ('LU _ ’U,)B/2 \/ﬁ

(68)
By and @, we find that ez(L,n) is small if L and n are large. To be precise, for any € > 0,
there exists Ly > 0 such that for all L > Lo, |e2(L,n)| < e for sufficiently large n.

13



If we (H,Cr(la) \Hfr(la)(—il)) NCy, ie., wis in the ray from c(a) + im; to —oo and Rw < — L,
since |w — \j| > m for all \; € R, by we have

B n—1
|Pr—18(21, .oy Tn—1;u, w)| <y 2 (1) H e‘gv(mi)(u — ;)P (69)
j=1
Hence substituting into , we have
_B(n-1 A
Zn1 s, w)| < oy 2"V By g(Bur g, w0 1510)), (70)
where 5 )
. 52700 (<V(zj)+2log(u—xy))  if . A
Fuoap(@nse o ansu) =4 P A €6
0 otherwise.
Similar to (206]) and (201), we have (see Remark
Eno15(Fo15(1, ..., 2n_1;u)) = e2n) ~V@F2leg(u—a)du(@) (1), (72)
Lyl 0) = o +"e5n =V 2I0R=) (1), (73)

where in w e (Hfr(la) \Hfr(la)(—ﬂl)) NC,, and the O(1) factor is bounded uniformly in w. Taking
s = —Rw, by substituting the estimate of Z,_1 p(u, w) into (56]), we have

— 18Uy w)————dw
27TZ (Hﬁ(la)\ﬂﬁ(la)(fil))ﬂ@r " ﬂ (w — U)B/Q
B
) 4
Si OO 7.‘.Ignegnf7V(96)+2log(uf:z:)du(x)0<1) € Qan's ds <7 )
2m )1, |—s — u+ im |P/2

:egn(f ~V(z)+2log(u—=z)dp(z)—log(m)—ali) O(n_l)

)

where the O(n~!) factor is uniform in L;. For large enough L,

/—V(:c) + 2log(u — z)dp(z) — al —logm < /p(x; u, c(a))du(x) + ac(a). (75)
Substituting into , we have
8
1 ez 1 s .
P Zn-1,(U,w) ————=dw = —efn(fp(xvu’c(“))d“(x”“c(a))0(1). (76)
271 (H;(la)\(nfr(la)(*il))ﬂc-‘r A (U) — U)ﬁ/Q \/ﬁ
The results of and give an estimate of the contour integral on (Hﬁr(la) \Iz(/a\)/ﬁ) NCy.

The integral on (H,Cr(la) \Iz(/a\)/ﬁ) N C_ is similar, since both the contour and the integrand are
symmetric about the real axis.

Therefore, by (58)), and (76), we have that for u € [e + €, c(a) — €,

fgmax(n) (u) :C’nﬂge*gnv(wLegn(fp(w;u,C(a))du(w)Jrac(a)) (MB(U) + 0(1))
n
n b B pv@du(z)  En(—V (w)+2g(u)—0)  EnH(c(a)a) [
:CnBTC 2 ) V(@)dp(@) gy n(=V () +2g(u)=0) o nH(c(a)ia) (MB(U)+O(1)> (77)
’ n

=, g1/ 2 A0 -V 1260600 ( K1,(0) + (1))
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where g(u) is defined in (17), H(c(a); a) is defined in (21]), and

A~

Cnp:= Cn,[gnﬁ/Q_le_g”fV(z)d“(x). (78)

2.2 Computation of f¢ ) (u) when u € [c(a) + €, e + 7]

Assuming c(a) + € < u < e+ é !, we use the contour integral formula of fe .c(n)(u) and take
the contour C in as £ which is defined in . Here o is a small enough parameter and

01,02
09 is a large enough parameter, such that the inequalities and hold. For w € ngg; 1, we
parametrize it by w = w(t) as in with z =u+n"1, sy = 01 and s9 = 09.

Let L be a positive number. For sufficiently large n, the contour F%J/r:_l is part of yutn—t, By

01,02
Proposition 2.1(a)| for w =u+z/n € T the integrand in the contour integral of satisfies

L/n
eganw 8 ( ) 6%(a_f %(;))
_ o5n(/[ plauw)du(z)+au
anlﬁ(l@ w) (w o ’U,)B/Q =e? Rﬁ(u) (Z/n)ﬁ/Q (1 + 0(1))’ (79)
Hence
1 3 aNW
% FZ}LTL71 ZTL—LB(“’? U)) ( B U)’B/z dw
(et

5/2-1 ([ padut@rran) oy L[ €0
/1 Ry |, =1 +o(D). 80

Using Hankel’s contour integral expression of Gamma function (See [I}, 6.1.4]), we find

1o FlTEE) g du(@)\127" /B
e O ) | IO o

Comparing the integral on the right-hand side of with the left-hand side of , we write
analogous to that

[

1 eganw

— ﬁn riu x au
2t o Do) s dw = n 2RI My(u)(1 + ey( L)), (82)

2 Jpytnt
Matw) = Rafu) |5 (= [242)) r<§> (33)

and the term e3(L,n) is small if L and n are large. To be precise, for any € > 0, there is an Lg > 0
such that for all L > Ls, |e3(L,n)| < € for sufficiently large n.
Let Lo be a large enough positive number such that —Ls < u — 01/+/2 and the inequality

holds. For w € E'gig;(—JiQ) \I‘Zﬁfl, we use Proposition [2.1f(c) and find that still holds.
1

If w= w(t) € Egjg; and 0 < ¢t < oy, i.e., w is in the line segment between u + n~

where

N1

and

-1 3mi
u+n""'+e 1 o1, we have

dP(u,w(t)) (u—x+n"1)/V2—t a
S ah o e .
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By (24), we know that H'(u; a) is a positive number. If oy is small enough, for all ¢ € [0,01] and

all x € J 1y/v2
(u—xz+n"")/V2—t 1 1 1 ,
— 1—— | H(u; . 85
wi =~ valu—e T g e (85)
Hence for 0 < ¢ < g1, substituting in , we find with the help of
dP(u, w(t)) 1 a
— — 2 )H(u: d -
. \[/u_er( ;) o) [aut) - 5 “
1 1 1
———H’ ua +(—> H' (u;a) = —=H'(u;a).
S+ (5 - 5 ) Hlwa) = —5H ()

Ifw=w(t)e Zﬁ,‘f;‘; and t > o9+ (1—+/2/2)0y, i.e., w is in the ray from u+n~1 —o1/v2+i0s
to —oo, like we have

dP(u,w(t)) :/u—x+nl+02—(\/§—1)01 —t

o (D) — a]? du(x) — a. (87)

If o9 is large enough, like we have that for all ¢ € [o9 4 (1 — v/2/2)01,00) and all z € J, if n is
large enough

u—x+nt+os—(V2—1)o; —t 1 1.,
-H'(u;a). 88
lw(t) — x|? Su—z "2 (u3.) (88)
Substituting into , we find that like , for t > o9 + (1 —v/2/2)0y
P(u,w(t) _ [du@) 1., -
“H'(u:a) —a= —-H'(u;a).
) < [ i) - a =~ B (uia) (59)

Ifw= w( ) c yutnt and o1 <t < o3+ (1—+/2/2)0q, ie., wis in the line segment between

01,02

u+nt+eiopand ut+nt — 01/V2 +ioy we have

dP(u, w(t))
dt

Thus by , , and , we find that for a fixed Lo, similar to ,

= _/ ccllt log|lw(t) — z|du(x) < 0. (90)

1 / ez anw
— T () — S duw
2mi J(sutn,t (~La\ren e, o )(’w—U)ﬁ/Z

1 [LrutnT o2+ (V2-1)o1
<—
27 L/n
L4u+n—t4o34+(vV2-1)o -
L T b L g (91)
21 Ji/m w(t) — |2

—nLexp [gnfv(u, w(L/n»]

Zn—l,,@ (uv w(t))

[w(L/n) — ]
1

—ps-1 BB
=n exp [2nP(u,w(L/n))] 1 +6321L|5/20(1),
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where the last factor O(1) is bounded uniformly in L. Substituting the Taylor expansion (207)) of
p(x; u, w) into (61), we find that like

egnp(u,w(L/n)) _ egn(fp(:v;u)du(x)Jrau) <€ QIIM_% + 0(1)> . (92)

Like , we write

8
i » Zn—l,ﬁ(“v w)dew — s le 7n<fp(x u du(w)-i—au) 4(L, n)
2mi Jsuiny LAy Ny (w — )b/
(93)
By and , we find that e4(L,n) is small if L and n are large. To be precise, for any € > 0,

there is an Ly > 0 such that for all L > Ly, |e4(L,n)| < € for sufficiently large n.

