
The largest eigenvalue of real symmetric, Hermitian and Hermitian

self-dual random matrix models with rank one external source, part

I

Dong Wang∗

January 14, 2012

Abstract

We consider the limiting location and limiting distribution of the largest eigenvalue in real
symmetric (β = 1), Hermitian (β = 2), and Hermitian self-dual (β = 4) random matrix models
with rank 1 external source. They are analyzed in a uniform way by a contour integral rep-
resentation of the joint probability density function of eigenvalues. Assuming the “one-band”
condition and certain regularities of the potential function, we obtain the limiting location of the
largest eigenvalue when the nonzero eigenvalue of the external source matrix is not the critical
value, and further obtain the limiting distribution of the largest eigenvalue when the nonzero
eigenvalue of the external source matrix is greater than the critical value. When the nonzero
eigenvalue of the external source matrix is less than or equal to the critical value, the limiting
distribution of the largest eigenvalue will be analyzed in a subsequent paper. In this paper we
also give a definition of the external source model for all β > 0.

1 Introduction and statement of results

1.1 Introduction

In this paper we will be concerned with the distribution of the largest eigenvalue ξmax(n) in the
following ensembles of matrices {M}:

• The set of n× n real symmetric matrices, with the probability distribution function (p.d.f.)

pn,1(M)dM :=
1

C̃n,1
e−nTr(V1(M)−An,1M)dM. (1)

• The set of n× n Hermitian matrices, with the p.d.f.

pn,2(M)dM :=
1

C̃n,2
e−nTr(V2(M)−An,2M)dM. (2)
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• The set of 2n× 2n self-dual Hermitian matrices, with the p.d.f.

p̂n,4(M)dM :=
1

C̃n,4
e−nTr(V̂4(M)−Ân,4M)dM. (3)

Here for each β = 1, 2, 4, C̃n,β is the normalization constant, Vβ(x) (or V̂β(x)) is a real-valued

function which grows fast enough, An,β (or Ân,β) is a fixed n × n real symmetric matrix, n × n
Hermitian matrix and 2n × 2n self-dual Hermitian matrix respectively. The function Vβ(x) (or

V̂β(x)) is called the potential function and An,β (or Ân,β) is called the external source. The rank

of the external source An,β (or Ân,β) is defined to be the number of nonzero eigenvalues of An,β

if β = 1, 2, or half of the nonzero eigenvalues of Ân,β if β = 4. These ensembles are called
real symmetric, Hermitian and Hermitian self-dual random matrix models with external source
respectively. Throughout this paper, we address the three types of ensembles as β-external source
ensembles with β = 1, 2, 4 respectively.

Note that in these three external source models, the distributions of eigenvalues of M are
unchanged if An,β (or Ân,β) is changed intoQAn,βQ

−1 (orQÂn,βQ
−1), whereQ is in the orthogonal

group O(n), unitary group U(n) and compact symplectic group Sp(n) for β = 1, 2, 4 respectively.
Since we are only concerned with the distribution of eigenvalues of M , we assume An,β (or Ân,β)
to be diagonal without loss of generality. To make our presentation uniform for all values of β, we
let V (x) be a fixed function and

An := diag(a1, . . . , an) (4)

be an n × n diagonal matrix. We assume that Vβ(x) (or V̂β(x)) and An,β (or Ân,β) are defined
from V (x) and An such that

V1(x) =
1

2
V (x), V2(x) = V̂4(x) = V (x), (5)

An,1 =
1

2
An, An,2 = An, (6)

Ân,4 = diag(a1, a1, a2, a2, . . . , an, an) (7)

Writing a 2n× 2n self-dual Hermitian matrix into 2× 2 blocks
(
ast bst
cst dst

)n
s,t=1

, we can express it

as a quaternionic Hermitian matrix (qst)
n
s,t=1 whose s, t-entry comes from the s, t-block by(

a+ bi c+ di
−c+ di a− bi

)
= a+ bi+ cj + dk. (8)

In the quaternion form, the p.d.f. of the Hermitian self-dual external source model is

pn,4(M)dM :=
1

C̃n,4
e−n<Tr(V4(M)−An,4M)dM, (9)

where
V4(x) = 2V̂4(x) = 2V (x), An,4 = 2An (10)

with An defined in (4). The An,4 defined in (10) corresponds to the Ân,4 defined in (7). In
Appendix A we use the quaternion form p.d.f. (9) of the 4-external source model to streamline the
derivations for all β.
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In this paper we concentrate on the rank 1 case, i.e.,

An = diag(a, 0, . . . , 0︸ ︷︷ ︸
n−1

). (11)

Random matrices are powerful tools to simulate Hamiltonians of complex systems. Different
types of random matrices, namely the real symmetric (aka orthogonal), the Hermitian (aka unitary)
and the Hermitian self-dual (aka symplectic) ensembles are used for physical systems with different
properties of time-reversal invariance [24]. For random matrix models without external source in
all the three types of ensembles, i.e., rank 0 β-external source models, the distribution of the largest
eigenvalue has been studied extensively for all the three β. If β = 2, for all real analytic potentials
V2(x) under mild regularity conditions, the largest eigenvalue ξmax(n) approaches e, the right-end
point of the equilibrium measure of V2(x) (see (16) below), with probability 1 as n→∞, and the
limiting distribution is the GUE Tracy-Widom distribution. See e.g. [14] and [12]. If β = 1, for
real analytic potentials V1(x) satisfying the “one-band” condition (cf. Condition 2 in Subsection
1.2 below) and mild regularity conditions, the largest eigenvalue with probability 1 approaches e
as n→∞, and the limiting distribution is the GOE Tracy-Widom distribution. See [30]. If β = 4,
similar result can be obtained and the limiting distribution is the GSE Tracy-Widom distribution.
See [12].

The random matrix model with external source was proposed by Brézin and Hikami [9], [10]
to simulate complex systems with both random part and deterministic part. Although in all three
types of random matrix ensembles the random matrix model with external source can be defined,
due to technical reasons, only the Hermitian (β = 2) type has been studied for general potential
functions. See e.g. [7] and references therein.

In [3], the Hermitian random matrix model with rank 1 external source was studied for all real
analytic potentials V2(x) under mild regularity conditions. For convex potentials, the universality
of phase transition was proved. Let V2(x) be defined by V (x) as in (5). In the rank 1 2-external
source model, with probability 1, as n→∞

ξmax(n)→
{
e if a ≤ 1

2V
′(e),

x0(a) if a > 1
2V
′(e),

(12)

where a is the unique nonzero eigenvalue of the external source An,2 = An, and x0(a) is a continuous
increasing function in a ∈ (1

2V
′(e),∞) such that x0(a) → e as a → 1

2V
′(e), see (16) and (29). If

a < 1
2V
′(e), the limiting distribution of ξmax(n) is the GUE Tracy-Widom distribution, and if

a > 1
2V
′(e) the limiting distribution is Gaussian. For the double scaling a = 1

2V
′(e) + α

n1/3 , the
limiting distribution is the generalized Tracy-Widom distribution. If the potential is not convex,
then new phenomena may occur. The “critical value” may be less than 1

2V
′(e), and there may be

“secondary critical values”. The largest eigenvalue ξmax(n) may converge to two or more points if
a takes such values. The results were also obtained by Bertola, Buckingham, Lee and Pierce in [5]
and [6] independently.

For real symmetric and Hermitian self-dual matrix models with external source, known results
are limited to special potentials. Let V1(x) and V̂4(x) be defined by V (x) as in (5), the rank
1 1-external source model with Gaussian potential (V (x) = x2 on the real line) and Laguerre
potential (V (x) = x − c log(x) on half of real line) are studied in e.g. [2], [28], [17] and [11]. The
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limiting location of the largest eigenvalue is given by formula (12), the same as in the corresponding
rank 1 2-external source model, where a is the nonzero eigenvalue of An and An,1 is defined by
(6). If a > 1

2V
′(e), then the limiting distribution of ξmax(n) is Gaussian, with variance twice of

that in the corresponding Hermitian (β = 2) external source model. If a < 1
2V
′(e), the limiting

distribution of ξmax(n) is the GOE Tracy-Widom distribution. The rank 1 4-external source model
with Laguerre potential is studied in [32], where the limiting location of the largest eigenvalue
is found to be given by formula (12), the same as in the corresponding rank 1 2-external source
model, where a is the nonzero eigenvalue of An and Ân,4 is defined by (7). If a > 1

2V
′(e), then

the limiting distribution of ξmax(n) is Gaussian, with variance half of that in the corresponding
Hermitian (β = 2) external source model. If a < 1

2V
′(e), the limiting distribution of ξmax(n) is the

GSE Tracy-Widom distribution. In [32] the limiting distribution of ξmax(n) when a = 1
2V
′(e) is

also obtained.
In the recent preprint [8], Bloemendal and Virág obtained the limiting distribution of the largest

eigenvalue ξmax(n) when the potential is Gaussian or Laguerre, for all β and for all a. When a
is at or near 1

2V
′(e), they described the limiting distribution function of ξmax(n) via the unique

solution to a PDE. The recent preprint [25] by Mo indicates a new approach to study the limiting
distribution of ξmax(n) in the rank 1 1-external source model with Laguerre potential when a is
at or near 1

2V
′(e), see also [26]. The contour integral formula in [25, Theorem 1] is equivalent to

that of Proposition 2.2 in this paper with β = 1 and Laguerre potential (cf. Remark A.1). In [25],
Mo further simplified the integrand in the contour integral formula, (see [25, Theorem 3],) and he
applied it in the asymptotic analysis in [26] to obtain a result similar to that in [8]. In this paper,
we take a different approach to apply Proposition 2.2 in asymptotic analysis. The reader may also
compare our paper with the paper [4] by Benaych-Georges and Nadakuditi, where they considered
a different kind of low rank perturbations of large random matrices.

In this paper, we consider the rank 1 β-external source models with general potential Vβ(x) (or

V̂β(x)) which are defined by V (x). The conditions satisfied by V (x) will be given in Subsection
1.2. We find that the “critical value” is independent of β, and for all β = 1, 2, 4 find the limiting
location of the largest eigenvalue ξmax(n) when a, the nonzero eigenvalue of An, is not equal to the
critical value. When a is greater than the critical value, we also find the limiting distribution of
ξmax(n).

Besides the asymptotic results summarized above, in Appendix A we also have an algebraic
result: the definition of the β-external source model with general β > 0. Here we note that the
analytic method presented in this paper can be used to study the rank 1 β-external source model
with general β.

1.2 Assumptions on V (x)

Throughout this paper, we assume four conditions on V (x), the function in (5) and (10). The first
is

Condition 1. V (x) is a polynomial of degree 2l and with positive leading coefficient.

To state the other three conditions, we need a few definitions. Recall that if V (x) is regarded
as a potential function on R itself, there is an equilibrium measure µ associated to V (x) defined
by a certain variational problem. See (14) and (15), and the general references [29] and [13]. Since
V (x) is a polynomial, µ is supported on a finite union of intervals. In this paper we assume that
V (x) satisfies the “one-band” condition:
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Condition 2. The equilibrium measure µ associated to V (x) is supported on a single interval
J = [b1, b2].

For the function V (x) satisfying Conditions 1 and 2, the equilibrium measure µ has the form

dµ := Ψ(x)χJdx =
1

2π

√
(b2 − x)(x− b1)h(x)χJdx, (13)

where χJ is the indicator function and h(x) is a polynomial of degree 2l − 2. The next condition
assumed on V (x) is

Condition 3. The function h(x) in the formula (13) of the equilibrium measure µ of V (x) has
only non-real zeros.

The equilibrium measure dµ = Ψ(x)dx is characterized by the conditions

2

∫
J

log|x− s|Ψ(s)ds− V (x) = ` for x ∈ J , (14)

2

∫
J

log|x− s|Ψ(s)ds− V (x) ≤ ` for x ∈ R \ J . (15)

The last condition assumed on V (x) is

Condition 4. The inequality (15) is strict.

Remark 1.1. Conditions 1–3 are assumed to apply Proposition 4.1 in our paper, and they are not
used anywhere else in this paper. If Proposition 4.1 can be proved under weaker conditions, e.g.
the conditions assumed in [22, Theorem 1] 1, these conditions can be weakened accordingly.

Remark 1.2. Functions V satisfying all Conditions 1–4 also satisfy the assumptions of V in [3,
Formulas (6)–(8)]. Thus all the results in [3] on V can be applied in this paper.

Remark 1.3. If V (x) is a convex polynomial with positive leading coefficient, V (x) satisfies Condi-
tions 1–3 by [21, Proposition 3.1], and it is straightforward to verify that V (x) satisfies Condition
4.

1.3 Preliminary notations

To state the results in this paper, we need a few more notations. We follow the notational convention
in [3] to denote the right edge of the support of the equilibrium measure

e := b2, the right edge of J = [b1, b2], the support of the equilibrium measure µ. (16)

The so called g-function is defined by

g(z) :=

∫
J

log(z − s)Ψ(s)ds, for z ∈ C \ (−∞, e). (17)

For a ∈ (0, 1
2V
′(e)), define c(a) as the unique point in (e,∞) such that

g′(c(a)) =

∫
J

dµ(x)

c(a)− x = a. (18)

1Mariya Shcherbina informed the author that Proposition 4.1 can be proved under the consitions assumed in [22,
Theorem 1] through private communication.
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The properties of g(x) used in this paper is summarized below (see [3, Formula (30)]).

g′(x) > 0, g′′(x) < 0 for x ∈ (e,∞),

g(e) =
V (e) + `

2
, g′(e) =

V ′(e)

2
, lim

x→∞
g′(x) = 0.