Like , we have

eganw

: /
— Zpn1.5(t, W) —————dw
2mi Jsutn s (—Ea)ney Ll )(w —u)?/?

01,09

€§n(f —V(z)+2 log(ufm)d,u(:p)flog(og)fa[iz)O<n—1)’ (94)
where the O(n~') factor is uniform in Ly. For large enough Lo,
/—V(x) + 2log(u — z)du(z) — log(oa) — aLly < /p(a:; w)dp(z) + au. (95)

Substituting into , we obtain

B
1 3w
Py 1 Zn71,6<u7 w)

; dw = n,B/Z—legn(fp(z;u)dy(m)+au)0 1. (96
2mi J(mutnot\mutnt (CLo))ney (w — u)B/? (1). (96)

The results of and give an estimate of the contour integral in on (E};jgg \

FZ%L ) N C4. The contour integral on (Egj;g \F%J/“: ) N C_ is similar, since both the contour

and the integrand in are symmetric about the real axis.

Therefore, by (56, . and (96), we have that for u € [c(a) + €, e + &1,
Fewanto () =Cge™ 37V 0P (PRI 0 (M () + 0(1))
=Cy, 5¢ 2S5 (Mp(u) + o(1)),
where G(u;a) is defined in (20), Mpg(u) is defined in and C,, g is defined in (78).
2.3 Estimation of f¢,  (n)(u) when u € (c(a) — €, c(a) +€),u>e+é ' oru<e+e
2.3.1 wu€cla)—éc(a)+€ orucle—¢ée+¢

In this subsubsection we use the inequality that if u; < ug and w € C\ (—o0,uz), then
anl,ﬁ(uhw) < ZAnfl,ﬁ(ula ’LU) < anl,ﬁ(u%w)' (98)
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The inequality is a straightforward consequence of the definitions and of Zp—1 g(u,w)
and Z,_1 g(u, w).

For c¢(a) — € < u < c(a) + €, we use the contour integral formula Of fenax(n) (1) and take the
contour C in as Hfr(;)ﬁg, which is defined in (52). Here 7y is a large enough parameter such
that the inequality holds. For w € Hfr(za)+2€, we parametrize it by w = w(t) as in with

x = c(a) + 2€ and s = m. From we have for all u € [¢(a) — €, ¢(a) + € and Lg > —(c(a) + 2€)

! / Z (u, w) s dw| <
-— i n—1,8U, W) T———77 <
2mi M+ _F ey g (w —u)P/2
1 c(a)+2e+ L3+ 2 ~ . eganﬂ?(w(t)) " 9
% . nfl,ﬁ(c(a) + €7w( )) |w(t) — u]ﬂ/Q : ( )
For w € Hfr(za) +2€, we use Proposition and find like
BanR(w(t)) -
; : e’ _ EnPlela)+éw(®) 1
Lip_ ,w(t) —————= = e2 ——=0(1). 100

Like , we have that for w2 large enough, for all ¢ > w9 and = € J, there exists ¢} > 0 such that

(cf. and (64))

dP(c(a) + € w(t))
dt
For all 0 <t < 7w and x € J, we have like and that

< —d}. (101)

dP(c(a) + & w(t))
dt

Let L3 be a large enough positive number such that the inequality (T05]) holds. By (100)), (101)
and (102)), we find like

1 Lz+c(a)+2e+ms N egan%(w(t))

o ), Zn—1,5(c(a) + € w(ﬂ)wdt =

egn(fp(a:;c(a)+€,c(a)+2€)du(:v)+a(c(a)+2€))O<1)' (103)

<0. (102)

Like and , we also have

1

2mi AH%“”*\(H%“”*(Z3)>mC+

(
egn(f —V(ac)—&-Zlog(u—:z:)du(ar:)—10g(7r2)—a[~/3)O(n—l)7 (104)
where the O(n~!) factor is uniform in Ls. For large enough Ls,

/—V(a:)+2log(u—:1;)du(x)—logWQ—ang < /p(x;c(a)+€, c(a)+2€)du(x) +a(c(a) 4 2€). (105)
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Substituting (105)) into (104)), we have

1 eganw

Zn—1,ﬁ(u,w)mdw =

egn(fp(x;c(a)+€,c(a)+2€)du(a:)+a(c(a)+2€))0(1). (106)

21 J (el 2o\ (et (— La))nc,

The results of (103)) and (106]) give an estimate of the contour integral on Hfr(;)Hg NCy.

The integral on IImy 2N Cl s similar, since both the contour and the integrand are symmetric
about the real axis. Thus we obtain

Jemax(n) (u) :C‘nyﬁe*QV(U)egn(I P($§C(&)+€,c(a)+2€)d,u(z)+a,(c(a)+2g))O(l)

) y ) ) ~ (107)
—C,, g P26 S H(E(@)+280) G-V (ela) +)+28(e(a) +9)~O+(V (ea)+O) -V (@) O (1),

For e — ¢ < u < e + € we use the contour integral formula Of fenax(n)(u) and take the

contour C in as H,Cr(z,,“)ﬁg, the same as in the c(a) — € < u < ¢(a) + € case. We also apply the
inequality , and like (108) have for all u € [e — €, e + €]

eganw
Zn_LB ('LL, 'Z,U) mdw

1 c(a)+2e+L3+m .
anl,ﬁ(e + €7 ’Ll)(t))

1

— <
2mi /ler(g,a))+25(Z3)ﬁ(C+

o5 anR(w(t)) ;
[w(t) = ulPP?

Then we can find estimates similar to (103) and (106)), and obtain the estimate of f¢ _ (n)(u) similar
to (107). We only state the result that for u € [e — €, e + €]

L t. (108
o7 /. (108)

fgmx(n)(u) _ Cnﬁnl*ﬂ/QegnH(c(a)JrZé;a)6gn((fV(e+€)+2g(e+€)7€)+(V(e+€)7V(u)))0(1)7 (109)

and skip details.

232 u<e—¢éoru>e+él

In this subsubsection we first consider f¢ . (n)(u) for u < e—¢é We use the contour integral formula
of fe, .i(n)(1w) and take the contour C as IIg. Here my is a large enough parameter such that

the inequality (114)) holds.
We let C: be any positive number, and define

Cy = max(—V(x) + log(e — z)). (110)

r<e

Let fz(x) be a function on R such that

(1) fe(z) satisfies conditions |(1)H(iii)| mentioned in Proposition

(2) On (—o0,e — ¢
fe(z) = Cv (111)

and fz(x) is decreasing on (e — €, 00).
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(3)
/fg(a:)du(:r) < —C.. (112)

For w in the line segment of Hfrjg from e + € — imy to € + € + imy, for all z < u

p(z;u,w) =—V(z) + 2log(u — =) — log|lw — z|

113
< —V(z)+2log(e —x) — log(e —z) < Cy. (113)

On the other hand, we assume that m4 is large enough such that for all x < e,
—V(z) +2log(e — x) —logmy < Cy. (114)

By (111) and (114), it is straightforward to check that for all w in the two rays of II&"¢, from
e+ €+ 1imy to —oo and from —oo to e + € — imy respectively, and for all x < u

p(z;u,w) < Cy. (115)
Then by (113)), (115)), and (44)), we have for all w € I1&
Zn,5(0,0)] < Zn1,p(u,w) < By g (o5 Dm0 F)). (116)
By Proposition and ,
By (€220 00 = e5nCeo(1), (117)
Using the estimate and of Z,,_1 g(u, w), we find by direct calculation

1 egnaw

il — oanlale+d)—Ce)
o /Hf}f Zn-1,8(u, w) (w = u)ﬁ/de e? O(1). (118)

Thus by

fﬁmax(n) (U) :CA'n”Be_gnv(u)egn(a(e-i-g)_(jg)O(l)

5 B (119)
=C, ﬁnl—ﬁ/2€§n(fV(u)+a(e+e)fC’g+f V(ac)d,u(m))O(l)

Note that Cz can be any number, and the last O(1) factor in (119)) is bounded uniformly for all
u < e—Ee.