(19)

For a ≥ 1
2V
′(e), define c(a) := e. We also define two auxiliary functions

G(z) = G(z; a) :=g(z)− V (z) + az, (20)

H(z) = H(z; a) :=− g(z) + az + `, (21)

for z ∈ C \ (−∞, e). Condition 4 of V and the condition (14) imply that for any a

G(e; a) = H(e; a) = −1

2
V (e) + ae +

`

2
, (22)

G(x; a) < H(x; a) for x ∈ (e,∞). (23)

The convexity of g(x) on (e,∞) yields that for u > c(a),

H′(u; a) = a−
∫
dµ(x)

u− x > 0. (24)

Define the set

AV := {a ∈ (0,∞) | there exists x̄ ∈ (c(a),∞)such that G(x̄; a) > H(c(a); a)}. (25)

It is proved in [3, Lemma 1.2] that AV is an open, semi-infinite interval. From AV we define

ac = ac(V ) := inf AV . (26)

It is also proved in [3, Lemma 1.2] that ac > 0.
Let

Gmax(a) := max
x∈[c(a),∞)

G(x; a). (27)

Define the discrete set

JV := {a ∈ [ac,∞) |Gmax(a) is attained at more than one point}. (28)

For a > ac and a 6∈ JV , there is a unique x0(a) ∈ (c(a),∞) such that (cf. [3, Lemma 1.3])

Gmax(a) = G(x0(a); a). (29)

For a > ac and a ∈ JV , there are r ≥ 2 and c(a) < x1(a) < x2(a) < · · · < xr(a) such that

Gmax(a) = G(x1(a); a) = · · · = G(xr(a); a). (30)

We define the set of secondary critical values as JV \ {ac} (cf. [3, Definition 1.3] ).

Remark 1.4. If the potential V is convex for x ≥ e, JV = ∅. See [3, Remark 1.2].
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1.4 Statement of main results

Let V (x) be a function that satisfies Conditions 1–4. For any n and β = 1, 2, 4, let the n-dimensional
β-external source models be defined by p.d.f.s (1), (2) and (3) respectively, with potentials Vβ(x)

(or V̂β(x)) given by (5) and external sources An,β (or Ân,β) given by (4), (6) and (7). We assume
that An has only one nonzero eigenvalue a, as in (11). In each n-dimensional β-external source
model, let ξmax(n) be the largest eigenvalue of the random matrix. The theorems below are stated
uniformly for all β-external source models (β = 1, 2, 4). In the case β = 1, we assume that the
dimension n is even. For β = 1 and n is odd, the theorems below also hold, and we discuss it briefly
in Appendix A. First we show the limiting location of the largest eigenvalue.

Theorem 1.1. The following hold for each fixed a as n→∞:

(a) If 0 < a < ac, or a = ac = 1
2V
′(e) and ac /∈ JV , ξmax(n)→ e with probability 1.

(b) If a > ac and ac 6∈ JV , then ξmax(n) → x0(a) with probability 1, where x0(a) is defined in
(29).

(c) If a > ac and a ∈ JV , then there exist r ≥ 2 and x1(a), . . . , xr(a) defined in (30). Un-
der the assumption that G′′(xj(a)) 6= 0 for all j = 1, . . . , r, then ξmax(n) converges to
xj(a) with nonzero probability pj,β(0) for j = 1, . . . , r. Here pj,β(0) are defined in (168)
and

∑r
j=1 pj,β(0) = 1.

Remark 1.5. If a < 0, Theorem 1.1(a) still holds, and the method of proof is similar to that in the
0 < a < ac case. Since when a < 0 there is no interesting phase transition phenomenon for the
distribution of the largest eigenvalue (while there is a similar one of the smallest eigenvalue) and
the proof is long and parallel to the a > 0 case, we skip further discussions about the a < 0 case.

If a > ac, we have the limiting distribution of the largest eigenvalue. If a is not at or near
secondary critical values, we have the following result that strengthens Theorem 1.1(b).

Theorem 1.2. The following hold for a > ac and a 6∈ JV as n→∞.

(a) If G′′(x0(a); a) 6= 0, then for any T ∈ R

lim
n→∞

P

ξmax(n) < x0(a) +
T√

−β
2G
′′(x0(a); a)n

 = Φ(T ), (31)

where Φ(T ) := 1√
2π

∫ T
−∞ e

− 1
2
ξ2dξ denotes the cumulative distribution function of standard

normal distribution.

(b) If G(2k)(x0(a); a) 6= 0 and G(j)(x0(a); a) = 0 for j = 1, . . . , 2k − 1 where k > 1, then for any
T ∈ R

lim
n→∞

P

ξmax(n) < x0(a) +

(
−β

2G
(2k)(x0(a); a)n

(2k)!

)−1/(2k)

T

 =

∫ T
−∞ e

−ξ2kdξ∫∞
−∞ e

−ξ2kdξ
. (32)

If a > ac is at or near a secondary critical value, we have the following result that shows the
double scaling case and strengthens Theorem 1.1(c).
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Theorem 1.3. Suppose that a0 > ac and a0 ∈ JV . Assume that G(x; a0) attains its maximum
at r ≥ 2 points x1(a0) < x2(a0) < · · · < xr(a0) in (c(a0),∞), and G′′(xi(a0); a0) 6= 0 for all
i = 1, 2, . . . , r, then for

a = a0 +
α

n
, (33)

where α is in a compact subset of R, we have

lim
n→∞

P

ξmax(n) < xi(a0) +
T√

−β
2G
′′(xi(a0))n

 =

 i−1∑
j=1

pj,β(α)

+ pi,β(α)Φ(T ), (34)

where pi,β(α) (i = 1, . . . , r) are defined in (168) and
∑r

j=1 pj,β(α) = 1. Furthermore, pr,β(α) → 1
as α→∞ and p1,β(α)→ 1 as α→ −∞.

Remark 1.6. The phenomenon of Theorem 1.3 occurs for some quartic potential V that satisfies
Conditions 1–4. For example, V (x) = 0.02093x4 − 0.16736x3 + 0.37448x2 + 0.11418x.

In the case that a > ac, a ∈ JV and G′′(xj(a); a) = 0 at at least one maximizer xj(a) of G(x; a)
in (c(a),∞), we show hereafter an example when the number of maximizers of G(x; a) in (c(a),∞)
is r = 2. The result for general case is similar.

Theorem 1.4. Suppose that a0 > ac and a0 ∈ JV . Assume that G(x; a0) attains its maximum
at two points x1(a0) < x2(a0) in (c(a0),∞), with G′′(x1(a0); a0) 6= 0, G(2k)(x2(a0); a0) 6= 0 and
G(j)(x2(a0); a0) = 0 for j = 1, . . . , 2k − 1. Then for

a = a0 − qβ
log n

n
+
α

n
, where qβ :=

2

β

1
2 − 1

2k

x2(a0)− x1(a0)
, (35)

and α is in a compact subset of R, we have

lim
n→∞

P

ξmax(n) < x1(a0) +
T√

−β
2G
′′(x1(a0))n

 =p̃1,β(α)Φ(T ), (36)

lim
n→∞

P

ξmax(n) < x2(a0) +

(
−β

2G
(2k)(x2(a0); a0)n

(2k)!

)−1/(2k)

T

 =p̃1,β(α) + p̃2,β(α)

∫ T
−∞ e

−x2kdx∫∞
−∞ e

−x2kdx
,

(37)

where p̃1,β(α) and p̃2,β(α) are defined in (183), and p̃1,β(α)+p̃2,β(α) = 1. Furthermore, p̃2,β(α)→ 1
as α→∞ and p̃1,β(α)→ 1 as α→ −∞.

Remark 1.7. When β = 2, the probabilities pj,2(α) and p̃j,2(α) should agree with the p
(j)
1,n(α) in [3,

Formula (52)] and the p
(j)
1,n(α) in [3, Formula (63)] respectively. It is not obvious that they are the

same, and we give the proof in Appendix B.

The limiting distribution of the largest eigenvalue when a ≤ ac, as well as the limiting location
of the largest eigenvalue when a is at or near ac <

1
2V
′(e), will be analyzed in a subsequent paper.

The paper is organized as follows. In Section 2, we calculate the limiting p.d.f. of the largest
eigenvalue in the rank 1 β-external source model as n→∞, based on Proposition 2.1. In Section
3, we prove Theorems 1.1, 1.2 1.3 and 1.4. The proof of Proposition 2.1 is in Section 4.
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The starting point of the asymptotic analysis in this paper is Proposition 2.2, the contour
integral formula of the largest eigenvalue ξmax(n). Since its proof is combinatorial, we postpone it
to Appendix A. In this appendix we also propose a definition of the β-external source model for
any β > 0. In Appendix B we show that the results in this paper agree with those in [3] when
β = 2.

2 The p.d.f. of the largest eigenvalue

In this section we compute fξmax(n), the p.d.f. of the largest eigenvalue ξmax(n) in the n-dimensional
β-external source model with rank 1, as n → ∞. For β = 1, n is assumed to be even. We also
assume that the only nonzero eigenvalue of the external source matrix An is a > 0. Recall that J
is the support of the equilibrium measure µ associated to V (x), e is the right end of J , and c(a)
is defined in Subsection 1.3. In this section we compute/estimate fξmax(n)(u) for all real u. To be
concrete, let ε̃ be a small enough positive constant. In Subsection 2.1, assuming that c(a) > e, we
compute fξmax(n)(u) for u ∈ [e + ε̃, c(a) − ε̃] up to a constant factor Cn,β. In Subsection 2.2, we
compute fξmax(n)(u) for u ∈ [c(a) + ε̃, e+ ε̃−1] up to the constant factor Cn,β. For u ∈ (e+ ε̃−1,∞),
u ∈ (−∞, e + ε̃) and u ∈ (c(a)− ε̃, c(a) + ε̃) in case c(a) > e, we give an estimate of fξmax(n)(u) in
Subsection 2.3. Note that throughout this section, u is always a real number.

To facilitate the computation of fξmax(n)(u), we define some notations. For any m, define the
probability measure on Rm

dµm,β(x1, . . . , xm) :=
1

Zm,β
|∆(x1, . . . , xm)|β

m∏
j=1

e−
β
2
mV (xj)dx1 . . . dxm, (38)

where Zm,β is the normalization constant. Suppose F (x1, . . . , xm) is an integrable function with
respect to the measure µm,β defined in (38), define the expectation of F with respect to µm,β by

Em,β(F (x1, . . . , xm)) :=

∫
Rm

F (x1, . . . , xm)dµm,β(x1 . . . xm). (39)

For u ∈ R and w ∈ C \ (−∞, u), define the functions in u and w

Zm,β(u,w) := Em,β

Pm,β(x1, . . . , xm;u,w)

m∏
j=1

χ(−∞,u)(xj)

 , (40)

Ẑm,β(u,w) := Em,β

|Pm,β(x1, . . . , xm;u,w)|
m∏
j=1

χ(−∞,u)(xj)

 , (41)

where

Pm,β(x1, . . . , xm;u,w) :=

m∏
j=1

e−
β
2
V (xj)(u− xj)β

(w − xj)β/2
, (42)

and we take the principal branch of (w−xj)β/2 for w ∈ C\(−∞, xj). For x < u and w ∈ C\(−∞, u),
define the function in x with parameter u and w

p(x;u,w) := −V (x) + 2 log(u− x)− log|w − x|. (43)

9



We have

Ẑm,β(u,w) = Em,β

eβ2 ∑m
j=1 p(xj ;u,w)

m∏
j=1

χ(−∞,u)(xj)

 . (44)

If w = u we denote
p(x;u) := p(x;u, u) = −V (x) + log(u− x). (45)

Then we can state the technical tool in the asymptotic analysis of this section:

Proposition 2.1. Let u > e and w ∈ C \ (−∞, u].

(a) Suppose

w = u+
z

n
, where z = s+ it is in a compact subset of C \ (−∞, 0], (46)

we have

Zn−1,β(u,w) = e−
βz
2

∫ dµ(x)
u−x Rβ(u) exp

[
β

2
n

∫
p(x;u)dµ(x)

]
(1 + o(1)), (47)

where Rβ(u) is defined in (192).

(b) Suppose

w = w0 + i
t√
n
, where w0 > u and t is in a compact subset of R, (48)

we have

Zn−1,β(u,w) = e
−βt2

4

∫ dµ(x)

(w0−x)2
−iβt

2

√
n
∫ dµ(x)
w0−xRβ(u,w0) exp

[
β

2
n

∫
p(x;u,w0)dµ(x)

]
(1 + o(1)),

(49)
where Rβ(u,w0) is defined in (191).

(c) Let ε be a small positive constant. For all w such that dist(w, (−∞, e]) ≥ ε and |w| ≤ ε−1,

|Zn−1,β(u,w)|≤ Ẑn−1,β(u,w) = exp

[
β

2
n

∫
p(x;u,w)dµ(x)

]
O(1), (50)

where the factor O(1) is bounded uniformly in w.

This proposition is a corollary of a theorem of Johansson [21, Theorem 2.4], and we put off its
proof to Section 4.

For the asymptotic analysis in this section, we define four types of contours: Σx
s1,s2 , Πx

s , Γxs and

Ixs , where x is a real parameter and s1, s2 and s are positive parameters. We assume s2 > s1/
√

2
for Σx

s1,s2 and allow s =∞ in Γxs . The contours Πx
s and Σx

s1,s2 will be used in Subsections 2.1 and

10



2.2 respectively. The contours Ixs and Γxs represent the local parts of Πx
s and Σx

s1,s2 around the
point x respectively, which will turn out to be the saddle point in the asymptotic analysis.

Σx
s1,s2 = {w(t) | t ∈ R}, where

w(t) =


x+ e

3πi
4 t if 0 ≤ t ≤ s1,

x+ e
3πi
4 s1 + i(t− s1) if s1 ≤ t ≤ s2 + (1− 1√

2
)s1,

x− (
√

2− 1)s1 + (1 + i)s2 − t if t ≥ s2 + (1− 1√
2
)s1,

w(−t) if t ≤ 0.

(51)

Πx
s = {w(t) | t ∈ R} where w(t) =


x+ it if 0 ≤ t ≤ s,
x+ (1 + i)s− t if t ≥ s,
w(−t) if t ≤ 0.

(52)

Γxs ={w(t) | t ∈ [−s, s]} where w(t) = x+ (it− |t|)/
√

2. (53)

Ixs ={w(t) | t ∈ [−s, s]} where w(t) = x+ it. (54)

See Figures 1, 2, 3 and 4 for these contours. For any real number r, we define

Σx
s1,s2(r) = {z ∈ Σx

s1,s2 | <z ≥ r}, Πx
s (r) = {z ∈ Πx

s | <z ≥ r}. (55)

The asymptotic analysis in this section is based on the contour integral representation of the
p.d.f. of the largest eigenvalue ξmax(n):

Proposition 2.2. Let ξmax(n) be the largest eigenvalue in the n-dimensional rank 1 β-external
source model for β = 1, 2, 4, where the potential Vβ(x) (or V̂β(x)) is defined by (5) from V (x), and

the external source matrix An,β (or Ân,β) is defined by (6) (or (7)) from An in (11) with a > 0.
Then for any integer n if β = 2, 4 and for even integer n if β = 1,

fξmax(n)(u) =
Ĉn,β
2πi

e−
β
2
nV (u)

∮
C
Zn−1,β(u,w)

e
β
2
anw

(w − u)β/2
dw, (56)

where Ĉn,β is a constant, Zn−1,β(u,w) is defined in (40), and C is either Σx
s1,s2 defined in (51) or

Πx
s defined in (52) with x > u.