Next we consider fe ) (u) for u > e + €71, We use the contour integral formula of
Jémax(n) (1) and take the contour C as quﬂ, which is defined in (52]).

Let
Vinin = min V(z), (120)
zeR
and denote
Cy = /(—Vmin —2z)dp(z). (121)
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For all w € H’f“ and x < u,

p(z;u,w) = —V(x) 4+ 2log(u — x) — log|lw — x|
) + 2log(u — x)

)+ 2(u — x)

Vinin — 22 + 2u.

<—-V(x
<—=V(z
S _
Thus similar to (116)), we have by (122]) that for w € qu“rl

’Zn_lvﬂ(u7 w)| g Zn—Lﬁ(u, w) S En—l,B (e ?;11(_Vmin_2xj+2u)) .

By Proposition [4.1]

En,LB (62?;11(,me72xj+2u)> _ egnf(*Vmin*21+2u)d#($)O(1) _ e%n(é’erQu)O(l).

Using the estimates (123)) and (124)) of Z,_1 g(u, w), we have like (118])

— egn((2+a)u+a+c~‘v)0(1)‘

1 €2naw
—_— /. —d
27 /1'[;“"1 n-1,8(u;w) (w — u)P/2 v

Thus by

Sn((24a)uta+Cy)

—C, ﬁnl7,8/2egn(—V(u)+(2+a)u+a+C~'v+f V(z)du(a:))O(l)_

Note that the last O(1) factor in (126 is bounded uniformly for all u > e + 1.

3 Proofs of Theorems (1.1}, 1.2} [1.3| and [1.4]

(122)

(123)

(124)

(125)

(126)

In this section we prove the main theorems in this paper. We divide the proofs into three subsec-
tions. In Subsection we consider the case that 0 < a < a. and the case that a = a, = %V’ (e)
and a. ¢ Jy, and prove Theorem In Subsection we consider the case that a > a. and
a ¢ Jy, and prove Theorems and EI@ In Subsection we consider the case that a > a.

and a € Jy and prove Theorems L. and

3.1 Proof of Theorem [1.1j(a)| when 0 < a < a,, or a =a, = 3V’(e) and a, ¢ Jv

First we consider the case that 0 < a < a.. Let € be a small positive number, such that e+¢€ < ¢(a)
and e +¢~ ! > c(a). Furthermore we assume that e is small enough such that the inequalities (127)),

(29) and (31) hold.

The condition 0 < a < a. implies the inequality H(c(a);a) > Gmax(a), see (25)-(30) and [3,

Lemma 1.2(d)]. We assume that

H(c(a);a) — Guax(a) > €,

21

(127)



where Gax(a) is defined in (27). Then by with € = ¢, for all u € [c(a) + ¢,e + €] we have

B

Sema(m) (W) = Cn,b’egnG’““(a)O(l) = Cn,gegnH(C(a);a)O(e_26").

We assume that for u,v € [c(a) — €, ¢(a) + €]
H(v+e¢a)+ (—V(u) +2g(v) — £) < H(c(a);a) —e.

Then by (107)) with é =€, for u € [c(a) — €, c(a) + €

B

B
fEmax (n) (u) = Cnaﬁe 2

nH(c(a);a)O(e—Een)_

We assume that for u > e+ e !,

~ V() + 2+ au+a+Cy +/V(x)du(:v) <H(c(a);a) + (e+e ' —u)—1.

Then by (126) with € = ¢, for u > e + ¢! we have uniformly in u
fEmax(n) (u) _ Cn,ﬁegnH(c(a);a)O(egn(e—i-e*l_u—l))_

Let C be large enough such that

ale+e) — C—V(u) + /V(a:)dp(m) < H(c(a)ia) +e—c—u—1.
Then by (119) with é = ¢ and C: = C, for u < e — € we have uniformly in u

BnH(c(a):a Brle—e—u—
ffmax(n)(u) = Cn,562 H( ( )’ )0(62 ( 1))

By (128), (130), (132), (T34), we find that

P(€max(n) > cla) —€ or &pax(n) <e—e¢) = CnﬂegnH(c(a);“)O(e_gm).

Let € < €/2 be a small positive number such that
o —V(u)+2g(u) — ¢ is decreasing on [e, e + 2¢'].
o —V(u)+2g(u) — ¢ attains its maximum on [e + 2¢’, c(a)] at e + 2¢'.
o Let ¢ := —(—V(e+2€¢)+2g(e+2¢') — £). Then ¢’ <e.
Then by with € = €, we have that

]P’(fmax(n) € [e + 26/7 c(a) _ 6]) — Cn,ﬁegnH(C(a);a)O(efﬁ n)’

and as n — oo
P({max(n) € [e 4 €, e 4 2€'])

C, ﬂegnH(C(a);a)ege”n

— OQ.
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The probabilities (135]), (136)) and (137) imply that the conditional probability

P(max(n) € [e+ €, +2€] | Emax(n) ER\ (e —€e,e +€)) — 1. (138)

Since [e+€',e+€]U(e —€e,e+2€¢) € [e —€,e+ ¢, implies that
P({max(n) € [e —€,e +¢]) — 1. (139)

Taking e arbitrarily small, we prove Theorem |1.1{(a){ when 0 < a < a..

The case when a = a, = 3V’(e) and a. ¢ Jy is similar. Let € be a small enough positive
number. Since a = 3V’(e), we have c(a) = e. Since a = a. ¢ Jy, there exists € > 0 depending on
e such that for all u > e + ¢, G(u;a) < H(e;a) — €. Thus like (128)), for u € [c(a) + ¢, e + ¢ 1] we

have 5

SnH(esa —Zéen
Femae(m) () = Cp g2 EDO(em24M), (140)

When € is small enough, (132)) and (134]) also hold. Then by arguments similar to (135)—(139)), we
prove Theorem when a = a, = $V/(e) and a. ¢ Jv.

3.2 Proof of Theorems and [1.1{(b)| when a > a, and a € Jy

Let € be a small enough positive constant such that the maximizer xo(a) of G(z;a) in [c¢(a), 00) is

less than e + ¢!, and the inequalities (T41]), (145 and (147) are satisfied.

First we consider the case that a. < a < 3V'(e), i.e., c(a) > e. We assume that
Guax(a) — H(c(a);a) > e. (141)
Then by with € = ¢, for u € (e + ¢€,c(a) — €) we have
Feran(m) (1) = Cp gn=2e 5 HE@ 0 (1) = €, 5e3"Cmax(@ O~ 5¢m), (142)
We assume that for all u € [e — €, e + €]
H(c(a) +2¢;a) + (—=V(e+e) +2g(e+e) =€)+ (V(e+e€) —V(u)) < Guax(a) —e. (143)
Then by with € = ¢, for u € [e — ¢, e + €] we have
Feman(m (1) = Cp ge 3" Cmax(@O (=5, (144)
We assume that for all u € [c(a) — €, ¢(a) + €
H(c(a) + 2¢;a) + (—=V (c(a) + €) +2g(c(a) + €) —£) + (V(c(a) + €) = V(u)) < Gmax — €. (145)
Then by with € = ¢, for u € [c(a) — €, c¢(a) + €] we have
Fean(m (1) = Cp ge 7" Cmax(@O (=3, (146)

We assume that for u > e 4+ e,

V)4 @+ a)utatCyt / V(@)du(x) < Gua(a) + (6 + ¢~ —u)—1. (147
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Then by (126) with € = ¢, for u > e + ¢! we have uniformly in u
fEmax(n)(u> _ Cn’IBegTLGmax(n)0<e§n(e+€71_u—1)). (148)

Let C be large enough such that

ale+e) — C—V(u) + /V(x)d,u(a:) < Guanla) +e—c—u—1. (149)
Then by (119) with é = ¢ and C: = C, for u < e — € we have uniformly in u

Sn a Bple—e—u—
Femae(n) () = Cp ge2"Cmax(@ 02 ). (150)

By (T42), (144), (T46), (T48) and (T50), we find that

P(ﬁmax(n) e+ e !or gmax(n) < C(a) + 6) = Cn,ﬁegncmaX(a)O(eigen) (151)
In the case that a > 1V’(e), i.e., c(a) = e, we find that inequalities (144)), and still
hold, and the estimate holds with c(a) = e.