The proof of Proposition 2.2 is in Appendix A.

2.1 Computation of fξmax(n)(u) when u ∈ [e+ ε̃, c(a)− ε̃]
Assuming e+ ε̃ ≤ u ≤ c(a)− ε̃, we use the contour integral formula (56) of fξmax(n)(u) and take the

contour C in (56) as Π
c(a)
π1 , which is defined in (52). Here π1 is a large enough parameter such that

the inequality (63) holds. For w ∈ Π
c(a)
π1 , we parametrize it by w = w(t) as in (52) with x = c(a)

and s = π1.

11



x

x+ e
3πi
4 s1

x+ e
5πi
4 s1

x− s1√
2
+ is2

x− s1√
2
− is2

Figure 1: The contour Σx
s1,s2

x

x+ is

x− is

Figure 2: The contour Πx
s

x

x+ e
3πi
4 s

x+ e
5πi
4 s

Figure 3: The contour Γxs

x

x+ is

x− is

Figure 4: The contour Ixs

Let L be a positive number. For sufficiently large n, the contour I
c(a)

L/
√
n

is part of Π
c(a)
π1 . By

Proposition 2.1(b), for w = c(a) + it/
√
n ∈ Ic(a)

L/
√
n
, the integrand in the contour integral of (56)

satisfies

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
= e
−βt2

4

∫ dµ(x)

(c(a)−x)2 e
β
2
n(
∫
p(x;u,c(a))dµ(x)+ac(a)) Rβ(u, c(a))

(c(a)− u)β/2
(1 + o(1)). (57)

Using the asymptotic formula (57), we have the result

1

2πi

∫
I
c(a)

L/
√
n

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw =

1√
n
e
β
2
n(
∫
p(x;u,c(a))dµ(x)+ac(a))M̃β(u)(1 + ε1(L, n)), (58)

where

M̃β(u) =
Rβ(u, c(a))√

πβ
∫ dµ(x)

(c(a)−x)2
(c(a)− u)β/2

(59)

and ε1(L, n) is small if L and n are large. To be precise, for all ε > 0, there is an L1 > 0 such that
for all L > L1, |ε1(L, n)| < ε for n large enough.

For w in a bounded subset of Π
c(a)
π1 \Ic(a)

L/
√
n
, we use Proposition 2.1(c) and estimate the integrand

of the contour integral of (56)∣∣∣∣∣Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2

∣∣∣∣∣ = e
β
2
nP̃ (u,w) 1

|w − u|β/2O(1), (60)
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where

P̃ (u,w) =

∫
p(x;u,w)dµ(x) + a<w, (61)

and the O(1) factor is uniformly bounded. Below we show that P̃ (u,w(t)) decreases fast enough
as t increases and t ≥ 0. By the symmetry of the contour Σu+n−1

σ1,σ2 about the real axis, we see that

P̃ (u,w(t)) decreases fast enough as t decreases and t ≤ 0.

If w(t) ∈ Π
c(a)
π1 \ Ic(a)

L/
√
n

with t ≥ π1, i.e., w is in the ray from c(a) + iπ1 to −∞, we have

dP̃ (u,w(t))

dt
=

∫
c(a)− x+ π1 − t
|w(t)− x|2 dµ(x)− a. (62)

If π1 is large enough, we have that for all t ∈ [π1,∞) and all x ∈ J , there exists c1 > 0 such that

c(a)− x+ π1 − t
|w(t)− x|2 <

1

c(a)− x − c1. (63)

Hence we have
dP̃ (u,w(t))

dt
<

∫
dµ(x)

c(a)− x − c1 + a = −c1. (64)

For 0 < t ≤ π1, like (62) and (63), we have

dP̃ (u,w(t))

dt
=

∫
t

|w(t)− x|2dµ(x) < −c2t < 0, (65)

where c2 is a positive constant depending on π1.
Let L̃1 be a large enough positive number such that −L̃1 < c(a) and the inequality (75) holds.

By Proposition 2.1(c) and inequalities (64) and (65),∣∣∣∣∣ 1

2πi

∫
(Π
c(a)
π1

(−L̃1)\Ic(a)
L/
√
n

)∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣ =
1√
n

exp

[
β

2
nP̃ (u,w(L/

√
n))

]
O(1),

(66)
where the factor O(1) is bounded uniformly in L. Substituting the Taylor expansion (210) of
p(x;u,w) into (66), we find

e
β
2
nP̃ (u,w(L/

√
n)) = e

β
2
n(
∫
p(x;u,c(a))dµ(x)+ac(a))

(
e
−βL2

4

∫ dµ(x)

(c(a)−x)2 + o(1)

)
. (67)

We write like (58)

1

2πi

∫
(Π
c(a)
π1

(−L̃1)\Ic(a)
L/
√
n

)∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw =

1√
n
e
β
2
n(
∫
p(x;u,c(a))dµ(x)+ac(a))ε2(L, n).

(68)
By (66) and (67), we find that ε2(L, n) is small if L and n are large. To be precise, for any ε > 0,
there exists L2 > 0 such that for all L > L2, |ε2(L, n)| < ε for sufficiently large n.
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If w ∈ (Π
c(a)
π1 \ Π

c(a)
π1 (−L̃1)) ∩ C+, i.e., w is in the ray from c(a) + iπ1 to −∞ and <w < −L̃1,

since |w − λj | ≥ π1 for all λj ∈ R, by (42) we have

|Pn−1,β(x1, . . . , xn−1;u,w)| ≤ π−
β
2

(n−1)

1

n−1∏
j=1

e−
β
2
V (xj)(u− xj)β. (69)

Hence substituting (69) into (40), we have

|Zn−1,β(u,w)| ≤ σ−
β
2

(n−1)

2 En−1,β(F̂n−1,β(x1, . . . , xn−1;u)), (70)

where

F̂n−1,β(x1, . . . , xn−1;u) =

{
e
β
2

∑n−1
j=1 (−V (xj)+2 log(u−xj)) if max1≤j<n xj < u,

0 otherwise.
(71)

Similar to (206) and (201), we have (see Remark 4.1)

En−1,β(F̂n−1,β(x1, . . . , xn−1;u)) = e
β
2
n
∫
−V (x)+2 log(u−x)dµ(x)O(1), (72)

Zn−1,β(u,w) = σ
−β

2
n

2 e
β
2
n
∫
−V (x)+2 log(u−x)dµ(x)O(1), (73)

where in (73) w ∈ (Π
c(a)
π1 \Π

c(a)
π1 (−L̃1))∩C+, and the O(1) factor is bounded uniformly in w. Taking

s = −<w, by substituting the estimate (73) of Zn−1,β(u,w) into (56), we have∣∣∣∣∣ 1

2πi

∫
(Π
c(a)
π1
\Πc(a)π1

(−L̃1))∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣
≤ 1

2π

∫ ∞
L̃1

π
−β

2
n

1 e
β
2
n
∫
−V (x)+2 log(u−x)dµ(x)O(1)

e−
β
2
ans

|−s− u+ iπ1|β/2
ds

=e
β
2
n(
∫
−V (x)+2 log(u−x)dµ(x)−log(π1)−aL̃1)O(n−1),

(74)

where the O(n−1) factor is uniform in L̃1. For large enough L̃1,∫
−V (x) + 2 log(u− x)dµ(x)− aL̃1 − log π1 <

∫
p(x;u, c(a))dµ(x) + ac(a). (75)

Substituting (75) into (94), we have

1

2πi

∫
(Π
c(a)
π1
\(Πc(a)π1

(−L̃1))∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw =

1√
n
e
β
2
n(
∫
p(x;u,c(a))dµ(x)+ac(a))o(1). (76)

The results of (68) and (76) give an estimate of the contour integral (56) on (Π
c(a)
π1 \Ic(a)

L/
√
n
)∩C+.

The integral on (Π
c(a)
π1 \ Ic(a)

L/
√
n
) ∩ C− is similar, since both the contour and the integrand are

symmetric about the real axis.
Therefore, by (58), (68) and (76), we have that for u ∈ [e + ε̃, c(a)− ε̃],

fξmax(n)(u) =Ĉn,βe
−β

2
nV (u) 1√

n
e
β
2
n(
∫
p(x;u,c(a))dµ(x)+ac(a))

(
M̃β(u) + o(1)

)
=Ĉn,β

1√
n
e−

β
2
n
∫
V (x)dµ(x)e

β
2
n(−V (u)+2g(u)−`)e

β
2
nH(c(a);a)

(
M̃β(u) + o(1)

)
=Cn,βn

(1−β)/2e
β
2
n(H(c(a);a)−V (u)+2g(u)−`)

(
M̃β(u) + o(1)

)
,

(77)
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where g(u) is defined in (17), H(c(a); a) is defined in (21), and

Cn,β := Ĉn,βn
β/2−1e−

β
2
n
∫
V (x)dµ(x). (78)

2.2 Computation of fξmax(n)(u) when u ∈ [c(a) + ε̃, e+ ε̃−1]

Assuming c(a) + ε̃ ≤ u ≤ e + ε̃−1, we use the contour integral formula (56) of fξmax(n)(u) and take

the contour C in (56) as Σu+n−1

σ1,σ2 , which is defined in (51). Here σ1 is a small enough parameter and

σ2 is a large enough parameter, such that the inequalities (85) and (88) hold. For w ∈ Σu+n−1

σ1,σ2 , we
parametrize it by w = w(t) as in (51) with x = u+ n−1, s1 = σ1 and s2 = σ2.

Let L be a positive number. For sufficiently large n, the contour Γu+n−1

L/n is part of Σu+n−1

σ1,σ2 . By

Proposition 2.1(a), for w = u+ z/n ∈ Γu+n−1

L/n the integrand in the contour integral of (56) satisfies

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
= e

β
2
n(
∫
p(x;u)dµ(x)+au)Rβ(u)

e
βz
2

(
a−
∫ dµ(x)

u−x

)
(z/n)β/2

(1 + o(1)). (79)

Hence

1

2πi

∫
Γu+n

−1

L/n

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw =

nβ/2−1e
β
2
n(
∫
p(x;u)dµ(x)+au)Rβ(u)

1

2πi

∫
Γ1
L

e
βz
2

(
a−
∫ dµ(x)

u−x

)
zβ/2

dz(1 + o(1)). (80)

Using Hankel’s contour integral expression of Gamma function (See [1, 6.1.4]), we find

1

2πi

∫
Γ1
∞

e
βz
2

(
a−
∫ dµ(x)

u−x

)
zβ/2

dz =

[
β

2

(
a−

∫
dµ(x)

u− x

)]β
2
−1

Γ

(
β

2

)
. (81)

Comparing the integral on the right-hand side of (80) with the left-hand side of (81), we write
analogous to (58) that

1

2πi

∫
Γu+n

−1

L/n

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw = nβ/2−1e

β
2
n(
∫
p(x;u)dµ(x)+au)Mβ(u)(1 + ε3(L, n)), (82)

where

Mβ(u) = Rβ(u)

[
β

2

(
a−

∫
dµ(x)

u− x

)]β
2
−1

Γ

(
β

2

)
, (83)

and the term ε3(L, n) is small if L and n are large. To be precise, for any ε > 0, there is an L3 > 0
such that for all L > L3, |ε3(L, n)| < ε for sufficiently large n.

Let L̃2 be a large enough positive number such that −L̃2 < u− σ1/
√

2 and the inequality (95)

holds. For w ∈ Σu+n−1

σ1,σ2 (−L̃2) \ Γu+n−1

L/n , we use Proposition 2.1(c) and find that (60) still holds.

If w = w(t) ∈ Σu+n−1

σ1,σ2 and 0 ≤ t ≤ σ1, i.e., w is in the line segment between u + n−1 and

u+ n−1 + e
3πi
4 σ1, we have

dP̃ (u,w(t))

dt
=

∫
(u− x+ n−1)/

√
2− t

|w(t)− x|2 dµ(x)− a√
2
. (84)
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By (24), we know that H′(u; a) is a positive number. If σ1 is small enough, for all t ∈ [0, σ1] and
all x ∈ J

(u− x+ n−1)/
√

2− t
|w(t)− x|2 <

1√
2

(
1

u− x +

(
1− 1√

2

)
H′(u; a)

)
. (85)

Hence for 0 ≤ t ≤ σ1, substituting (85) in (84), we find with the help of (24)

dP̃ (u,w(t))

dt
<

1√
2

∫
dµ(x)

u− x +

(
1√
2
− 1

2

)
H′(u; a)

∫
dµ(x)− a√

2

=− 1√
2
H′(u; a) +

(
1√
2
− 1

2

)
H′(u; a) = −1

2
H′(u; a).

(86)

If w = w(t) ∈ Σu+n−1

σ1,σ2 and t ≥ σ2 +(1−
√

2/2)σ1, i.e., w is in the ray from u+n−1−σ1/
√

2+ iσ2

to −∞, like (62) we have

dP̃ (u,w(t))

dt
=

∫
u− x+ n−1 + σ2 − (

√
2− 1)σ1 − t

|w(t)− x|2 dµ(x)− a. (87)

If σ2 is large enough, like (63) we have that for all t ∈ [σ2 + (1−
√

2/2)σ1,∞) and all x ∈ J , if n is
large enough

u− x+ n−1 + σ2 − (
√

2− 1)σ1 − t
|w(t)− x|2 <

1

u− x +
1

2
H′(u; a). (88)

Substituting (88) into (87), we find that like (88), for t ≥ σ2 + (1−
√

2/2)σ1

dP̃ (u,w(t))

dt
<

∫
dµ(x)

u− x +
1

2
H′(u; a)− a = −1

2
H′(u; a). (89)

If w = w(t) ∈ Σu+n−1

σ1,σ2 and σ1 ≤ t ≤ σ2 + (1 −
√

2/2)σ1, i.e., w is in the line segment between

u+ n−1 + e
3πi
4 σ1 and u+ n−1 − σ1/

√
2 + iσ2 we have

dP̃ (u,w(t))

dt
= −

∫
d

dt
log|w(t)− x|dµ(x) < 0. (90)

Thus by (60), (86), (89) and (90), we find that for a fixed L̃2, similar to (66),∣∣∣∣∣ 1

2πi

∫
(Σu+n

−1
σ1,σ2

(−L̃2)\Γu+n−1

L/n
)∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣
≤ 1

2π

∫ L̃+u+n−1+σ2+(
√

2−1)σ1

L/n

∣∣∣∣∣Zn−1,β(u,w(t))
e
β
2
anw(t)

(w(t)− u)β/2

∣∣∣∣∣ dt
=

1

2π

∫ L̃+u+n−1+σ2+(
√

2−1)σ1

L/n
e
β
2
nP̃ (u,w(t)) 1

|w(t)− u|β/2O(1)dt

=n−1 exp

[
β

2
nP̃ (u,w(L/n))

]
1

|w(L/n)− u|β/2O(1)

=n
β
2
−1 exp

[
β

2
nP̃ (u,w(L/n))

]
1

|1 + e
3πi
4 L|β/2

O(1),

(91)
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where the last factor O(1) is bounded uniformly in L. Substituting the Taylor expansion (207) of
p(x;u,w) into (61), we find that like (67)

e
β
2
nP̃ (u,w(L/n)) = e

β
2
n(
∫
p(x;u)dµ(x)+au)

(
e
− βL

2
√
2

∫ dµ(x)
u−x −

aL√
2 + o(1)

)
. (92)

Like (68), we write

1

2πi

∫
(Σu+n

−1
σ1,σ2

(−L̃2)\Γu+n−1

L/n
)∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw = n

β
2
−1e

β
2
n(
∫
p(x;u)dµ(x)+au)ε4(L, n).

(93)
By (91) and (92), we find that ε4(L, n) is small if L and n are large. To be precise, for any ε > 0,
there is an L4 > 0 such that for all L > L4, |ε4(L, n)| < ε for sufficiently large n.

Like (74), we have∣∣∣∣∣ 1

2πi

∫
(Σu+n

−1
σ1,σ2

\Σu+n−1
σ1,σ2

(−L̃2))∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣ =

e
β
2
n(
∫
−V (x)+2 log(u−x)dµ(x)−log(σ2)−aL̃2)O(n−1), (94)

where the O(n−1) factor is uniform in L̃2. For large enough L̃2,∫
−V (x) + 2 log(u− x)dµ(x)− log(σ2)− aL̃2 <

∫
p(x;u)dµ(x) + au. (95)

Substituting (95) into (94), we obtain

1

2πi

∫
(Σu+n

−1
σ1,σ2

\Σu+n−1
σ1,σ2

(−L̃2))∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw = nβ/2−1e

β
2
n(
∫
p(x;u)dµ(x)+au)o(1). (96)

The results of (93) and (96) give an estimate of the contour integral in (56) on (Σu+n−1

σ1,σ2 \
Γu+n−1

L/n ) ∩ C+. The contour integral on (Σu+n−1

σ1,σ2 \ Γu+n−1

L/n ) ∩ C− is similar, since both the contour

and the integrand in (56) are symmetric about the real axis.
Therefore, by (56), (82), (93) and (96), we have that for u ∈ [c(a) + ε̃, e + ε̃−1],

fξmax(n)(u) =Ĉn,βe
−β

2
nV (u)nβ/2−1e

β
2
n(
∫
p(x;u)dµ(x)+au)(Mβ(u) + o(1))

=Cn,βe
β
2
nG(u;a)(Mβ(u) + o(1)),

(97)

where G(u; a) is defined in (20), Mβ(u) is defined in (83) and Cn,β is defined in (78).

2.3 Estimation of fξmax(n)(u) when u ∈ (c(a)− ε̃, c(a) + ε̃), u > e+ ε̃−1 or u < e+ ε̃

2.3.1 u ∈ [c(a)− ε̃, c(a) + ε̃] or u ∈ [e− ε̃, e + ε̃]

In this subsubsection we use the inequality that if u1 < u2 and w ∈ C \ (−∞, u2), then

Zn−1,β(u1, w) ≤ Ẑn−1,β(u1, w) ≤ Ẑn−1,β(u2, w). (98)
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The inequality (98) is a straightforward consequence of the definitions (40) and (41) of Zn−1,β(u,w)

and Ẑn−1,β(u,w).
For c(a)− ε̃ ≤ u ≤ c(a) + ε̃, we use the contour integral formula (56) of fξmax(n)(u) and take the

contour C in (56) as Π
c(a)+2ε̃
π2 , which is defined in (52). Here π2 is a large enough parameter such

that the inequality (101) holds. For w ∈ Π
c(a)+2ε̃
π2 , we parametrize it by w = w(t) as in (52) with

x = c(a) + 2ε̃ and s = π2. From (98) we have for all u ∈ [c(a)− ε̃, c(a) + ε̃] and L̃3 > −(c(a) + 2ε̃)∣∣∣∣∣ 1

2πi

∫
Π
c(a)+2ε̃
π2

(−L̃3)∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣ ≤
1

2π

∫ c(a)+2ε̃+L̃3+π2

0
Ẑn−1,β(c(a) + ε̃, w(t))

e
β
2
an<(w(t))

|w(t)− u|β/2dt. (99)

For w ∈ Π
c(a)+2ε̃
π2 , we use Proposition 2.1(c) and find like (60)

Ẑn−1,β(c(a) + ε̃, w(t))
e
β
2
an<(w(t))

|w(t)− u|β/2 = e
β
2
nP̃ (c(a)+ε̃,w(t)) 1

|w(t)− u|β/2O(1). (100)

Like (64), we have that for π2 large enough, for all t > π2 and x ∈ J , there exists c′1 > 0 such that
(cf. (63) and (64))

dP̃ (c(a) + ε̃, w(t))

dt
< −c′1. (101)

For all 0 < t ≤ π1 and x ∈ J , we have like (65) and (90) that

dP̃ (c(a) + ε̃, w(t))

dt
< 0. (102)

Let L̃3 be a large enough positive number such that the inequality (105) holds. By (100), (101)
and (102), we find like (66)

1

2π

∫ L̃3+c(a)+2ε̃+π2

0
Ẑn−1,β(c(a) + ε̃, w(t))

e
β
2
an<(w(t))

|w(t)− u|β/2dt =

e
β
2
n(
∫
p(x;c(a)+ε̃,c(a)+2ε̃)dµ(x)+a(c(a)+2ε̃))O(1). (103)

Like (74) and (94), we also have∣∣∣∣∣ 1

2πi

∫
(Π
c(a)+2ε̃
π2

\(Πc(a)+2ε̃
π2

(−L̃3))∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣ =

e
β
2
n(
∫
−V (x)+2 log(u−x)dµ(x)−log(π2)−aL̃3)O(n−1), (104)

where the O(n−1) factor is uniform in L̃3. For large enough L̃3,∫
−V (x)+2 log(u−x)dµ(x)− log π2−aL̃3 <

∫
p(x; c(a)+ ε̃, c(a)+2ε̃)dµ(x)+a(c(a)+2ε̃). (105)
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Substituting (105) into (104), we have

1

2πi

∫
(Π
c(a)+2ε̃
π2

\(Πc(a)+2ε̃
π2

(−L̃3))∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw =

e
β
2
n(
∫
p(x;c(a)+ε̃,c(a)+2ε̃)dµ(x)+a(c(a)+2ε̃))o(1). (106)

The results of (103) and (106) give an estimate of the contour integral (56) on Π
c(a)+2ε̃
π2 ∩ C+.

The integral on Π
c(a)+2ε̃
π2 ∩ C− is similar, since both the contour and the integrand are symmetric

about the real axis. Thus we obtain

fξmax(n)(u) =Ĉn,βe
−β

2
V (u)e

β
2
n(
∫
p(x;c(a)+ε̃,c(a)+2ε̃)dµ(x)+a(c(a)+2ε̃))O(1)

=Cn,βn
1−β/2e

β
2
nH(c(a)+2ε̃;a)e

β
2
n((−V (c(a)+ε̃)+2g(c(a)+ε̃)−`)+(V (c(a)+ε̃)−V (u)))O(1).

(107)

For e − ε̃ ≤ u ≤ e + ε̃ we use the contour integral formula (56) of fξmax(n)(u) and take the

contour C in (56) as Π
c(a)+2ε̃
π3 , the same as in the c(a) − ε̃ ≤ u ≤ c(a) + ε̃ case. We also apply the

inequality (98), and like (108) have for all u ∈ [e− ε̃, e + ε̃]∣∣∣∣∣ 1

2πi

∫
Π
c(a))+2ε̃
π3

(−L̃3)∩C+

Zn−1,β(u,w)
e
β
2
anw

(w − u)β/2
dw

∣∣∣∣∣ ≤
1

2π

∫ c(a)+2ε̃+L̃3+π2

0
Ẑn−1,β(e + ε̃, w(t))

e
β
2
an<(w(t))

|w(t)− u|β/2dt. (108)

Then we can find estimates similar to (103) and (106), and obtain the estimate of fξmax(n)(u) similar
to (107). We only state the result that for u ∈ [e− ε̃, e + ε̃]

fξmax(n)(u) = Cn,βn
1−β/2e

β
2
nH(c(a)+2ε̃;a)e

β
2
n((−V (e+ε̃)+2g(e+ε̃)−`)+(V (e+ε̃)−V (u)))O(1), (109)

and skip details.

2.3.2 u ≤ e− ε̃ or u ≥ e + ε̃−1

In this subsubsection we first consider fξmax(n)(u) for u ≤ e− ε̃. We use the contour integral formula
(56) of fξmax(n)(u) and take the contour C as Πe+ε̃

π4 . Here π4 is a large enough parameter such that
the inequality (114) holds.

We let Cε̃ be any positive number, and define

CV = max
x<e

(−V (x) + log(e− x)). (110)

Let fε̃(x) be a function on R such that

(1) fε̃(x) satisfies conditions (i)–(iii) mentioned in Proposition 4.1.

(2) On (−∞, e− ε̃]
fε̃(x) = CV (111)

and fε̃(x) is decreasing on (e− ε̃,∞).
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(3) ∫
fε̃(x)dµ(x) < −Cε̃. (112)

For w in the line segment of Πe+ε̃
π4 from e + ε̃− iπ4 to e + ε̃+ iπ4, for all x < u

p(x;u,w) =− V (x) + 2 log(u− x)− log|w − x|
<− V (x) + 2 log(e− x)− log(e− x) ≤ CV .

(113)

On the other hand, we assume that π4 is large enough such that for all x < e,

− V (x) + 2 log(e− x)− log π4 < CV . (114)

By (111) and (114), it is straightforward to check that for all w in the two rays of Πe+ε̃
π1 , from

e + ε̃+ iπ4 to −∞ and from −∞ to e + ε̃− iπ4 respectively, and for all x < u

p(x;u,w) ≤ CV . (115)

Then by (113), (115), (40) and (44), we have for all w ∈ Πe+ε̃
π1

|Zn−1,β(u,w)| ≤ Ẑn−1,β(u,w) ≤ En−1,β

(
e
β
2

∑n−1
j=1 fε̃(xj)

)
. (116)

By Proposition 4.1 and (112),

En−1,β

(
e
β
2

∑n−1
j=1 fε̃(xj)

)
= e−

β
2
nCε̃O(1). (117)

Using the estimate (116) and (117) of Zn−1,β(u,w), we find by direct calculation∣∣∣∣∣ 1

2πi

∫
Πe+ε̃
π4

Zn−1,β(u,w)
e
β
2
naw

(w − u)β/2
dw

∣∣∣∣∣ = e
β
2
n(a(e+ε̃)−Cε̃)O(1). (118)

Thus by (56)

fξmax(n)(u) =Ĉn,βe
−β

2
nV (u)e

β
2
n(a(e+ε̃)−Cε̃)O(1)

=Cn,βn
1−β/2e

β
2
n(−V (u)+a(e+ε̃)−Cε̃+

∫
V (x)dµ(x))O(1).

(119)

Note that Cε̃ can be any number, and the last O(1) factor in (119) is bounded uniformly for all
u < e− ε̃.

Next we consider fξmax(n)(u) for u ≥ e + ε̃−1. We use the contour integral formula (56) of

fξmax(n)(u) and take the contour C as Πu+1
1 , which is defined in (52).

Let
Vmin = min

x∈R
V (x), (120)

and denote

C̃V :=

∫
(−Vmin − 2x)dµ(x). (121)

20



For all w ∈ Πu+1
1 and x < u,

p(x;u,w) =− V (x) + 2 log(u− x)− log|w − x|
≤ − V (x) + 2 log(u− x)

<− V (x) + 2(u− x)

≤− Vmin − 2x+ 2u.

(122)

Thus similar to (116), we have by (122) that for w ∈ Πu+1
1

|Zn−1,β(u,w)| ≤ Ẑn−1,β(u,w) ≤ En−1,β

(
e
∑n−1
j=1 (−Vmin−2xj+2u)

)
. (123)

By Proposition 4.1,

En−1,β

(
e
∑n−1
j=1 (−Vmin−2xj+2u)

)
= e

β
2
n
∫

(−Vmin−2x+2u)dµ(x)O(1) = e
β
2
n(C̃V +2u)O(1). (124)

Using the estimates (123) and (124) of Zn−1,β(u,w), we have like (118)∣∣∣∣∣ 1

2πi

∫
Πu+1

1

Zn−1,β(u,w)
e
β
2
naw

(w − u)β/2
dw

∣∣∣∣∣ = e
β
2
n((2+a)u+a+C̃V )O(1). (125)

Thus by (56)

fξmax(n)(u) =Ĉn,βe
−β

2
V (u)e

β
2
n((2+a)u+a+C̃V )

=Cn,βn
1−β/2e

β
2
n(−V (u)+(2+a)u+a+C̃V +

∫
V (x)dµ(x))O(1).

(126)

Note that the last O(1) factor in (126) is bounded uniformly for all u > e + ε̃−1.