For u € [c(a)+€,e+e” ] we have the asymptotic formula (97)) and zo(a) is the unique maximum
of G(x;a) in [c(a)+e, e+e 1. If we further assume that G” (zg(a ) a) # 0, by the standard Laplace’s
method we have that

2

zo(a);a)n

P(€max(n) € [c<a>+6,e+€1]>=\/ SreT M (o(a))Cp e 3G (1 4 o(1)), (152)
2

and for any 7' € R

T
P gmax(n) € ( + €, .730 —_
\/ G (xg(a);a)n
2 B
Mg(z0(a))Cp ez Cmax(0)((T) 4 o(1)). (153
\/ G g M) (@®(T) +o1)). (153)

The probabilities (151)), (152)) and (153) imply Theorem [1.2(a)

If the second derivative of G(x;a) vanishes at xg(a ) due to the analyticity of G(x;a), there
exists & > 1 such that GU)(zg(a);a) = 0 for j = 1,...,2k — 1 and G®*)(z4(a);a) # 0. By the
Laplace’s method we have

(20! 1/(2k)
P(émax(n) € [c(a) +e,e+€71]) = ("BG(2k)(:U(;(a)' a)n>
2 )

x/ e dx Mg (wo(a)) Cp ge 7Gx (1 4 0(1)), (154)

—00
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and for any T € R

_ B2k ) —1/(2k)
P gmax(”) S c(a) +e€,x0 + ( 2 (IL‘O(CL), a)n) T

(2K)!
1/(2k)
_ (2k)! T R
_<_§G(2k)(xo(a);a)n) /ooe dzMg(w0(a))Coype 2" (1 + o(1). ~ (155)

The probabilities (151f), (154) and ((155) imply Theorem [1.4(b)l Finally, Theorem implies
Theorem [1.1}(b)

3.3 Proofs of Theorem (1.3} [1.1}(c)| and [1.4) when a > a. and a € Jy

Let ap > a., and € be a small positive constant such that the inequalities (142]), (144]), (146, (148])
and hold with a = ag. It is easy to verify that there exists a positive number € depending on
€ such that if we take a = ag + €’ with ¢ € [—€, €, the inequalities (142), (144), (146]), (148) and
still hold with the same e. Thus the estimate of probability still holds with a = ag + €.

If we further assume that

€

c(a) >efao) — 3, (156)
€
Guax(a) >Gmax(ao) — 3 (157)
by (151)) we obtain that
P(Emax(n) > e+ € or Emax(n) < clag) + %) = CnﬂegnGmax(“O)O(e_ge"). (158)
First we assume that ag € Jy and G(z;ap) has r > 2 maximizers z1(ag) < z2(ag) < --- < x,(ap)
in (c(ap),00), and all of them are less than e + ¢~ 1. Further we assume that for all i = 1,...,r
G//(l’i(ao)) 75 0. (159)
We take o
a=ag+ —, (160)
n
where « is in a compact subset of R. Since a € [ag — €, ag + €] for sufficiently large n, the estimate
(158) is applicable to a.
For z around z;(ag) (i =1,...,r), we denote
_ &i
x = xi(ag) + . (161)
\/—QG”(xi(ao); ap)n
For &; in a compact subset of R and = given by (161)), we have
2
“1
P6(w0) =L G (mi(a)a) - L2 +0(n?)
D Goelan) + Baian): — 5L 4 0m-?)
9 max \ %0 2 i\¢0 n 2n .
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Let ¢ (i =1,...,r) be small enough constant numbers such that z;(ag) is the unique maximum of
G(z;a0) in [zi(ag) — €, xi(ag) + €. Applying the standard Laplace’s method to (97)), near z;(ay)
(i = 1,2), we obtain that

55
P(&max(n) S [l‘l(ag) eumi(ao) + Ez]) — egawi(ao)+7

- \/—BG//(;ZLO);ao)nMﬁ(x’(ao))C BBQnGmaX(GO)(l +o(1)), (163)

and for any 7" in a compact subset of R,

T
P gmax(n) S wi(CLO) 617551 aO =

\/ 5G"(xi(ap); ap)n

55
egawi(GO)"‘? M,B(Z'Z(CLO))CTL 5€2nGnnx(a0)(q)(T) + 0(1))7 (164)
—§G”(aci(a0)' CLo)

There exists €’ > 0 depending on €1, ..., €. such that for sufficiently large n
G(z;a) < Gax(ag) — €’ for z € [c(ag) + %, e+ e Y but x & (z;(ag) — €, zilag) + ). (165)

Then we find that the probability

P <§max(n) € [e(ag) + %,e + e 1\ U(xi(ag) — e, zi(ag) + e,)) =C, ﬂe2”Gma"(a°)O(e’§5””)‘
=1
(166)
Fori=1,...,r, let
B 27
Big(a) = ezowila) Mg (zi(a 167
s(0) \/ e Mylai{on) (167)
and
Bigla) (168)

Pigl@) = > i1 Bjpla)

From ([168]) we immediately find 2;21 pja(e) = 1. By (167)) and (168) we find that lim,—c0 prg() =
1 and limg——oo p1.g(0) = 1.

The probabilities (158]), (163]), (164) and (166) show that for any T'€ R andi=1,...,r

d S pip(a) | +pis(@)@(T) +o(1). (169)
\/ G” x, ao o)n j=

Therefore Theorem [1.3|is proved. Theorem [1.1{c)|is a consequence of Theorem [1.3| with o = 0.

Next we consider the case that r = 2 and for &k > 1

G (a1 (ag)) # 0, (170)
GO (29(a0)) #0, GD(za(a0)) =0 j=1,...,2k 1. (171)
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and take (see (35)))

logn « 2 % - ﬁ
a=ay—q 4+ —, where g¢g:=-— , 172
™ n b B z2(ap) — 1 (aop) (172)

where « is in a compact subset of R. For = around z;(a), we denote

&1

x = x1(ag) + ; (173)
\/—gG”(l‘l(ao); ao)n
and for z around zs(a), we denote
=Yelel) zo(ag); ag)n ~L7/(2k)
x = wo(ag) + < 2 ((2/6)(' )i ao) . (174)
For & in a compact subset of R and x given by (173)), we have like (162))
2
1
éG(m;a) :éG(m(ao);a) Jel +o(n™")
2 ; 5 2% ognta €1 (175)
_r s e S S -1
=9 Gmax(aO) + 21"1(@0) n 2n + O(n )
For & in a compact subset of R and x given by (174)), we have
1
0 G(eza) =2 Glaa(an): @) — € + o(n )
? ; I ! gslogn + « 1 (176)
= [l “4p s T okt -1
=5 Gax(ao) + 2302(@0) - & - +o(n™").

Let ¢; (i = 1,2) be small enough constant numbers such that z;(ag) is the unique maximum of
G(z;a0) in [z;(ao) — €, zi(ap) + €. Applying the standard Laplace’s method to (97)), near z1(ao),

we obtain similar to (163]) and (164)) that

e—ga:l(ao)q/g logn P
P(émax(n) € [21(a0) — €1,21(ag) + €1]) = ————=——e221 (@)

vn

’ \/5G//(jzr(ao);ao)Mﬂ(wl(GO))C"ﬁeQnGmX(aO)(1 +o(1), (177)

and for any T in a compact subset of R,

T
P | {max(n) € |x1(ag) — €1, x1(ap) + =
\/—gG”(azi(ao);ao)n
e’gm(ao)%logn 821 (ao) 2T M ( ( ))C BnG (0)(<I>(T) (1)) (178)
- e371l%0)a x2(ag))Cy, ge 2" maxid +o0 .
vn ~£G"(23(a0); ao) ’ ’
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Applying the Laplace’s method to , near xz(ap), we obtain

efgxg(ao)qﬁ logn 8 a(a0)
P({max(n) € [z2(ao) — €2, z2(ap) + €2]) = W&ﬂm o)

/(2k)
(2k)! G0 ( o )
X<—§G< (Go);a0)> Malra(a0))Cnse | Haarom).