3 Proofs of Theorems 1.1, 1.2, 1.3 and 1.4

In this section we prove the main theorems in this paper. We divide the proofs into three subsec-
tions. In Subsection 3.1, we consider the case that 0 < a < ac and the case that a = ac = 1

2V
′(e)

and ac /∈ JV , and prove Theorem 1.1(a). In Subsection 3.2, we consider the case that a > ac and
a 6∈ JV , and prove Theorems 1.2 and 1.1(b). In Subsection 3.3, we consider the case that a > ac
and a ∈ JV and prove Theorems 1.3, 1.1(c) and 1.4.

3.1 Proof of Theorem 1.1(a) when 0 < a < ac, or a = ac =
1
2
V ′(e) and ac /∈ JV

First we consider the case that 0 < a < ac. Let ε be a small positive number, such that e+ ε < c(a)
and e+ ε−1 > c(a). Furthermore we assume that ε is small enough such that the inequalities (127),
(129) and (131) hold.

The condition 0 < a < ac implies the inequality H(c(a); a) > Gmax(a), see (25)–(30) and [3,
Lemma 1.2(d)]. We assume that

H(c(a); a)−Gmax(a) > ε, (127)
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where Gmax(a) is defined in (27). Then by (97) with ε̃ = ε, for all u ∈ [c(a) + ε, e + ε−1] we have

fξmax(n)(u) = Cn,βe
β
2
nGmax(a)O(1) = Cn,βe

β
2
nH(c(a);a)O(e−

β
2
εn). (128)

We assume that for u, v ∈ [c(a)− ε, c(a) + ε]

H(v + ε; a) + (−V (u) + 2g(v)− `) < H(c(a); a)− ε. (129)

Then by (107) with ε̃ = ε, for u ∈ [c(a)− ε, c(a) + ε]

fξmax(n)(u) = Cn,βe
β
2
nH(c(a);a)O(e−

β
2
εn). (130)

We assume that for u ≥ e + ε−1,

− V (u) + (2 + a)u+ a+ C̃V +

∫
V (x)dµ(x) < H(c(a); a) + (e + ε−1 − u)− 1. (131)

Then by (126) with ε̃ = ε, for u ≥ e + ε−1 we have uniformly in u

fξmax(n)(u) = Cn,βe
β
2
nH(c(a);a)O(e

β
2
n(e+ε−1−u−1)). (132)

Let C̃ be large enough such that

a(e + ε)− C̃ − V (u) +

∫
V (x)dµ(x) < H(c(a); a) + e− ε− u− 1. (133)

Then by (119) with ε̃ = ε and Cε̃ = C̃, for u ≤ e− ε we have uniformly in u

fξmax(n)(u) = Cn,βe
β
2
nH(c(a);a)O(e

β
2
n(e−ε−u−1)). (134)

By (128), (130), (132), (134), we find that

P(ξmax(n) ≥ c(a)− ε or ξmax(n) ≤ e− ε) = Cn,βe
β
2
nH(c(a);a)O(e−

β
2
εn). (135)

Let ε′ < ε/2 be a small positive number such that

• −V (u) + 2g(u)− ` is decreasing on [e, e + 2ε′].

• −V (u) + 2g(u)− ` attains its maximum on [e + 2ε′, c(a)] at e + 2ε′.

• Let ε′′ := −(−V (e + 2ε′) + 2g(e + 2ε′)− `). Then ε′′ < ε.

Then by (77) with ε̃ = ε′, we have that

P(ξmax(n) ∈ [e + 2ε′, c(a)− ε]) = Cn,βe
β
2
nH(c(a);a)O(e

β
2
ε′′n), (136)

and as n→∞
P(ξmax(n) ∈ [e + ε′, e + 2ε′])

Cn,βe
β
2
nH(c(a);a)e

β
2
ε′′n

→∞. (137)
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The probabilities (135), (136) and (137) imply that the conditional probability

P(ξmax(n) ∈ [e + ε′, e + 2ε′] | ξmax(n) ∈ R \ (e− ε, e + ε′))→ 1. (138)

Since [e + ε′, e + ε′] ∪ (e− ε, e + 2ε′) ∈ [e− ε, e + ε], (138) implies that

P(ξmax(n) ∈ [e− ε, e + ε])→ 1. (139)

Taking ε arbitrarily small, we prove Theorem 1.1(a) when 0 < a < ac.

The case when a = ac = 1
2V
′(e) and ac /∈ JV is similar. Let ε be a small enough positive

number. Since a = 1
2V
′(e), we have c(a) = e. Since a = ac /∈ JV , there exists ε′ > 0 depending on

ε such that for all u > e + ε, G(u; a) < H(e; a)− ε′. Thus like (128), for u ∈ [c(a) + ε, e + ε−1] we
have

fξmax(n)(u) = Cn,βe
β
2
nH(e;a)O(e−

β
2
ε′n). (140)

When ε is small enough, (132) and (134) also hold. Then by arguments similar to (135)–(139), we
prove Theorem 1.1(a) when a = ac = 1

2V
′(e) and ac /∈ JV .

3.2 Proof of Theorems 1.2 and 1.1(b) when a > ac and a 6∈ JV
Let ε be a small enough positive constant such that the maximizer x0(a) of G(x; a) in [c(a),∞) is
less than e + ε−1, and the inequalities (141), (145) and (147) are satisfied.

First we consider the case that ac < a < 1
2V
′(e), i.e., c(a) > e. We assume that

Gmax(a)−H(c(a); a) > ε. (141)

Then by (77) with ε̃ = ε, for u ∈ (e + ε, c(a)− ε) we have

fξmax(n)(u) = Cn,βn
(1−β)/2e

β
2
nH(c(a);a)O(1) = Cn,βe

β
2
nGmax(a)O(e−

β
2
εn). (142)

We assume that for all u ∈ [e− ε, e + ε]

H(c(a) + 2ε; a) + (−V (e + ε) + 2g(e + ε)− `) + (V (e + ε)− V (u)) < Gmax(a)− ε. (143)

Then by (109) with ε̃ = ε, for u ∈ [e− ε, e + ε] we have

fξmax(n)(u) = Cn,βe
β
2
nGmax(a)O(e−

β
2
εn). (144)

We assume that for all u ∈ [c(a)− ε, c(a) + ε]

H(c(a) + 2ε; a) + (−V (c(a) + ε) + 2g(c(a) + ε)− `) + (V (c(a) + ε)− V (u)) < Gmax − ε. (145)

Then by (107) with ε̃ = ε, for u ∈ [c(a)− ε, c(a) + ε] we have

fξmax(n)(u) = Cn,βe
β
2
nGmax(a)O(e−

β
2
εn). (146)

We assume that for u ≥ e + ε−1,

− V (u) + (2 + a)u+ a+ C̃V +

∫
V (x)dµ(x) < Gmax(a) + (e + ε−1 − u)− 1. (147)
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Then by (126) with ε̃ = ε, for u ≥ e + ε−1 we have uniformly in u

fξmax(n)(u) = Cn,βe
β
2
nGmax(n)O(e

β
2
n(e+ε−1−u−1)). (148)

Let C̃ be large enough such that

a(e + ε)− C̃ − V (u) +

∫
V (x)dµ(x) < Gmax(a) + e− ε− u− 1. (149)

Then by (119) with ε̃ = ε and Cε̃ = C̃, for u ≤ e− ε we have uniformly in u

fξmax(n)(u) = Cn,βe
β
2
nGmax(a)O(e

β
2
n(e−ε−u−1)). (150)

By (142), (144), (146), (148) and (150), we find that

P(ξmax(n) ≥ e + ε−1 or ξmax(n) ≤ c(a) + ε) = Cn,βe
β
2
nGmax(a)O(e−

β
2
εn). (151)

In the case that a ≥ 1
2V
′(e), i.e., c(a) = e, we find that inequalities (144), (148) and (150) still

hold, and the estimate (151) holds with c(a) = e.
For u ∈ [c(a)+ε, e+ε−1], we have the asymptotic formula (97) and x0(a) is the unique maximum

of G(x; a) in [c(a)+ε, e+ε−1]. If we further assume that G′′(x0(a); a) 6= 0, by the standard Laplace’s
method we have that

P(ξmax(n) ∈ [c(a) + ε, e + ε−1]) =

√
2π

−β
2G
′′(x0(a); a)n

Mβ(x0(a))Cn,βe
β
2
nGmax(a)(1 + o(1)), (152)

and for any T ∈ R

P

ξmax(n) ∈

c(a) + ε, x0(a) +
T√

−β
2G
′′(x0(a); a)n

 =

√
2π

−β
2G
′′(x0(a); a)n

Mβ(x0(a))Cn,βe
β
2
nGmax(a)(Φ(T ) + o(1)). (153)

The probabilities (151), (152) and (153) imply Theorem 1.2(a).
If the second derivative of G(x; a) vanishes at x0(a), due to the analyticity of G(x; a), there

exists k > 1 such that G(j)(x0(a); a) = 0 for j = 1, . . . , 2k − 1 and G(2k)(x0(a); a) 6= 0. By the
Laplace’s method we have

P(ξmax(n) ∈ [c(a) + ε, e + ε−1]) =

(
(2k)!

−β
2G

(2k)(x0(a); a)n

)1/(2k)

×
∫ ∞
−∞

e−x
2k
dxMβ(x0(a))Cn,βe

β
2
nGmax(a)(1 + o(1)), (154)
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and for any T ∈ R

P

ξmax(n) ∈

c(a) + ε, x0 +

(
−β

2G
(2k)(x0(a); a)n

(2k)!

)−1/(2k)

T


=

(
(2k)!

−β
2G

(2k)(x0(a); a)n

)1/(2k) ∫ T

−∞
e−x

2k
dxMβ(x0(a))Cn,βe

β
2
nGmax(a)(1 + o(1)). (155)

The probabilities (151), (154) and (155) imply Theorem 1.2(b). Finally, Theorem 1.2 implies
Theorem 1.1(b).

3.3 Proofs of Theorem 1.3, 1.1(c) and 1.4 when a > ac and a ∈ JV
Let a0 > ac, and ε be a small positive constant such that the inequalities (142), (144), (146), (148)
and (150) hold with a = a0. It is easy to verify that there exists a positive number ε̄ depending on
ε such that if we take a = a0 + ε′ with ε′ ∈ [−ε̄, ε̄], the inequalities (142), (144), (146), (148) and
(150) still hold with the same ε. Thus the estimate of probability (151) still holds with a = a0 + ε′.
If we further assume that

c(a) >c(a0)− ε

2
, (156)

Gmax(a) >Gmax(a0)− ε

2
, (157)

by (151) we obtain that

P(ξmax(n) ≥ e + ε−1 or ξmax(n) ≤ c(a0) +
ε

2
) = Cn,βe

β
2
nGmax(a0)O(e−

β
4
εn). (158)

First we assume that a0 ∈ JV and G(x; a0) has r ≥ 2 maximizers x1(a0) < x2(a0) < · · · < xr(a0)
in (c(a0),∞), and all of them are less than e + ε−1. Further we assume that for all i = 1, . . . , r

G′′(xi(a0)) 6= 0. (159)

We take
a = a0 +

α

n
, (160)

where α is in a compact subset of R. Since a ∈ [a0 − ε̄, a0 + ε̄] for sufficiently large n, the estimate
(158) is applicable to a.

For x around xi(a0) (i = 1, . . . , r), we denote

x = xi(a0) +
ξi√

−β
2G
′′(xi(a0); a0)n

. (161)

For ξi in a compact subset of R and x given by (161), we have

β

2
G(x; a) =

β

2
G(xi(a); a)− ξ2

i

2

1

n
+O(n−2)

=
β

2
Gmax(a0) +

β

2
αxi(a0)

1

n
− ξ2

i

2

1

n
+O(n−2).

(162)
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Let εi (i = 1, . . . , r) be small enough constant numbers such that xi(a0) is the unique maximum of
G(x; a0) in [xi(a0)− εi, xi(a0) + εi]. Applying the standard Laplace’s method to (97), near xi(a0)
(i = 1, 2), we obtain that

P(ξmax(n) ∈ [xi(a0)− εi, xi(a0) + εi]) = e
β
2
αxi(a0)+

ξ2i
2

×
√

2π

−β
2G
′′(xi(a0); a0)n

Mβ(xi(a0))Cn,βe
β
2
nGmax(a0)(1 + o(1)), (163)

and for any T in a compact subset of R,

P

ξmax(n) ∈

xi(a0)− εi, xi(a0) +
T√

−β
2G
′′(xi(a0); a0)n

 =

e
β
2
αxi(a0)+

ξ2i
2

√
2π

−β
2G
′′(xi(a0); a0)n

Mβ(xi(a0))Cn,βe
β
2
nGmax(a0)(Φ(T ) + o(1)), (164)

There exists ε′′ > 0 depending on ε1, . . . , εr such that for sufficiently large n

G(x; a) < Gmax(a0)− ε′′ for x ∈ [c(a0) +
ε

2
, e + ε−1] but x 6∈ (xi(a0)− εi, xi(a0) + εi). (165)

Then we find that the probability

P

(
ξmax(n) ∈ [c(a0) +

ε

2
, e + ε−1] \

r⋃
i=1

(xi(a0)− εi, xi(a0) + εi)

)
= Cn,βe

β
2
nGmax(a0)O(e−

β
2
ε′′n).

(166)
For i = 1, . . . , r, let

Bi,β(α) := e
β
2
αxi(a0)

√
2π

−β
2G
′′(xi(a0); a0)

Mβ(xi(a0)) (167)

and

pi,β(α) :=
Bi,β(α)∑r
j=1Bj,β(α)

. (168)

From (168) we immediately find
∑r

j=1 pj,β(α) = 1. By (167) and (168) we find that limα→∞ pr,β(α) =
1 and limα→−∞ p1,β(α) = 1.

The probabilities (158), (163), (164) and (166) show that for any T ∈ R and i = 1, . . . , r

P

ξmax(n) ≤ xi(a0) +
T√

−β
2G
′′(xi(a0); a0)n

 =

 i−1∑
j=1

pj,β(α)

+ pi,β(α)(Φ(T ) + o(1)). (169)

Therefore Theorem 1.3 is proved. Theorem 1.1(c) is a consequence of Theorem 1.3 with α = 0.

Next we consider the case that r = 2 and for k > 1

G′′(x1(a0)) 6= 0, (170)

G(2k)(x2(a0)) 6= 0, G(j)(x2(a0)) = 0 j = 1, . . . , 2k − 1. (171)
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and take (see (35))

a = a0 − qβ
log n

n
+
α

n
, where qβ :=

2

β

1
2 − 1

2k

x2(a0)− x1(a0)
, (172)

where α is in a compact subset of R. For x around x1(a), we denote

x = x1(a0) +
ξ1√

−β
2G
′′(x1(a0); a0)n

, (173)

and for x around x2(a), we denote

x = x2(a0) +

(
−β

2G
(2k)(x2(a0); a0)n

(2k)!

)−1/(2k)

ξ2. (174)

For ξ1 in a compact subset of R and x given by (173), we have like (162)

β

2
G(x; a) =

β

2
G(x1(a0); a)− ξ2

1

2

1

n
+ o(n−1)

=
β

2
Gmax(a0) +

β

2
x1(a0)

−qβ log n+ α

n
− ξ2

1

2

1

n
+ o(n−1).

(175)

For ξ2 in a compact subset of R and x given by (174), we have

β

2
G(x; a) =

β

2
G(x2(a0); a)− ξ2k

2

1

n
+ o(n−1)

=
β

2
Gmax(a0) +

β

2
x2(a0)

−qβ log n+ α

n
− ξ2k

2

1

n
+ o(n−1).

(176)

Let εi (i = 1, 2) be small enough constant numbers such that xi(a0) is the unique maximum of
G(x; a0) in [xi(a0)− εi, xi(a0) + εi]. Applying the standard Laplace’s method to (97), near x1(a0),
we obtain similar to (163) and (164) that

P(ξmax(n) ∈ [x1(a0)− ε1, x1(a0) + ε1]) =
e−

β
2
x1(a0)qβ logn

√
n

e
β
2
x1(a0)α

×
√

2π

−β
2G
′′(x1(a0); a0)

Mβ(x1(a0))Cn,βe
β
2
nGmax(a0)(1 + o(1)), (177)

and for any T in a compact subset of R,

P

ξmax(n) ∈

x1(a0)− ε1, x1(a0) +
T√

−β
2G
′′(xi(a0); a0)n

 =

e−
β
2
x1(a0)qβ logn

√
n

e
β
2
x1(a0)α

√
2π

−β
2G
′′(x2(a0); a0)

Mβ(x2(a0))Cn,βe
β
2
nGmax(a0)(Φ(T ) + o(1)). (178)
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Applying the Laplace’s method to (97), near x2(a0), we obtain

P(ξmax(n) ∈ [x2(a0)− ε2, x2(a0) + ε2]) =
e−

β
2
x2(a0)qβ logn

n1/(2k)
e
β
2
x2(a0)α

×
(

(2k)!

−β
2G

(2k)(x2(a0); a0)

)1/(2k)

Mβ(x2(a0))Cn,βe
β
2
nGmax(a0)

(∫ ∞
−∞

eξ
2k
2 dξ2 + o(1)

)
, (179)

and for any T in a compact subset of R,

P

ξmax(n) ∈

x2(a0)− ε2, x2(a) +

(
−β

2G
(2k)(x0(a); a)n

(2k)!

)−1/(2k)

T

 =

e−
β
2
x2(a0)qβ logn

n1/(2k)
e
β
2
x2(a0)α

(
(2k)!

−β
2G

(2k)(x1(a0); a0)

)1/(2k)

Mβ(x2(a0))Cn,βe
β
2
nGmax(a0)

×
(∫ T

−∞
eξ

2k
2 dξ2 + o(1)

)
. (180)

Also there exists ε′′ > 0 depending on ε1 and ε2 such that the estimate (166) holds. The probabilities
(158), (166), (177), (178), (179), (180) show that the probability that ξmax(n) is in [x1− ε1, x1 + ε1]
or [x2 − ε2, x2 + ε2] approaches 1 as n→∞.

Let

D1,β :=e
β
2
x1(a0)α

√
2π

−β
2G
′′(x1(a0); a0)

Mβ(x1(a0)), (181)

D2,β :=e
β
2
x2(a0)α

(
(2k)!

−β
2G

(2k)(x2(a0); a0)

)1/(2k)

Mβ(x2(a0))

∫ ∞
−∞

eξ
2k
2 dξ2, (182)

and for i = 1, 2

p̃i,β(α) :=
Di,β(α)

D1,β(α) +D2,β(α)
. (183)

From (183) we immediately find that p̃1,β(α)+ p̃2,β(α) = 1. By (181), (182) and (183), we find that
limα→∞ p̃2,β(α) = 1 and limα→−∞ p̃1,β(α) = 1.

Because
e−

β
2
x1(a0)qβ logn

√
n

=
e−

β
2
x2(a0)qβ logn

n1/(2k)
, (184)

We further find from (177), (178), (179), (180) that for any T ∈ R

P

ξmax(n) ≤ x1(a0) +
T√

−β
2G
′′(x1(a0); a0)n

 = p̃1,β(α)(Φ(T ) + o(1)), (185)
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P

ξmax(n) ≤ x2(a) +

(
−β

2G
(2k)(x0(a); a)n

(2k)!

)−1/(2k)

T

 =

p̃1,β(α) + p̃2,β(α)

(∫ T
−∞ e

−x2kdx∫∞
−∞ e

−x2kdx
+ o(1)

)
. (186)

Therefore Theorem 1.4 is proved.

4 Proof of Proposition 2.1

The proof of Proposition 2.1 is based on a theorem of Johansson [21]. For the convenience of readers
we state it bellow.

Proposition 4.1. [21, Theorem 2.4] Suppose the function V satisfies Conditions 1–3, and µ is
the equilibrium measure associated to V . Let f be a real function that satisfies conditions (i)–(iii)
below, with s = 2 if β = 2 and s = 17/2 if β 6= 2. Then there are a quadratic functional A on f
and a signed measure ν on supp(µ) = J = [b1, b2] which do not depend on n, such that as n→∞

log En−1,β(e
∑n−1
j=1 f(xj)) = (n− 1)

∫
f(x)dµ(x) +

(
2

β
− 1

)∫
f(x)dν(x) +

2

β
A(f) + o(1). (187)

The quadratic functional A is defined by

A(f) =
1

2

∫
J
f(x)δf (x)dx (188)

where δf is given by

δf (x) = − 1

2π2

1√
(x− b1)(b2 − x)

p. v.

∫
J

f ′(s)
√

(s− b1)(b2 − s)
s− x ds. (189)

From the quadratic functional A, we define the inner product 〈·, ·〉A by

〈f, g〉A :=
1

2
(A(f + g)−A(f)−A(g)). (190)

The explicit formula of ν(x) is more complicated and is given in [21, Formula (3.54)]. The conditions
mentioned in Proposition 4.1 are (see [21, Page 157])

(i) f(x) ≤ C(V (x) + 1) for some constant C, all x ∈ R.

(ii) |f ′(x)| ≤ q(x) for some polynomial q(x) and all x ∈ R.

(iii) For any x0 > 0, there is an α > 0 such that hψx0 ∈ Hs+α, where Hs, s > 0, is the standard
L2 Sobolev space, and ψx0 ∈ C∞ is the function such that ψx0(x) = 1 if |x| ≤ x0, ψx0(x) = 0
if |x| ≥ x0 + 1 and 0 ≤ ψx0(x) ≤ 1.
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The function Rβ(u,w) appearing in Proposition 2.1 is defined by

Rβ(u,w) := exp

[
β

2

((
2

β
− 1

)∫
p(x;u,w)dν(x)−

∫
p(x;u,w)dµ(x) +A(p(x;u,w))

)]
(191)

for u ∈ (e,∞) and w ∈ C \ (−∞, u). If w = u, we denote

Rβ(u) := Rβ(u, u). (192)

To facilitate the proof of Proposition 2.1, we define

Zm,β(u,w; c) := Em,β

Pm,β(x1, . . . , xm;u,w)
m∏
j=1

χ(−∞,c)(xj)

 , (193)

Ẑm,β(u,w; c) := Em,β

|Pm,β(x1, . . . , xm;u,w)|
m∏
j=1

χ(−∞,c)(xj)

 , (194)

where c is a parameter no greater than u. When c = u, Zm,β(u,w; c) and Ẑm,β(u,w; c) become

Zm,β(u,w) and Ẑm,β(u,w).
The proof of Proposition 2.1 is as follows. Recall that e is the right edge of J , the support of

the equilibrium measure. Let c̄ = (e + u)/2. We write

Zn−1,β(u,w) = Ẑn−1,β(u,w; c̄)

(
Zn−1,β(u,w; c̄)

Ẑn−1,β(u,w; c̄)
+
Zn−1,β(u,w)− Zn−1,β(u,w; c̄)

Ẑn−1,β(u,w; c̄)

)
. (195)

In case (a) where w is given by (46), we assume the results

Ẑn−1,β(u,w) =e−
βs
2

∫ dµ(x)
u−x Rβ(u)e

β
2
n
∫
p(x;u)dµ(x)(1 + o(1)), (196)

Ẑn−1,β(u,w; c̄) =e−
βs
2

∫ dµ(x)
u−x Rβ(u)e

β
2
n
∫
p(x;u)dµ(x)(1 + o(1)), (197)

Zn−1,β(u,w; c̄)

Ẑn−1,β(u,w; c̄)
=e−

iβt
2

∫ dµ(x)
u−x + o(1). (198)

Then we have∣∣∣∣∣Zn−1,β(u,w)− Zn−1,β(u,w; c̄)

Ẑn−1,β(u,w; c̄)

∣∣∣∣∣ ≤ Ẑn−1,β(u,w)− Ẑn−1,β(u,w; c̄)

Ẑn−1,β(u,w; c̄)
= o(1), (199)

and find that (47) is the consequence of (196), (197), (198) and (199).
In case (b) where w is given by (48), we assume the results

Ẑn−1,β(u,w) =e
−βt2

4

∫ dµ(x)

(w0−x)2Rβ(u,w0)e
β
2
n
∫
p(x;u,w0)dµ(x)(1 + o(1)), (200)

Ẑn−1,β(u,w; c̄) =e
−βt2

4

∫ dµ(x)

(w0−x)2Rβ(u,w0)e
β
2
n
∫
p(x;u,w0)dµ(x)(1 + o(1)), (201)

Zn−1,β(u,w; c̄)

Ẑn−1,β(u,w; c̄)
=e
−iβt

2

√
n
∫ dµ(x)
w0−x + o(1). (202)
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We still have (199), and (49) is the consequence of (200), (201), (202) and (199).
In case (c), we assume

Ẑn−1,β(u,w) = Rβ(u,w)e
β
2
n
∫
p(x;u,w)dµ(x)(1 + o(1)). (203)

Then we immediately obtain (50).
Below we prove the asymptotic formulas (196), (197), (198), (200), (201) and (203).

Proof of (196), (197), (200), (201) and (203). In the proof, c stands for c̄ = (e + u)/2 or u.
For fixed u, w and c, let f1(x) and f2(x) be two functions on R, such that

(1) f1(x) and f2(x) satisfy the conditions (i)–(iii) mentioned in Proposition 4.1.

(2) f1(x) = f2(x) = p(x;u,w) for x ≤ e.

(3) f1(x) ≥ p(x;u,w) for x ∈ (e, c).

(4) There exists x0 ∈ (e, c) such that f2(x) ≤ p(x;u,w) for x ∈ (e, x0) and f1(x)− f2(x) ≥ log 2
for x ≥ x0.

As a consequence of the properties of f1(x) and f2(x), we have

2 En−1,β

(
e
β
2

∑n−1
j=1 f2(λ1)

)
− En−1,β(e

β
2

∑n−1
j=1 f1(λ1))

<En−1,β

|Pn−1,β(x1, . . . , xn−1;u,w)|
n−1∏
j=1

χ(−∞,c)(xj)


<En−1,β

(
e
β
2

∑n−1
j=1 f1(λ1)

)
.

(204)

By Proposition 4.1, we have for both i = 1, 2 that

En−1,β(e
β
2

∑n−1
j=1 fi(λ1)) = exp

[
(n− 1)

∫
β

2
p(x;u,w)dµ(x) + (

2

β
− 1)

∫
β

2
p(x;u,w)dν(x)

+
2

β
A

(
β

2
p(x;u,w)

)]
(1 + o(1))

=Rβ(u,w) exp

[
β

2
n

∫
p(x;u,w)dµ(x)

]
(1 + o(1)).

(205)

Thus by the sandwich inequality (204) and (194) we obtain

Ẑn−1,β(u,w; c) = En−1,β

|Pn−1,β(x1, . . . , xn−1;u,w)|
n−1∏
j=1

χ(−∞,c)(xj)


=Rβ(u,w) exp

[
β

2
n

∫
p(x;u,w)dµ(x)

]
(1 + o(1)).

(206)

By (206), we complete the proof of (203) with c = u. Let w be given in (46), we have uniformly
for all x ≤ e that

p(x;u,w) = p(x;u)− s

u− xn
−1 +O(n−2). (207)
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Thus
Rβ(u,w) = Rβ(u) +O(n−1) (208)

and

exp

[
β

2
n

∫
p(x;u,w)dµ(x)

]
= e−

βs
2

∫ dµ(x)
u−x exp

[
β

2
n

∫
p(x;u)dµ(x)

]
(1 +O(n−1)), (209)

and we obtain the proof of (197) with c = c̄ and the proof of (196) with c = u. Let w be given in
(48), we have uniformly for all x ≤ e that

p(x;u,w) = p(x;u;w0)− t2

2(w0 − x)2
n−1 +O(n−2). (210)

Thus
Rβ(u,w) = Rβ(u,w0) +O(n−1) (211)

and

exp

[
β

2
n

∫
p(x;u,w)dµ(x)

]
= e
−βt2

4

∫ dµ(x)

(w0−x)2 exp

[
β

2
n

∫
p(x;u,w0)dµ(x)

]
(1 +O(n−1)), (212)

and we obtain the proof of (201) with c = c̄ and the proof of (200) with c = u.

Remark 4.1. By the same method, we can evaluate En−1,β(F̂n−1,β(x1, . . . , xn−1;u)) where F̂n−1,β

is defined in (71).