26) (15

and for any T in a compact subset of R,

—1/(2k)
—§G<2k><xo<a>;a>n) T

P gmaX(n) € xQ(aO) - 627$2(a) " < (Qk)!

efgxz(ao)%logn 8 aa0) (2k)! /(2k)M oo
- c5%2(e0)a 22(a0))C,, e2n (a0
n1/(2k) “5G®) (21 (ao); ao) 5(22(a0))Cr,p

x (/_:; efgkdsﬁo(n). (180)

Also there exists €/ > 0 depending on €1 and e such that the estimate (166]) holds. The probabilities

(158), (166), (177), (178), (179)), (180]) show that the probability that &pax(n) is in [x1 — €1, 21 + €1]

or [zg — €2, 9 + €] approaches 1 as n — oc.

Let

D1 g ::egm(ao)a 27 M,B($1(Cl0)), (181)

7 —5G"(x1(ap); ao)

(2k)! 1/(2k) -
- . 2k
Dy g i=ezt2(m0)e Mgp(z2(a / 2 déy, 182
20 <_§(;(2k)(x2(a0). 0)> s(z2(ao)) . &2 (182)
and for i = 1,2
D; s(a

pigla) == i9(0) (183)

D1 g(a) + Dap()
From (183]) we immediately find that p; g(o) +p2 g(c) = 1. By (181)), (182) and (183]), we find that
limg—y00 P2,8() = 1 and limg—, oo 1 g(cr) = 1.

Because
67§x1(a0)q5 logn efgzg(ao)qﬁ logn
= , (184)
Jn 1/ (2k)
We further find from (177)), (178), (179), (180) that for any 7' € R
T .
P émax( <2 aO - pl,ﬁ(a)<(I)(T) + 0(1))7 (185)

\/ GH 1L'1 CL(] o)n
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—1/(2k)
—gG(%) (zo(a); a)n)

P | max(n) < x2(a) + < (2k)!

Therefore Theorem [I.4] is proved.

4 Proof of Proposition [2.1

The proof of Proposition is based on a theorem of Johansson [21I]. For the convenience of readers
we state it bellow.

Proposition 4.1. [2], Theorem 2.4] Suppose the function V satisfies Conditions J@ and (s
the equilibrium measure associated to V. Let f be a real function that satisfies conditions
below, with s =2 if B =2 and s = 17/2 if B # 2. Then there are a quadratic functional A on f
and a signed measure v on supp(p) = J = [by, ba] which do not depend on n, such that as n — oo

log En-1,5(eE11 1) = (n=1) [ f(a)auta) + (; - 1) [ @)+ 2aep o). (57

The quadratic functional A is defined by
1
A =5 [ $@3f @) (188)
J

where 67 is given by

Flpy— L 1 o[ EOVs b =)
o) =53 g /J — ds. (189)

From the quadratic functional A, we define the inner product (-,-) 4 by

(F.9)4 1= 5(A(f + ) — A() — Alg). (190)

The explicit formula of v(z) is more complicated and is given in [21], Formula (3.54)]. The conditions
mentioned in Proposition [4.1] are (see [21, Page 157])

(i) f(x) < C(V(x)+ 1) for some constant C, all x € R.
(ii) |f'(z)| < q(z) for some polynomial ¢(x) and all x € R.

(iii) For any x¢ > 0, there is an a > 0 such that hi,, € H*** where H®, s > 0, is the standard
L? Sobolev space, and 1, € C*™ is the function such that 1., (z) = 1 if |z| < xg, Vg, (z) =0
if |[x] > x0+ 1 and 0 < )y, () < 1.
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The function Rg(u,w) appearing in Proposition is defined by

Raww)i=exp |5 (5 1) [otaswwivte) - [ ptaswwiduto) + At | oy
for u € (e,00) and w € C\ (—o0,u). If w = u, we denote
Rg(u) :== Rg(u,u). (192)

To facilitate the proof of Proposition we define

Zmg(u,w;c) =Epm g | Png(x1,...,Tm;u,w) H X(=o0ye) (T5) | 5 (193)
j=1
m
Zmg(,w;¢) =B g | |Prp(@r, - mmsu,w)] [ [ X(cooe (@) | 5 (194)
j=1

where ¢ is a parameter no greater than u. When ¢ = u, Z,, g(u, w;c) and Zmﬁ(u,w;c) become
Zon 5w, w) and Zy, 5(u, w).

The proof of Proposition is as follows. Recall that e is the right edge of J, the support of
the equilibrium measure. Let ¢ = (e + u)/2. We write

. _ (Zn_l’g(u,w;c) n Zn—1p8(u,w) — Zn_l,g(u,w;c)> . (195)

Zn—l,,@(ua ’U)) = Zn—l,ﬁ(ua w; C)

~

Zn—1,8(u, w; ) Zn,l,g(u,w;é)

In case @ where w is given by , we assume the results

Tn1,5(u,w) = 2 Ry(u)e s 2@ (1 4 o(1)), (196)
oo 5, 05 6) = fdf(’;) Ry(u)en I edet@) (1 4 o(1)), (197)
Zn1p(w, wi0) :e_%f%@ +o(1). (198)
Zn—l,ﬁ(uvw;é)

Then we have

Zn— B Zn— ,W; €
. < naptw) Lo(:WiE) _ ) (199)
Zp—15(u, w;c) Zn—1,8(u,w;c)

and find that is the consequence of (196]), (197), (198) and (199).

In case @ where w is given by (48)), we assume the results

Zn-18(u,w) — Zy_1 g(u, w; ¢)

. Bt2f dp (=)

Zn—1.8(u, w) =e wo-7 R (u, wo)e s S P@wwo)dn(@) (1 1 o(1)), (200)
. Bt2 f dp(z) d
Zn—1,5(u, w; c) =e (wo—)* Rg(u, wo)e 2™ PEmwo)di(@) (1 4 o(1)), (201)
Y/ i C _;Bt dp(z)
“n 1”3(’UJ,’LU,C) —e V2 vn [ wg—z 4 0(1) (202)
Zn—15(u,w;c)
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We still have , and (| . is the consequence of (200)), (201)), (202)) and -

In case -, we assume

Zn-15(u,w) = Rg(u, w)egnfp(x;u’w)d“(x)(l +o(1)). (203)

Then we immediately obtain .
Below we prove the asymptotic formulas (196]), (197), (198)), (200]), (201)) and (203).

Proof of (196)), (197), (200]), (201) and (203). In the proof, ¢ stands for ¢ = (e + u)/2 or w.
For fixed u, w and ¢, let fi(x) and fo(x) be two functions on R, such that

(1) fi(x) and fo(x) satisfy the conditions mentioned in Proposition

(2) f1(2) = folte) = plasu,w) for z < e.

(3) fi(z) > p(z;u,w) for z € (e, c).

(4) There exists 2 € (e, c) such that fo(z) < p(x;u,w) for x € (e,x9) and f1(z) — fao(x) > log2

for x > xg.
As a consequence of the properties of f(x) and fa(z), we have

2En—1,8 (eg Z?;ll f2(>\1)) _ En 1,3(62 Z;L 11f1(>\1))

n—1

< Enfl,ﬁ |Pn71,ﬁ(xla -y Tn—15 U, 'U))‘ H X(—o00,c) (mj) (204)
j=1

<En_1 /3 (egzyz_ll f1(>\1)> )

By Proposition [£.1] we have for both ¢ = 1,2 that

E,_1 5(62 Dy, £y = exp [(n —1) / gp(l‘; w,w)dp(x) + (; - 1) / gp(:n;u, w)dv(x)

+BA <5 (z;u w)>] (1+ o(1)) (205)

~Ro(uw)exp | G [ s wldn(o)] (14 o(0)

Thus by the sandwich inequality (204) and (194]) we obtain

n—1

Zp-18u,w;c) =En_1 8 | |Poo1,(x1, ..., Tpn1;u,w)| H X(=o0,0) (T5)
j=1 (206)

gty exp | [ plos v w)duo)| (14 of0)

By (206]), we complete the proof of (203) with ¢ = u. Let w be given in , we have uniformly
for all x < e that

p(w;u,w) = p(z;u) — ——n~1 +0(n"?). (207)
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Thus
Rg(u,w) = Rg(u) + O(n™1) (208)

and

_Bs dp(=z)

o [ [l wwyduto)] = F T e[ G [padnto)] @+ 00, (209)

and we obtain the proof of (197) with ¢ = ¢ and the proof of (196]) with ¢ = u. Let w be given in
, we have uniformly for all z < e that

2
p(@;u, w) = p(z;u;wo) — m”fl +0(n?). (210)
Thus
Rg(u,w) = Rp(u,wp) + O(n™h) (211)
and
s _ B2 _du(=) B
exp {2n/p(x;u,w)du(x)] =e * 7 w2 exp [Zn/p(x;u,wo)du(x)] (1+0(n)), (212)
and we obtain the proof of (201]) with ¢ = ¢ and the proof of (200) with ¢ = w. O
Remark 4.1. By the same method, we can evaluate En,lﬂ(ﬁn,l,g(ml, .y Tp_1;u)) where an,ﬁ
is defined in .
Proof of (198)) and (202]). We consider (—o0,&)"~! as a probability space with the probability mea-
sure
1
flpnfl,ﬁ(wh s Tp—15U, w)‘dﬂn—l,ﬁ(xlv B ,$n_1), (213)
Zn—18(u,w;c)

where dyi,—1 g(x1,...,2n-1) is defined in . Let S 3 be a random variable on (—oco,é)" !
such that

n—1
w 1
Sn7175(x1,... 7.7)”_1) = Zargm y (214)
j=1 J
where the range of the argument is taken to be (—m,7].
We define
1 —-1/2
oy :=A < ) (215)
v—x
for any v > e. For w given in , we will show
w Bt [ du(z)
E(Sy 18) =— S a2 o(1), (216)
1 e
P(n(Sy_, 5 — E(S,_ <T :/ e 2t*0u/Bdx + o(1), 217
(S5~ BN <D = | 1) (217)
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and for w given in , we will show

BSi1 ) == v [ S o) (218)
P(V(SI1,5 — B(SY_1)) < T) = WW / ¢ TR drtol).  (219)

Assuming (216)) and -, we find that S ; 5 converges in probability to — 8¢ f P x , and ({198
is proved. Assumlng and (219), we find that S, st g END f o gcx converges in probability

to 0, and (| is proved
To prove 1} we denote for x < ¢ the function

1

gs(z; w) depends on n, but we suppress that dependence to economize on notation. Let w be given
by , uniformly for all z < ¢

Bt 1

SRy O(n™1). (221)

gp(w;w) = —
Define the (n — 1)-variable function

n—1 . . _
_ Poo1 (1. Tp_1; 1, w)erzi:l gp(wjiw)  if maxi<j<n—12j < G,
Grp(1,...,Zn—1;u, w;C) ==

0 otherwise.
(222)
We have (comparing with (194))
w En— GT yere s In—15U, ;€
E(ernsnfl,ﬁ) _ 17/3( 15(551 €z - 1; U, W C))7 (223)
Zn—1,8(u,w;c)
d rnSY
NE(SILy ) = g B (224)
For any r € R, analogous to (206)) we have
lOg En—l,ﬂ (GT,B(:EL sy Tp—1; U, W é))
2
=(n—-1) /rgg(x; w) + p(z;u, w)du(x) + (ﬂ - 1) /rg/g(ac; w) + p(x;u, w)dv(zx)
2
=log Z,_1.5(u, w;¢) + 7 [(n -1) /gg(x; w)dp(z)
2 4 272
+ <ﬁ - 1> /gg(:z:; w)dv(z) + B(gg(a:; w), p(x;u, w)) 4 ] + ?A(gﬁ(l‘ ;w)) +o(1),
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where we use (201)) in the last line. Using the Cauchy-Schwartz inequality, we find (for notational
simplicity, we write G, g(21,...,Zn—1;u, w;¢) as G, g if there is no confusion)

2

s logE,—1 8(Gr (1, ..., Tn—1;u,w;C))

2
=En15(Gr) "% |En 18 <ZQB$W> Grp | En-1,8(Grp)

(o) en)e)

>0.

(226)

Hence log E,,—1 3(Grg(1, - .., Zn—1;u,w; €)) is a convex function in 7. For any € > 0, by ([224)

log En—l,ﬁ(G—e,B) - anl’g(u,w; E) < dlog En,Lg(GT’ﬁ)
—€ dr

=0 (227)
<10gEn_175(G B) — Zn—1,8(u,w;c)

Taking € — 0, by , and we have
2 4
nE(Sy 1 5) = (n—l)/gﬁ(w;w)du(w)Jr( - 1) /gﬁ(x;w)dV(xH6(95(w;w),p(ﬂc;u,w)>A+0(1),

5
(228)

and by .
B = [ gatwutduta) +o(n) = =5 [P 4o (229)

u—x
To prove -, we consider the moment-generating function of n(Sy_, 8 —-E(SY, ﬁ . By (223)
we have
Myse | ~E(se, (&) =E(exp[En(Sy_y 5 — E(S515))])
En_15(Gep(A1s - Adn—15u, w3 €)) (230)
 explen B(SY 1.8 Zn-1,8(u, w;¢)

Then by (225 and (228]) we have

Mysw |

2

v, o (€) =exp [QEA(gﬁ(a:; w)) + 0(1)]

pta¢? 1
=e A ].
Xp [ 5 ) to|
where in the last step we use (221]). The convergence of moment-generating function (231)) implies

(217).
To prove (218]), we denote for z < ¢ the function

E(S
(231)

G (s w) = \}ﬁ%(a:;w) — Vnarg W (232)
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gs(z;w) depends on n, and we suppress the dependence to economize on notation. Let w be given
by , uniformly for all z < ¢

_ Bt 1

gg(x;w):—2 wy — T

+0(n™h). (233)
Like (228)), we have

VARSI 5) = (n=1) [ Gatasw)dn(e) + (; - 1) [ a5t wtvta)
+ §<gﬁ<z; ), plasu,w)) 4 +o(1), (234)

and by (234) we obtain

BSH10) = Vi [ Gatasw)dute) + o)) = =2 [ DU 4 o) (235)

and complete the proof of (218]).
To prove (219), we consider the moment-generating function of \/n(Sy_; 5 — E(S} 5)). Like
(230]) and ([231f), we have the convergence of moment-generating function

M\/ﬁ(sgfme(s;ffm))(f) =E(exp[évn(Sy_1 5 — E(Sy_14))])
2
= €eXp [EA(§B($§ w)) + 0(1)} (236)
242
=exp [57525 A <w01— x) —1-0(1)} )
which implies . O

Acknowledgments The author thanks Mark Adler, Jinho Baik, Kenneth D. T-R McLaughlin
and Peter J. Forrester for helpful comments, and anonymous referees for careful reading and valuable
suggestions on presentation.

A Contour integral formula of the joint p.d.f.s of the eigenvalues in
p-external source models with § =1,2,4, and f-external source
model for all g >0

The goal of this appendix is two-fold. We prove Proposition and also propose the definition of
the S-external source model.