Proof of (198) and (202). We consider (−∞, c̄)n−1 as a probability space with the probability mea-
sure

1

Ẑn−1,β(u,w; c̄)
|Pn−1,β(x1, . . . , xn−1;u,w)|dµn−1,β(x1, . . . , xn−1), (213)

where dµn−1,β(x1, . . . , xn−1) is defined in (38). Let Swn−1,β be a random variable on (−∞, c̄)n−1

such that

Swn−1,β(x1, . . . , xn−1) =

n−1∑
j=1

arg
1

(w − λj)β/2

 , (214)

where the range of the argument is taken to be (−π, π].
We define

σv := A

(
1

v − x

)−1/2

(215)

for any v > e. For w given in (46), we will show

E(Swn−1,β) =− βt

2

∫
dµ(x)

u− x + o(1), (216)

P(n(Swn−1,β − E(Swn−1,β)) < T ) =
1√

2π/βtσu

∫ T

−∞
e
− x2

2t2σ2u/β dx+ o(1), (217)
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and for w given in (48), we will show

E(Swn−1,β) =− βt

2

√
n

∫
dµ(x)

w0 − x
+ o(1), (218)

P(
√
n(Swn−1,β − E(Swn−1,β)) < T ) =

1√
2π/βtσw0

∫ T

−∞
e
− x2

2t2σ2w0
/β dx+ o(1). (219)

Assuming (216) and (217), we find that Swn−1,β converges in probability to −βt
2

∫ dµ(x)
u−x , and (198)

is proved. Assuming (218) and (219), we find that Swn−1,β + βt
2

√
n
∫ dµ(x)
w0−x converges in probability

to 0, and (202) is proved.
To prove (216), we denote for x < c̄ the function

gβ(x;w) = n arg
1

(w − x)β/2
. (220)

gβ(x;w) depends on n, but we suppress that dependence to economize on notation. Let w be given
by (46), uniformly for all x < c̄

gβ(x;w) = −βt
2

1

u− x +O(n−1). (221)

Define the (n− 1)-variable function

Gr,β(x1, . . . , xn−1;u,w; c̄) :=

{
Pn−1,β(x1, . . . , xn−1;u,w)er

∑n−1
j=1 gβ(xj ;w) if max1≤j≤n−1 xj < c̄,

0 otherwise.

(222)
We have (comparing with (194))

E(ernS
w
n−1,β ) =

En−1,β (Gr,β(x1, . . . , xn−1;u,w; c̄))

Ẑn−1,β(u,w; c̄)
, (223)

nE(Swn−1,β) =
d

dr
E(ernS

w
n−1,β )

∣∣∣∣
r=0

. (224)

For any r ∈ R, analogous to (206) we have

log En−1,β (Gr,β(x1, . . . , xn−1;u,w; c̄))

=(n− 1)

∫
rgβ(x;w) + p(x;u,w)dµ(x) +

(
2

β
− 1

)∫
rgβ(x;w) + p(x;u,w)dν(x)

+
2

β
A(rgβ(x;w) + p(x;u,w)) + o(1)

= log Ẑn−1,β(u,w; c̄) + r

[
(n− 1)

∫
gβ(x;w)dµ(x)

+

(
2

β
− 1

)∫
gβ(x;w)dν(x) +

4

β
〈gβ(x;w), p(x;u,w)〉A

]
+

2r2

β
A(gβ(x;w)) + o(1),

(225)
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where we use (201) in the last line. Using the Cauchy-Schwartz inequality, we find (for notational
simplicity, we write Gr,β(x1, . . . , xn−1;u,w; c̄) as Gr,β if there is no confusion)

d2

dr2
log En−1,β(Gr,β(x1, . . . , xn−1;u,w; c̄))

= En−1,β(Gr,β)−2

En−1,β

(n−1∑
k=1

gβ(x;w)

)2

Gr,β

En−1,β(Gr,β)

− En−1,β

((
n−1∑
k=1

gβ(x;w)

)
Gr,β

)
En−1,β

((
n−1∑
k=1

gβ(x;w)

)
Gr,β

)
>0.

(226)

Hence log En−1,β(Gr,β(x1, . . . , xn−1;u,w; c̄)) is a convex function in r. For any ε > 0, by (224)

logEn−1,β(G−ε,β)− Ẑn−1,β(u,w; c̄)

−ε <
d logEn−1,β(Gr,β)

dr

∣∣∣∣
r=0

= nE(Swn−1,β)

<
logEn−1,β(Gε,β)− Ẑn−1,β(u,w; c̄)

ε
.

(227)

Taking ε→ 0, by (225), (227) and (221) we have

nE(Swn−1,β) = (n−1)

∫
gβ(x;w)dµ(x)+

(
2

β
− 1

)∫
gβ(x;w)dν(x)+

4

β
〈gβ(x;w), p(x;u,w)〉A+o(1),

(228)
and by (220)

E(Swn−1,β) =

∫
gβ(x;w)dµ(x) + o(1) = −βt

2

∫
dµ(x)

u− x + o(1). (229)

To prove (217), we consider the moment-generating function of n(Swn−1,β−E(Swn−1,β)). By (223)
we have

Mn(Swn−1,β−E(Swn−1,β))(ξ) = E(exp[ξn(Swn−1,β − E(Swn−1,β))])

=
En−1,β(Gξ,β(λ1, . . . , λn−1;u,w; c̄))

exp[ξnE(Swn−1,β)]Ẑn−1,β(u,w; c̄)
.

(230)

Then by (225) and (228) we have

Mn(Swn−1,β−E(Swn−1,β))(ξ) = exp

[
2ξ2

β
A(gβ(x;w)) + o(1)

]
= exp

[
βt2ξ2

2
A

(
1

u− x

)
+ o(1)

]
,

(231)

where in the last step we use (221). The convergence of moment-generating function (231) implies
(217).

To prove (218), we denote for x < c̄ the function

g̃β(x;w) :=
1√
n
gβ(x;w) =

√
n arg

1

(w − x)β/2
. (232)
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g̃β(x;w) depends on n, and we suppress the dependence to economize on notation. Let w be given
by (48), uniformly for all x < c̄

g̃β(x;w) = −βt
2

1

w0 − x
+O(n−1). (233)

Like (228), we have

√
nE(Swn−1,β) = (n− 1)

∫
g̃β(x;w)dµ(x) +

(
2

β
− 1

)∫
g̃β(x;w)dν(x)

+
4

β
〈g̃β(x;w), p(x;u,w)〉A + o(1), (234)

and by (234) we obtain

E(Swn−1,β) =
√
n

∫
g̃β(x;w)dµ(x) + o(1) = −βt

2

√
n

∫
dµ(x)

w0 − x
+ o(1) (235)

and complete the proof of (218).
To prove (219), we consider the moment-generating function of

√
n(Swn−1,β − E(Swn−1,β)). Like

(230) and (231), we have the convergence of moment-generating function

M√n(Swn−1,β−E(Swn−1,β))(ξ) = E(exp[ξ
√
n(Swn−1,β − E(Swn−1,β))])

= exp

[
2ξ2

β
A(g̃β(x;w)) + o(1)

]
= exp

[
βt2ξ2

2
A

(
1

w0 − x

)
+ o(1)

]
,

(236)

which implies (219).
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A Contour integral formula of the joint p.d.f.s of the eigenvalues in
β-external source models with β = 1, 2, 4, and β-external source
model for all β > 0

The goal of this appendix is two-fold. We prove Proposition 2.2 and also propose the definition of
the β-external source model.

Remark A.1. The strategy in this appendix has appeared in [25, Appendix] independently for the
purpose of proof of [25, Theorem 1]. Since we are concerned with β = 1, 2, 4 cases and furthermore
all β > 0, we give full detail in this appendix.
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By change of variables and calculation of Jacobian (cf. [24, Chapter 3]), it follows from (1),
(2) and (9) that the joint p.d.f.s of the eigenvalues λ1, . . . , λn of M in the three β-external source
models (β = 1, 2, 4) are given by

pn,β(λ1, . . . , λn) =
1

Cn,β
|∆(λ1, . . . , λn)|β

n∏
j=1

e−
β
2
nV (λj)

∫
Q∈Gβ(n)

en<Tr(An,βQΛnQ−1)dQ, (237)

where Cn,β is a normalization constant and Cn,β/C̃n,β is a constant depending only on n. The
integral in (237) is with respect to the Haar measure of the compact group Gβ(n), which is the
orthogonal group O(n), the unitary group U(n) and the compact symplectic group Sp(n) for
β = 1, 2, 4 respectively. The matrix An,β is defined in (4), (6) and (10), and

Λn = diag(λ1, λ2, . . . , λn). (238)

Recall that in combinatorics, a partition κ = (κ1, κ2, . . . ) is a sequence of non-negative integers
in decreasing order, and containing only finitely many non-zero terms. We denote l(κ) as the

number of non-zero terms of κ, and write κ ` k if
∑l(κ)

i=1 κi = k.

Jack polynomials C
(α)
κ (x1, . . . , xn) are n-variable symmetric polynomials indexed by partition

κ and the parameter α. For general references of Jack polynomials, see [23] and [31]. In this paper,
we take the “C”-normalization of Jack polynomials [16], such that∑

κ`k,l(κ)≤n
C(α)
κ (x1, . . . , xn) = (x1 + · · ·+ xn)k. (239)

The Jack polynomials with parameters 2, 1, 1
2 are Zonal spherical functions. See [23, Chapter VII].

C
(2)
κ are the well known Zonal polynomial in statistics [27], C

(1)
κ are the complex Zonal polynomials,

and are better known as Schur polynomials, and C
(1/2)
κ are the quaternionic Zonal polynomials.

The integral in (237) can be expanded in Jack polynomials:

Proposition A.1. Let β = 1, 2, 4 and Gβ(n) be O(n), U(n) and Sp(n) respectively. If An,β is
defined by (4), (6) and (10) and Λn is defined by (238), then∫

Q∈Gβ(n)
en<Tr(An,βQΛnQ−1)dQ =

∞∑
k=0

(β2n)k

k!

∑
κ`k,l(κ)≤n

C
(2/β)
κ (a1, . . . , an)C

(2/β)
κ (λ1, . . . , λn)

C
(2/β)
κ (1, . . . , 1)

. (240)

Proof. Any n-variable symmetric polynomial f can be regarded as a polynomial function from the
spaces of n × n matrices Mn(F ) to F , where F stands for the division algebras R, C and H. For
F = R and F = C, the definition is simple: If M ∈ Mn(R) or M ∈ Mn(C) and the eigenvalues of
M are ξ1, . . . , ξn, then [23, Pages 420 and 443]

f(M) = f(ξ1, . . . , ξn). (241)

For F = H, the definition is more complicated and the reader is referred to [23, Page 452]. In all
the three cases, identity (239) implies that

<Tr(An,βQΛnQ
−1)k =

(
β

2

)k ∑
κ`k,l(κ)≤n

C(2/β)
κ (AnQΛnQ

−1), (242)
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where An = 2
βAn,β = diag(a1, . . . , an) as defined in (4). Furthermore, by general theory of Zonal

spherical functions (e.g. [20, Proposition 5.5])∫
Q∈Gβ(n)

C(2/β)
κ (AnQΛnQ

−1) =
C

(2/β)
κ (a1, . . . , an)C

(2/β)
κ (λ1, . . . , λn)

C
(2/β)
κ (1, . . . , 1)

. (243)

After expanding en<Tr(An,βQΛnQ−1) into power series of <Tr(An,βQΛn,βQ
−1), we prove (240) by

(242) and (243).

In case that An = diag(a, 0, . . . , 0), (240) is much simplified by the property of Jack polynomials:

Proposition A.2. [31, Proposition 2.5] If the number of nonzero variables among a1, . . . , an is

less than l(κ), then C
(α)
κ (a1, . . . , an) = 0 for any α > 0.

Therefore, in the case An = diag(a, 0, . . . , 0),∫
Q∈Gβ(n)

en<Tr(An,βQΛnQ−1)dQ =
∞∑
k=0

(β2n)k

k!

C
(2/β)
(k) (a, 0, . . . , 0)C

(2/β)
(k) (λ1, . . . , λn)

C
(2/β)
(k) (1, . . . , 1)

. (244)

C
(2/β)
(k) (a, 0, . . . , 0) and C

(2/β)
(k) (1, . . . , 1) can be calculated explicitly [16, Table 5]

C
(2/β)
(k) (a, 0, . . . , 0) = ak, C

(2/β)
(k) (1, . . . , 1) =

k−1∏
j=0

n+ 2
β j

1 + 2
β j
. (245)

Thus we have∫
Q∈Gβ(n)

en<Tr(An,βQΛnQ−1)dQ =

∞∑
k=0

k−1∏
j=0

1 + 2
β j

n+ 2
β j

(β2an)k

k!
C

(2/β)
(k) (λ1, . . . , λn). (246)

By [31, Proposition 2.1] and the conversion between the “J”-normalization and “C”-normalization
[16, Table 6], we have the identity of formal series in a

∞∑
k=0

∏k−1
j=0(1 + 2

β j)

( 2
β )kk!

C
(2/β)
(k) (a, 0, . . . , 0)C

(2/β)
(k) (λ1, . . . , λn) =

n∏
j=1

1

(1− aλj)β/2
. (247)

Hence we obtain by Cauchy’s integral formula and (245)∏k−1
j=0(1 + 2

β j)

( 2
β )kk!

C
(2/β)
(k) (λ1, . . . , λn) =

1

2πi

∮
0

n∏
j=1

1

(1− zλj)β/2
dz

zk+1
, (248)

where the contour is taken to be a small circle around 0 such that all λ−1
j (j = 1, . . . , n) are in the

exterior of the contour. By (245) and (248), we obtain

∞∑
k=0

(β2n)k

k!

C
(2/β)
(k) (a, 0, . . . , 0)C

(2/β)
(k) (λ1, . . . , λn)

C
(2/β)
(k) (1, . . . , 1)

=

1

2πi

∮
0

n∏
j=1

1

(1− zλj)β/2

 ∞∑
k=0

(
β

2
an)k

k−1∏
j=0

(
1

β
2n+ j

)
1

zk+1

 dz. (249)
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Note that (249) is valid for all β > 0.
Suppose β is a positive number. Let m be an integer and ξ ∈ (0, 1], such that

β

2
n = m+ ξ, (250)

we have

1

2πi

∮
0

n∏
j=1

1

(1− zλj)β/2

 ∞∑
k=0

(
β

2
an)k

k−1∏
j=0

(
1

β
2n+ j

)
1

zk+1

 dz

=
1

2πi

∮
0

n∏
j=1

1

(1− zλj)β/2

 (ξ)m

(β2an)m
zm−1

∞∑
k=m

1

(ξ)k

(
β
2an

z

)k dz

=
1

2πi

∮
0

n∏
j=1

1

(1− zλj)β/2

 (ξ)m

(β2an)m
zm−1

M(1, ξ,
β
2an

z
)−

m−1∑
k=0

1

(ξ)k

(
β
2an

z

)k dz

=
(ξ)m

(β2an)m
1

2πi

∮
0

n∏
j=1

1

(1− zλj)β/2
zm−1M(1, ξ,

β
2an

z
)dz

=
(ξ)m

(β2an)m
1

2πi

∮
∞

 n∏
j=1

1

(w − λj)β/2

wξ−1M(1, ξ,
β

2
anw)dw,

(251)

where the contour is large enough so that all λj are in its interior, and 0 is in its interior if ξ 6= 1.
Here

(c)i := c(c+ 1)(c+ 2) . . . (c+ n− 1) (252)

is the Pochhammer symbol (“rising factorial”), and

M(c1, c2, z) :=

∞∑
i=0

(c1)i
(c2)ii!

zi (253)

is the Kummer’s (confluent hypergeometric) function. See [1, 13.1.2]. Alternatively, for ξ 6= 1

M(1, ξ, z) = (ξ − 1)z1−ξezγ(ξ − 1, z) (254)

where γ(s, z) is the incomplete gamma function (cf. [1, 6.5.12]), and for ξ = 1

M(1, 1, z) = ez. (255)

We note that in the cases β = 2, 4, or in the case that β = 1 and n is even, ξ = 1 and m = β
2n−1.

Thus by (237), (244), (249) and (251), we have

pn,β(λ1, . . . , λn) = C̄n,β|∆(λ1, . . . , λn)|β
n∏
j=1

e−
β
2
nV (λj)

1

2πi

∮
∞

 n∏
j=1

1

(w − λj)β/2

 e
β
2
anwdw (256)

where C̄n,β is a constant, and the contour encloses all λj in its interior.
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If a > 0 and max1≤j≤n λj ≤ u, the contour in (256) can be taken as Σz
s1,s2 defined in (51) or

Πz
s defined in (52), where z > u. From the joint p.d.f. of λj , it is straightforward to find the p.d.f.

formula (56) of the largest eigenvalue ξmax(n). Thus Proposition 2.2 is proved.

If β = 1 and n is odd, similarly we obtain that the joint p.d.f. of The eigenvalues in n-dimensional
1-external source model is

pn,1(λ1, . . . , λn) =

C̄n,1|∆(λ1, . . . , λn)|
n∏
j=1

e−
1
2
nV (λj)

1

2πi

∮
∞

 n∏
j=1

1

(w − λj)1/2

w−1/2M(1,
1

2
,
1

2
anw). (257)

In Section 2 we compute the limiting distribution of ξmax(n) based on (256). Since the asymp-
totic property of M(1, 1

2 , z) is similar to that of ez = M(1, 1, z) for large z, we can compute the
limiting distribution of ξmax(n) based on (259) by the same method that we use in Section 2. Hence
we can prove that Theorems 1.1, 1.2, 1.3 and 1.4 hold when β = 1 and n is odd.

Inspired by the Coulomb gas interpretation of the distribution of eigenvalues in random matrix
models (see [18]), we generalize the β-external source model to any β > 0 as the probability
distribution of n points on the real line, such that

pn,β(λ1, . . . , λn) =
1

Cn,β
|∆(λ1, . . . , λn)|β

n∏
j=1

e−
β
2
nV (λj)

×
∞∑
k=0

(β2n)k

k!

∑
κ`k,l(κ)≤n

C
(2/β)
κ (a1, . . . , an)C

(2/β)
κ (λ1, . . . , λn)

C
(2/β)
κ (1, . . . , 1)

, (258)

where V is the potential and a1, . . . , an are external source parameters. By (237) and (240),
(258) gives the distribution of eigenvalues of the random matrix models with external source with
β = 1, 2, 4. But for other value of β, it has no matrix interpretation. By Proposition A.2, (245) (247)
and (251), we find that if one external source parameter is a and all others are 0, the distribution
of the right-most point in the general β-external source model is

pn,β(λ1, . . . , λn) = C̄n,β|∆(λ1, . . . , λn)|β
n∏
j=1

e−
β
2
nV (λj)

× 1

2πi

∮
∞

 n∏
j=1

1

(w − λj)β/2

wξ−1M(1, ξ,
β

2
anw), (259)

where ξ is defined by (250). It is of interest to compare this formula with the rank 1 spiked Gaussian
and Laguerre β ensembles studied in [8]. In the very recent preprint [19], Forrester obtained similar
formulas for β-Wishart ensembles.

B Computation of M2(u)

In this Appendix, we show that when β = 2, the pj,2(α) in Theorem 1.3 are the same as the p
(j)
1,n(α)

in [3, Formula (52)], and the p̃j,2(α) in Theorem 1.4 are the same as the p
(j)
1,n(α) in [3, Formula
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(63)]. Hence we verify that the result obtained in this paper agrees with the result in [3]. Since
pj,2(α) and p̃j,2(α) in our paper are defined by G(u; a) and M2(u) in the same way that pj,2(α)
in [3, Formulas (52) and (63)] are defined by G(u; a) and M1,n(u), (see (167), (168), (181), (182)
and (183) in this paper, and [3, Formulas (177), (178) and (182)] and the comments in [3] below
[3, Formula (52)]), we need only to show that M2(u)/M1,n(u) is a nonzero constant for u > e. (e
is the right edge of J , the support of the equilibrium measure µ.) The explicit formula of M1,n(u)
is given in [3, Formula (315)] in the case that the support of equilibrium measure is one interval.
In this appendix we obtain that for u > e

M2(u) = C(γ(u)− γ(u)−1), (260)

where C is a constant independent of u, and, if J = [b1, b2],

γ(u) =

(
u− b1
u− b2

)1/4

. (261)

Thus we prove the statements above.
To make the notations simpler, we assume J = [−1, 1] in the proof of (260). The generalization

to arbitrary J is straightforward.
From formula (83), (192) and (188), we have that

M2(u) = exp

[
A(−V (x) + log(u− x))−

∫ 1

−1
−V (x) + log(u− x)dµ(x)

]
=e

∫ 1
−1 V (x)dµ(x)− 1

4π2

∫ 1
−1

V (x)√
1−x2

p.v.
∫ 1
−1

V ′(s)
√

1−s2
s−x dsdx

× e


1

4π2

∫ 1
−1

log(u−x)√
1−x2

p.v.
∫ 1
−1

V ′(s)
√

1−s2
s−x dsdx

− 1
4π2

∫ 1
−1

V (x)√
1−x2

p.v.
∫ 1
−1

√
1−s2

(u−s)(s−x)dsdx−
∫ 1
−1 log(u−x)dµ(x)


× e

1
4π2

∫ 1
−1

log(u−x)√
1−x2

p.v.
∫ 1
−1

√
1−s2

(u−s)(s−x)dsdx.

(262)

The right-hand side of (262) is divided into the product of three terms. The first one is a constant,
and we compute the other two terms below.

First we compute the third term in (262). Exchanging the order of integration, we have

1

4π2

∫ 1

−1
log(u− x)

1√
1− x2

p. v.

∫ 1

−1

√
1− s2

(u− s)(s− x)
dsdx =

1

4π2

∫ 1

−1

√
1− s2

u− s F (u, s)ds, (263)

where

F (u, s) = p. v.

∫ 1

−1
log(u− x)

1

(s− x)
√

1− x2
dx. (264)

To evaluate F (u, s), we note (with the change of variable x = sin θ)

∂

∂u
F (u, s) = p. v.

∫ 1

−1

1

(u− x)(s− x)
√

1− x2
dx

=
1

s− u

[∫ π
2

−π
2

1

u− sin θ
dθ − p. v.

∫ π
2

−π
2

1

s− sin θ
dθ

]

=
1

s− u

[
π√
u2 − 1

− 0

]
=

π

(s− u)
√
u2 − 1

.

(265)
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On the other hand,

F (u, s) = log up. v.

∫ 1

−1

1

(s− x)
√

1− x2
dx+ p. v.

∫ 1

−1
log

u− x
u

1

(s− x)
√

1− x2
dx

=0 + p. v.

∫ 1

−1
log

u− x
u

1

(s− x)
√

1− x2
dx,

(266)

and it implies that F (u, s)→ 0 as u→∞. Thus from (265) and (266)

F (u, s) =
π√

1− s2

[
arcsin s− arcsin

us− 1

u− s

]
. (267)

Because ∫ 1

−1

arcsin s

u− s ds =
π

2
log(u2 − 1) + π log

u+
√
u2 − 1

2
, (268)∫ 1

−1

arcsin us−1
u−s

u− s ds =− π

2
log(u2 − 1)− π log

u+
√
u2 − 1

2
. (269)

By (263), (267), (268) and (269) we find

e
1

4π2

∫ log(u−x)√
1−x2

p.v.
∫ √

1−s2
(u−s)(s−x)dsdx =

1

2

[(
u+ 1

u− 1

)1/4

+

(
u− 1

u+ 1

)1/4
]
. (270)

Next we compute the second term in (262). For the equilibrium measure dµ(x) = Ψ(x)dx on
its support [−1, 1], By [15, Formula 6.135], we have

Ψ(x) = <G̃+(x) = −<G̃−(x) =
1

2
(G̃+(x)− G̃−(x)), (271)

where G̃(z) is an analytic function [15, Formula 6.141]

G̃(z) =

√
z2 − 1

2π2i

∫ 1

−1

V ′(s)

(s− z)
√

1− s2
ds (272)

is an analytic function in C\ [−1, 1] and
√
z2 − 1 is analytic in C\ [−1, 1] with

√
z2 − 1 ∼ z, z →∞.

Thus by (271), (272) and exchanging the order of integration,∫ 1

−1
log(u− s)dµ(x) =

1

2π2

∫ 1

−1
log(u− s)

√
1− x2 p. v.

∫ 1

−1

V ′(s)√
1− s2(s− x)

dsdx

=
1

2π2

∫ 1

−1

V ′(s)√
1− s2

G(u, s)ds,

(273)

where

G(u, s) := p. v.

∫
log(u− x)

√
1− x2

1

s− xdx. (274)
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Similar to (267), we have

G(u, s) = π

[√
u2 − 1− u+ s log

u+
√
u2 − 1

2

−
√

1− s2 arctan
su− 1√

(1− s2)(1− u2)
+
√

1− s2 arctan
s√

1− s2

]
(275)

Therefore∫ 1

−1
log(u− s)dµ(x) =

1

2π

√
u2 − 1

∫ 1

−1

V ′(s)√
1− s2

ds+
1

2π
log

u+
√
u2 − 1

2

∫ 1

−1

sV ′(s)√
1− s2

ds

+
1

2π

∫ 1

−1
V ′(s)

(
arctan

s√
1− s2

− arctan
su− 1√

(1− s2)(1− u2)

)
ds. (276)

Using (275) and integration by parts,

1

4π2

∫ 1

−1

V (x)√
1− x2

p. v.

∫ 1

−1

√
1− s2

(u− s)(x− s)dsdx

=
1

4π2

∫ 1

−1

V (s)√
1− s2

∂

∂u
G(u, s)ds

=− 1

8
(V (1)− V (−1)) +

1

4π

∫ 1

−1
V ′(s)

(
arctan

s√
1− s2

+ 2 arctan

√
(u+ 1)(1− s)
(u− 1)(1 + s)

)
ds.

(277)

Similarly,

1

4π2

∫ 1

−1

log(u− x)√
1− x2

p. v.

∫ 1

−1

V ′(s)
√

1− s2

s− x dsdx =
1

4π2

∫ 1

−1
V ′(s)

√
1− s2F (u, s)ds

=
1

4π2

∫ 1

−1
V ′(s)

(
arcsin s− arcsin

us− 1

u− s

)
ds.

(278)

Thus by (276), (277), (278) and the identity

arcsin s− arcsin
us− 1

u− s + arctan
s√

1− s2
+ 2 arctan

√
(u+ 1)(1− s)
(u− 1)(1 + s)

− 2 arctan
s√

1− s2
+ 2 arctan

su− 1√
(1− s2)(u2 − 1)

= −π
2
, (279)

we have

1

4π2

∫ 1

−1

log(u− x)√
1− x2

p. v.

∫ 1

−1

V ′(s)
√

1− s2

s− x dsdx

− 1

4π2

∫ 1

−1

V (x)√
1− x2

p. v.

∫ 1

−1

√
1− s2

(u− s)(s− x)
dsdx−

∫ 1

−1
log(u− x)dµ(x)

=− 1

2π

√
u2 − 1

∫ 1

−1

V ′(s)√
1− s2

ds− 1

2π
log

u+
√
u2 − 1

2

∫ 1

−1

sV ′(s)√
1− s2

ds.

(280)
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By the property [15, Formulas 6.143 and 6.144]∫ 1

−1

V ′(x)√
1− x2

dµ(x) = 0, (281)∫ 1

−1

xV ′(x)√
1− x2

dµ(x) = 2π, (282)

we further simplify the second factor on the right-hand of (262) as

e


1

4π2

∫ 1
−1

log(u−x)√
1−x2

p.v.
∫ 1
−1

V ′(s)
√

1−s2
s−x dsdx

− 1
4π2

∫ 1
−1

V (x)√
1−x2

p.v.
∫ 1
−1

√
1−s2

(u−s)(s−x)dsdx−
∫ 1
−1 log(u−x)dµ(x)


= 2(u−

√
u2 − 1). (283)

Substituting (270) and (283) into (262), we obtain

M2(u) =

[(
u+ 1

u− 1

)1/4

−
(
u− 1

u+ 1

)1/4
]

2e

∫ 1
−1 V (x)dµ(x)− 1

4π2

∫ 1
−1

V (x)√
1−x2

p.v.
∫ 1
−1

V ′(s)
√

1−s2
s−x dsdx

, (284)

and prove (260) in the case that J = [−1, 1]. The general case can be proved by a simple rescaling.
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[9] E. Brézin and S. Hikami. Correlations of nearby levels induced by a random potential. Nuclear
Phys. B, 479(3):697–706, 1996.
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