Remark A.1. The strategy in this appendix has appeared in [25, Appendix| independently for the
purpose of proof of [25, Theorem 1]. Since we are concerned with 5 = 1,2,4 cases and furthermore
all 8 > 0, we give full detail in this appendix.
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By change of variables and calculation of Jacobian (cf. [24, Chapter 3]), it follows from (),
and @ that the joint p.d.f.s of the eigenvalues A1,..., A, of M in the three S-external source
models (8 =1,2,4) are given by

pn,ﬂ()‘ly .. 7)‘71) =

1 _
A )P [T 2V RIAnQAQT 4, (237)
Cn.p j=1 QeGp(n)

where C, g is a normalization constant and C,, g/ énﬁg is a constant depending only on n. The
integral in is with respect to the Haar measure of the compact group Gg(n), which is the
orthogonal group O(n), the unitary group U(n) and the compact symplectic group Sp(n) for
B =1,2,4 respectively. The matrix A,, 3 is defined in , @ and , and

Ay = diag(AL, Az - .-, An). (238)

Recall that in combinatorics, a partition k = (k1, k2, ...) is a sequence of non-negative integers
in decreasing order, and containing only finitely many non-zero terms. We denote [(k) as the

number of non-zero terms of x, and write s - k if Zi(jl) ki = k.

Jack polynomials C,({a) (z1,...,zy) are n-variable symmetric polynomials indexed by partition
k and the parameter «. For general references of Jack polynomials, see [23] and [31]. In this paper,
we take the “C”-normalization of Jack polynomials [I6], such that

> N a, ) = (A 3)P (239)
kHk(k)<n

The Jack polynomials with parameters 2,1, % are Zonal spherical functions. See [23 Chapter VII].
(1)

C’,(f) are the well known Zonal polynomial in statistics [27], Cx ' are the complex Zonal polynomials,

and are better known as Schur polynomials, and C,gl/ 2 are the quaternionic Zonal polynomials.
The integral in (237) can be expanded in Jack polynomials:

Proposition A.1. Let § = 1,2,4 and Gg(n) be O(n), U(n) and Sp(n) respectively. If A, g is
defined by , @ and and A, is defined by (238)), then

nEYE’I‘r(AnﬁQAnQ_l) . > (gn)k C,gz/ﬂ) (al, e ,an)C',(f/ﬁ) ()\1, ceey )\n)
e aQ=> - > 5 . (240)
QeGp(n) k=0 " kFkl(r)<n Cy (1.0, 1)

Proof. Any n-variable symmetric polynomial f can be regarded as a polynomial function from the
spaces of n x n matrices M, (F) to F, where F stands for the division algebras R, C and H. For
F =R and F = C, the definition is simple: If M € M, (R) or M € M,(C) and the eigenvalues of
M are &1,...,&,, then [23, Pages 420 and 443]

FM) = f(&1s- - n)- (241)

For F' = H, the definition is more complicated and the reader is referred to [23, Page 452]. In all
the three cases, identity (239 implies that

k
%Tr(An,ﬁQAnQ—l)kz(g) >, CRP(ALQMQTY, (242)

kEE(K)<n
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where A, = %An,g = diag(ai,...,ay) as defined in (4]). Furthermore, by general theory of Zonal
spherical functions (e.g. [20, Proposition 5.5])

C’,?/B)(al, . ,an)C,EQ/B)(Al, ces An)
cP,.. 1) '

) into power series of RTr(A, QA 3Q 1), we prove (240) by
]

/ CPO(A,QAQ7Y) = (243)
QEGs(n)

After expanding e™® Tr(A, sQARQ™"

E12) and (213).
In case that A,, = diag(a,0,...,0), (240) is much simplified by the property of Jack polynomials:

Proposition A.2. [3], Proposition 2.5] If the number of nonzero variables among ai,...,a, is
less than l(k), then C’,ga)(al, .ooyan) =0 for any a > 0.

Therefore, in the case A,, = diag(a,0,...,0),

o0 (2/8) (2/8)
PRI, 20AMO-1) e (g )k C(k) (a,0,.. O)C(k) A,y )
e ? aQ=> ~5 @/5) - e
QeGps(n) k=0 ) C(k) (1,...,1)
C’((z)/ﬁ)( ,0,...,0) and C(%/ﬂ)( ,...,1) can be calculated explicitly [16, Table 5]
k=l 4+ 25
CiyPa,0,...,00=a" cyPa,.... 0 =T] 1+§,. (245)
=0 B
Thus we have
/ en%Tr(An,ﬁQAnQ i kl_[l 1 + 0(2/5)()\ ). (246)
QeG5(n) k=0 j— o"+ 5 KW

By [31], Proposition 2.1] and the conversion between the “J”-normalization and “C”-normalization
[16, Table 6], we have the identity of formal series in a

=50+ 59) o/ (2/8) - 1
kzzo(z)kk!c(k) (a,O,...,O)C(k) (AL, eesAn) :J-l;[l(l—aw' (247)

Hence we obtain by Cauchy’s integral formula and (245|)

H;té(l + %]) (2/8) 1 “ 1 dz
——C Mooy Ap) = =— , 248
(%)kk! CISRRE 271 fi)l;[l (1 — 2);)B/2 Zk+1 (248)
where the contour is taken to be a small circle around 0 such that all A} Y'(j=1,...,n) are in the

exterior of the contour. By (245]) and (| -, we obtain

= (Enyk CH 7 (a o,...,0)0(33)//3)@1,...,%)

k! cPa,... 1)

=0 (k)
T II Z Fan) ¢ kl:.[l : : dz. (249)
27i (1—2z); 5/2 2 g ] k1 :

=0 j=0
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Note that (249) is valid for all 5 > 0.
Suppose 3 is a positive number. Let m be an integer and £ € (0, 1], such that

2”:””5’ (250)
we have
B8 w1 1
k
k
(f)m m—1 > L @
ZWz}{H 1—z)\ )6/2 (gan)mz ,;n(§)k< . ) )dz
k
(Em_m-1 gan, |~ 1 (Gan 251
27rzj{]-_[ 1— 2\ )B/2 (gan)mz M(1,¢, B )—kzo ©r . dz (251)
_ (Om 1 e 1 me1l gan
_<§an>m2m‘7€j11 W'z M(1,¢, 2 =)dz
_©n 1 g (T L
_(’gan)mmjio 1;[ (w— ;)82 wt 1M(1’5’§anw)dw,

where the contour is large enough so that all A\; are in its interior, and 0 is in its interior if § # 1.
Here

(¢)i:=clc+1)(c+2)...(c+n—-1) (252)

is the Pochhammer symbol (“rising factorial”), and

oo
017027 E

2:0

(253)

)it!
is the Kummer’s (confluent hypergeometric) function. See [I, 13.1.2]. Alternatively, for £ # 1
M(1,€,2) = (£~ 1)z Se*y(€ — 1,2) (254)
where 7(s, z) is the incomplete gamma function (cf. [Il, 6.5.12]), and for £ =1
M(1,1,2) = €. (255)

We note that in the cases 8 = 2,4, or in the case that 3 =1 and niseven, £ =1 and m = gn—l.

Thus by (237), (244), (249) and ([251)), we have

T Sy L - 2 g
P Ay An) = Crgl A, -5 A H 2" A)Qm.% 1_[75/2 e2dw  (256)

where C), g is a constant, and the contour encloses all A; in its interior.
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If @ > 0 and maxi<j<p Aj < u, the contour in (256 can be taken as Y5, s, defined in or

I1Z defined in , where z > u. From the joint p.d.f. of A;, it is straightforward to find the p.d.f.
formula of the largest eigenvalue {pax(n). Thus Proposition is proved.

If 6 = 1 and n is odd, similarly we obtain that the joint p.d.f. of The eigenvalues in n-dimensional
1-external source model is

pn,l()\la .. 7A’Vl) -

T o—lavin) L - 1 w172 1
Cral A, -5 A 1;[ 2" me;o Hw W M(1, 2anw) (257)

In Section |2 I we compute the limiting distribution of &yax(n) based on . Since the asymp-
totic property of M (1, 2,2) is similar to that of e* = M(1,1, z) for large z, we can compute the
limiting distribution of &yax(n) based on by the same method that we use in Section 2| Hence
we can prove that Theorems [I.1] [[.2] [I.3] and [I.4] hold when 8 =1 and n is odd.

Inspired by the Coulomb gas interpretation of the distribution of eigenvalues in random matrix
models (see [18]), we generalize the [-external source model to any 5 > 0 as the probability
distribution of n points on the real line, such that

n

pn,ﬁ()‘la---a)\n) C FAC.N T |ﬁHe_§nV
> (Bp)k (2/8) (2/8)
% Z (2]:;) Cn (a17 . (2,/2/;1)0/4 ()\1, ey )\n)7 (258)
k=0 " kFkl(K)<n cy (.0

where V is the potential and ay,...,a, are external source parameters. By and ,
gives the distribution of eigenvalues of the random matrix models with external source with
B =1,2,4. But for other value of 3, it has no matrix interpretation. By Proposition[A.2} (245) (247
and , we find that if one external source parameter is a and all others are 0, the distribution
of the right-most point in the general S-external source model is

PO, ) = CuglA, -, A \ﬂHe FnV )
X 1 ﬁ wsIM(1, € éanw) (259)
2mi 5/2 2 ’

where £ is defined by (250)). It is of interest to compare this formula with the rank 1 spiked Gaussian
and Laguerre 8 ensembles studied in [8]. In the very recent preprint [19], Forrester obtained similar
formulas for S-Wishart ensembles.

B Computation of Mj(u)

In this Appendix, we show that when = 2, the p;2(«) in Theorem [1.3|are the same as the p(]) ()
n [3, Formula (52)], and the p;2(c) in Theorem are the same as the p(])( ) in [3, Formula
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(63)]. Hence we verify that the result obtained in this paper agrees with the result in [3]. Since
pj2(e) and pja(a) in our paper are defined by G(u;a) and /\/lg( ) in the same way that p;2(c)
in [3, Formulas (52) and (63)] are defined by G(u;a) and M ,(u), (see (167), (168), (181)), (182)
and in this paper, and [3, Formulas (177), (178) and (182)] and the comments in [3] below
[3, Formula (52)]), we need only to show that Ma(u)/M;j ,(u) is a nonzero constant for u > e. (e
is the right edge of J, the support of the equilibrium measure p.) The explicit formula of M ,,(u)
is given in [3, Formula (315)] in the case that the support of equilibrium measure is one interval.
In this appendix we obtain that for u > e

Ma(u) = C(y(u) = y(u) ™), (260)

where C' is a constant independent of u, and, if J = [b1, bo],

Y(u) = <u — b1>1/4 . (261)

u—b2

Thus we prove the statements above.
To make the notations simpler, we assume J = [—1, 1] in the proof of (260). The generalization
to arbitrary J is straightforward.

From formula (83)), (192) and (188), we have that
1
Ma(u) =exp |A(=V(x) + log(u — z)) — / —V(z) + log(u — z)du(x)
-1

fl V(z)dp(z)— -1 fil Mp.v. El V/(ng Vxl_stsdz

=€ -t v T an? \/17902
log(u—=x 52
o [ sl oy 1 YV gy (262)

1 V(x) Vi1— 52 dsd
o o T2 S g e [ @y deda— 2

, log(u—a)dp(x)

1 1 log(u—x)

Jis?
« pin? J-1 T PV e e oy dsde

The right-hand side of (262) is divided into the product of three terms. The first one is a constant,
and we compute the other two terms below.
First we compute the third term in (262). Exchanging the order of integration, we have

I 1 VAP LV1-s2
R log(u — :E)ﬁ p.Vv. dsdx =

L1 (w—s)(s—x) 47r2 L u-—s F(u,s)ds,  (263)

where

! 1
F(u,s) =p.v. /_1 log(u — x) (5o x)md:c (264)

To evaluate F'(u,s), we note (with the change of variable 2 = sin )

d ! 1
%F(% ) =p-v. /_1 (u—2z)(s —x)V1— 22 e

1 3 1 3 1
_ [/2 : d9—p.v./2 .d9] (265)
s—u | J_= u—sinf —z s —sinf




On the other hand,

1 1 1 u—2x 1
F(u,s)—logup.v./1 (S_m)mdx—i—p.v./llog " (S_x)mda:
1 U—T 1
=0+ .V./ lo dr,
P 1 S (s —x)V/1 — 22

and it implies that F'(u,s) — 0 as u — oco. Thus from and (266))

-1
F(u,s) = T [arcsin s — arcsin — ] :
1—s? u—s
Because
1 : /2 1
/ MM 4s =2 log(u® — 1) + 7 log vrvur -l :
1 uU—3s 2 2
1 arcsin =1 Vuz =1
/ T ums ge Ilog(u2 —1)— Wlogu—i-iu.
1 u-—3: 2 2

By (263)), (267)), (268) and (269]) we find
47r2 f log u— z) p.v f (u\/sl Ss dsdx

w+ 1\ w—1\"*
u—1 * u+1 '

1
2

Next we compute the second term in (262). For the equilibrium measure du(z) =

its support [—1, 1], By [15, Formula 6.135], we have
. . 1 - .
U(r) = NG (1) = ~RE_(2) = (G (x) ~ G (a),

where G(z) is an analytic function [I5, Formula 6.141]

& V221t V'(s)
G = oo

ds

(266)

(267)

(268)

(269)

(270)

U(z)dx on

(271)

(272)

is an analytic function in C\ [—1, 1] and V22 — 1 is analytic in C\ [—1,1] with V22 — 1 ~ 2, 2 — .

Thus by (271)), (272) and exchanging the order of integration,

/11( du(x) 1/11( Wi—a? V) g
og(u — s)du(z) =— og(u — s —a2p.v. ——dsdx
1 & a 22 | 4 & P 1 V1 —8%(s—ux)
1 [t v(s)
=02 | T SzG(u, s)ds,
where
G(u, s) := p.V./log(u—x)\/l—3:2S_xd:1:.
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Similar to (267)), we have

V=1
G(u,s)zw[x/uQ—l—u—i-slong_;

B ) su—1 > s
V1 — s?arctan N + V1 — s?arctan m] (275)

Therefore

1 ! !
V( 1 u—+ \/ u? — sV/(
[ st it = vt [ s s e
1
+ | V’(s) (arctan
Using (275) 275 and integration by parts,

/l(m

° _ _ arctan su—1 ds. (276)
1—s? V(= 52)(1—u2)

—————dsd
= \/71—3: e -9
6
1 1t s (u+1)(1 —s)
——(V(1) - 1 — ! t 2 arct ——< | ds.
S(V() V(- ))+47r/ V(S)(arcanm+ arctan TE ) s
Similarly,
1 log u—x) V'(s)V/1 — s2 , 5
ol Y / P dsdac—w/ V( 1 — s2F(u,s)ds
-1
47T V'(s) (arcsins — arcsin 15_ . > ds.
(278)
Thus by (276]), (277), (278) and the identity
-1 1)(1 -
arcsin s — arcsin T:j_ . + arctan \/18_752 + 2 arctan w
S su—1 T
— 2arctan ———= + 2 arctan =——, (279
V1—s? V(1 —s2)(u? -1) 2 (279)
we have
1 1 1 . 1 / /1 _ 2
— 7og(u z) p.v./ VAsIVL =87 ()v1=s dsdx
4r2 | 1 - x2 1 s—x

/1 1—782d8d.r — /1 log(u — x)du(x) (280)
47r2 m (u—s)(s—x)

1
\/7/ V(s d _71 u+\/u2 / sV'(s

1—5

ds.
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By

the property [15, Formulas 6.143 and 6.144]
1 !
V'(z)
— Y _du(z) =0, 281
[ duta) (251)
1 !
/ V@) i) = 2, (282)
-1 1-— ac2

we further simplify the second factor on the right-hand of (262)) as

Mg(u) =

u—x / S 752
ﬁ il % p.v. f—ll VIEVI=s® gy

V(z) V12
i [ g e L wtm e Ly st | o ey (283)

Substituting (270)) and (283)) into (262), we obtain

! ! z ! S —s
ut1)! Y Y Qef_ll V(@)du(@) =5z [ \/% pv. 1) %dsdw
u—1 u+1

. (284)

and prove (260) in the case that J = [—1, 1]. The general case can be proved by a simple rescaling.
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